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Background
Cardiovascular disease (CAD) remains the leading cause of death worldwide. In 
China, CAD accounted for more than 40% of deaths in 2014 [1]. Heart sounds, 
which are generated by the beating of heart, are considered as an important signal 
for detecting cardiovascular problems. In general, a normal heart sound comprises 
two components, namely the first heart sound (S1) and the second heart sound (S2). 
In some special cases, three additional components, namely the third heart sound 
(S3), fourth heart sound (S4), and murmurs, may appear together or separately [2]. 
Heart sounds have been used to diagnose cardiovascular problems for hundreds 
of years. Even currently, auscultation remains a crucial approach for physicians to 
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learn about patients’ heart health. However, this conventional diagnostic approach is 
highly subjective and relies largely on physicians’ experience [3]. Thus, an accurate 
and efficient automated heart sound analysis system is required.

There are two major challenges in developing an automated heart sound analy-
sis tool: segmentation and classification. The primary operations of segmentation 
are positioning the boundaries of heart sound components and identifying the com-
ponent types, namely S1, S2, S3, and S4. Several segmentation methods have been 
reported. However, most of the methods focus on either boundary detection or 
component identification. In addition, many methods only apply on normal heart 
sounds, thus severely limiting the application of these methods.

Liang et  al. [4] proposed a Shannon-entropy-based heart sound segmentation 
method to recognize S1 and S2, but they did not study S3, S4, and murmurs. Kumar 
et al. [5] presented an S3 detection algorithm based on wavelet transform; however, 
this method could not detect the boundaries of the heart sound components. Mouk-
adem et al. [6] developed an S-transform-based heart sound segmentation method; 
however, this method can only be applied to normal heart sounds. Springer et  al. 
[7] successfully addressed the segmentation problem of noisy S1 and S2 by utilizing 
a logistic regression–hidden semi-Markov model. Nevertheless, this study, as most 
other studies, did not address the segmentation of heart sounds containing S3 and 
S4. In addition to the aforementioned studies, several other researchers have also 
contributed to the automated segmentation of heart sounds. For example, Naseri 
et  al. [8] proposed a heart sound segmentation method based on the frequency-
energy method, which had excellent performance for various heart sounds. Bou-
tana et al. [9] presented a time–frequency-analysis–based heart sound segmentation 
method and validated the efficiency of the method through some pathological heart 
sounds. Tang et al. [10] reported a dynamic-clustering-based segmentation method, 
which was effective for both normal and abnormal heart sounds. However, these 
methods all have some of the aforementioned limitations.

Based on the advantages and drawbacks of the methods mentioned above, the 
present study is focused on developing an automated heart sound segmentation 
algorithm that can position the boundaries and recognize the components for both 
normal heart sounds and heart sounds with S3, S4 and murmurs.

In this study, a method that combines time-domain analysis, frequency-domain 
analysis, and time–frequency-domain analysis was developed, and some novel strat-
egies were proposed. The complete method comprises four parts, namely preproc-
essing, murmur elimination, boundary detection, and component identification. The 
overall process is presented in Fig.  1. First, the noisy raw heart sound is standard-
ized in the preprocessing phase. Then, the signal goes through murmur elimination 
algorithm, where any possible murmurs are considerably eliminated without affect-
ing the characteristics of the heart sound signal. In the following boundary detec-
tion phase, the onset and offset of each heart sound component are positioned and 
marked automatically. Finally, in the component identification phase, the cardiac 
cycle is calculated first, and the heart sound components are then recognized in 
each heartbeat on the basis of cardiac cycle.
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Methods
Materials

To validate the proposed method, two quantitative experiments were performed, and the 
heart sounds from the University of Michigan’s Heart Sound & Murmur Library were 
employed [11]. In the first experiment, 12 types of heart sounds with variable murmurs 
were used to verify the effect of murmur elimination. The total length of these sounds was 
759 s, and the cardiac cycle number reached 888. The second experiment was performed 
to quantify the effectiveness of boundary detection and component identification. For this 
purpose, 16 types of sounds, including 2 normal and 14 abnormal types, were used, con-
stituting a total of 1039 s (1251 cycles). The heart sound signals were recorded at 44.1 kHz, 
and each one lasted for at least 56 s. For the convenience of displaying and testing, each 
sound was divided into three-heart-cycle segments. Moreover, every two adjacent seg-
ments had an overlap of one cardiac cycle.

Preprocessing

Down‑sampling

Because the maximal frequency of the heart sounds did not exceed 1  kHz [12], the 
heart sound signals were down-sampled to 2 kHz according to the Nyquist-Shannon 
sampling theorem.

Fig. 1  Block diagram of the proposed method
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Denoising

A wavelet-based denoising method with soft threshold was utilized. The db4 wavelet 
was chosen as mother wavelet because its shape is similar to that of a heart sound sig-
nal, and the scale was established as 7 based on signal–noise-ratio (SNR) and normal-
ized root mean squared error (NRMSE) [13]. The denoised heart sound was written 
as HS(n).

Normalization

To standardize the processing of heart sound, the heart sound signals were normal-
ized as

where N is the total number of sampling points.
Unless otherwise specified, the expressions “original heart sound” and “original sig-

nal” appearing in the following refer to HSN(n).

Murmur elimination

Different from the conventional constant-cutoff-frequency-based murmur elimination 
method (usually 200 Hz) [8, 14], this paper presents a novel low-pass filter to remove the 
murmurs, namely the automatic-cutoff-frequency low pass filter (ALPF), whose cutoff 
frequency is calculated by analyzing the fast Fourier transform (FFT) of the heart sound.

Assuming that the modulus of the FFT sequence of HSN (n) is FFTH (n) , n = 0, 1, …, 
N − 1, the envelope of FFTH (n) is obtained by the moving average method as follows:

where N is the sampling number of FFTH(n), and LF is the neighborhood radius of point 
n, LF ≪ N. Note that if LF is too large, some adjacent local peaks of EFFT (n) are merged 
together. Considering this and experimental results, LF is set to 5. The envelope is also 
normalized using (1) and is written as EF (n) . Unless otherwise specified, the “FFT coef-
ficient” and “FFT envelope” appearing hereinafter refer to EF (n).

For the heart sounds without murmurs,EF (n) is generally comprised of primary 
peak and side peak (see in Fig. 2b). The primary peak is located in the low-frequency 
area with the highest amplitude, and the side peak is located in the relatively higher-
frequency area with much smaller amplitude. Thus, most energy of heart sounds is 
concentrated within the frequencies of primary peak, and filtering out the side peak 
does not affect the shape of heart sounds (see in Fig. 2c, d). Therefore, the primary 
peak preserves the information of heart sound components (S1, S2, S3 and S4).

(1)HSN (n) =
HS(n)

max(|HS(n)|)
, n = 0, 1, . . . ,N − 1

EFFT (n) =
1

LF + n+ 1

∑n+LF

k=0
FFTH (k), 0 ≤ n ≤ LF − 1

(2)EFFT (n) =
1

2LF + 1

∑n+LF

k=n−LF
FFTH (k), LF ≤ n ≤ N − LF − 1

EFFT (n) =
1

LF + N − n

∑n+LF

k=n−LF
FFTH (k), N − LF ≤ n ≤ N − 1
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For the heart sounds with murmurs, the primary peak still exists, but the side peak is 
usually merged with the frequency band of murmurs (see in Fig. 2f ). Considering that 
the murmurs usually have higher frequency than the primary peak, the frequency of pri-
mary peak’s ending point is an appropriate estimation of the cutoff frequency to remove 
murmurs.

In this study, the ending point of primary peak is searched in the range of 20 to 200 Hz 
and is determined as the first valley point (the lowest point between two adjacent spikes) 

Fig. 2  The performance of ALFP. a Is a normal heart sound, c is the filtered normal sound by ALFP, e is a heart 
sound with S3 and systolic murmurs, g is the murmur-eliminated sound by ALPF. b, d, f and h Are the FFT of 
a, c, e and g, respectively. In b, d, f and h, the yellow curves are the FFT sequences, and the blue curves are 
the envelopes of them. In b, the points marked by purple diamonds are two examples of spikes. In b and f, 
the points marked by red squares and green squares are the primary peak points and the last valley points 
with FFT coefficient smaller than 0.2, respectively
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after the primary peak point with FFT coefficient smaller than 0.2. The value 0.2 is deter-
mined based on experimental experience. If there is no such an ending point between 20 
and 200 Hz, the cutoff frequency is set to 200 Hz.
HSN (n) is filtered using this frequency, and the filtered sound is then normalized; the 

normalized sound is denoted as HSNLP.

Boundary detection

Envelope extraction

After removing the interference of murmurs, the next step is to calculate the onsets and 
offsets of heart sound components. Because the envelope can reduce the complexity of 
computing while preserving the location information of the signals, the closing opera-
tion of mathematical morphology is utilized to obtain the envelope in the proposed 
method and is defined as

where f(n) refers to the input signal, and g(n) is a structure element; ⨁ denotes the dila-
tion operation, and ⨂ denotes the erosion operation. The lengths of f(n) and g(n) are P 
and Q respectively, and generally P > Q [15, 16].

The choice of structure element g(n) directly affects the shape of the envelope obtained 
by this operation [17]. In this study, in order to make the shape of envelope simple, g(n) 
is designed as

Moreover, Q, the length of g(n) , is also a significant parameter. According to physiologi-
cal knowledge, in general, the time interval between adjacent heart sound components 
(S1S2 interval, S2S3 interval, S4S1 interval, etc.) is no less than 100 ms [8, 18], which 
corresponds to 200 points under the sampling rate of 2 kHz. Thus, Q should be smaller 
than 200. In this study, Q was set as 30 on the basis of the experimental results.

The f (n) in (3) is replaced by HSNLP, and the heart sound envelope is obtained. The 
envelope is then normalized. The result is denoted as ENLP.

Although the ALPF can effectively reduce murmurs, the filtered heart sound may 
retain some low-amplitude residuals, which are also reflected in the envelope and affect 
the detection of boundaries. In this method, three operations are used to overcome this 
problem.

Thresholding processing

The first operation is thresholding.
For some murmurs, such as early systolic murmurs, their onsets partially overlap the 

offsets of S1s. After filtering by ALPF, the residues of murmurs may still be linked with 
S1s. Consequently, the murmur residues and S1s may be mixed together in ENLP . There-
fore, the purpose of thresholding is to separate the boundaries of murmurs from those of 
S1s to conduct the subsequent operations. Consequently, a small threshold can complete 
this task. Due to the use of small threshold, the boundary information of the heart sound 
components can be preserved as much as possible.

(3)[f · g](n) =
{

[f ⊕ g]⊗ g
}

(n)

(4)g(n) = 0, 0 ≤ n ≤ Q
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The envelope ẼNLP after thresholding is calculated as

where θ = min(θA, θC), θA = � ·

√

1
N

∑

N−1
n=0 [ENLP(n)− µ]2 , � = 0.8,µ = 1

N

∑N−1
m=0 ENLP(m) 

and θC = 0.025. The parameter θA enables the algorithm to determine an appropriate 
threshold based on the characteristics of the signal itself, and θC is a reference threshold, 
preventing error in θA; the value of θC is determined by experimental results.

Opening operation

After thresholding, the boundaries of heart sound components and interfering residues 
are separated. The remaining residues are considerably smaller than the heart sound 
components in both duration and amplitude. Because the opening operation of math-
ematical morphology can reduce spikes, it is utilized as the second stage of residue 
removal. The opening operation is defined as [19]

The g(n) in opening operation is still defined using (4), but the length of g(n) is denoted 
as Q’. Besides, the parameters in (6) are same as those in (3).

As in the closing operation, Q’ is also a significant parameter. Because the average 
durations of S1 and S2 are approximately 100  ms and the durations of S3 and S4 are 
approximately 50 ms [8], which correspond to 200 and 100 sampling points, respectively. 
Thus, Q’ must be smaller than 100; in this study, it was set to 50 based on experimental 
results. The results of the opening operation are normalized, and the normalized signal 
is denoted as ẼNO.

Energy thresholding processing

Finally, to completely exclude the interference components from the envelope, the 
energy thresholding approach is used. Considering that ẼNO is comprised of points of 
zero and non-zero, i.e., the regions located by S1, S2, S3, S4 and few murmur residues 
are non-zero, and the rest regions are zero. Therefore, the boundaries of each compo-
nent (including the interference components escaping the opening operation) can be 
automatically obtained as follows:

then, the ith point is determined as a potential onset;

the jth point is determined as a potential offset. The potential onset and the potential off-
set always appear in pairs and these onsets and offsets are denoted as SPT(i) and EPT(j) 
respectively, where i, j = 0, 1, . . . ,M − 1 . M is the number of potential onsets/offset.

Consequently, the energy of each component can be obtained as

(5)ẼNLP =

{

ENLP , ENLP ≥ θ

0, ENLP < θ

(6)[f ◦ g](n) =
{

[f ⊗ g]⊕ g
}

(n)

If ẼNO(i) == 0&&ẼNO(i + 1) �= 0, i = 0, 1, . . .N − 2

If ẼNO
(

j − 1
)

�= 0&&ẼNO
(

j
)

== 0, j = 1, 2, . . .N − 1



Page 8 of 22Liu et al. BioMed Eng OnLine  (2018) 17:106 

Assuming for each Ek,

then the kth potential onset and offset are considered invalid and removed from SPT  
and EPT. Moreover, the points between these invalid onsets and offsets are determined 
as interference parts and are set to zero using (8)

In this inequality, η is set to 0.25 based on experimental experience. The remain-
ing potential points are determined as the final onsets and offsets of the heart sound 
components.

Component identification

Cardiac cycle calculation

The last step is to recognize the heart sound components. Considering the quasi-peri-
odic nature of heart sounds, this step can be more efficiently accomplished if the cardiac 
cycle is calculated. In some studies, the cardiac cycle was calculated by using the partial 
autocorrelation function (PACF) [10, 15]. However, because of the inherent defects of 
PACF, the calculating results are not satisfactory. In order to overcome the shortcomings 
of PACF, this study proposes a cardiac cycle calculation method based on the unbiased 
autocorrelation function (UACF), considerably improving the applicability.

The PACF and UACF are defined as (9) and (10), respectively.

where m = 0, 1, . . .N − 1,N  is the sampling number of ẼNO . Figure 3 demonstrates the 
PACF and UACF.

For PACF, as m increases, the number of sampling points involved in multiplication 
and accumulation decreases gradually. Consequently, the primary peaks of the PACF 
exhibit gradual attenuation (see in Fig. 3b), causing the side peaks between the primary 
peaks to be interference of the cardiac cycle calculation. By contrast, the UACF only 
averages the terms that are involved in multiplication and accumulation, thereby over-
coming the drawback of primary peak’s attenuation in the PACF.

Figure 3c shows that there is a relatively significant difference in amplitude between 
the primary peaks and side peaks. To further expand the amplitude difference, 
square energy, which is defined in (11), is utilized. After obtaining the energy signal, 

(7)Ek =
∑EPT (k)

i=SPT (k)
ẼNO

2(i), k = 0, 1, . . . ,M − 1

If Ek < η

(8)ẼNO(n) =

{

0, SPT (k) ≤ n ≤ EPT (k), 0 ≤ k ≤ M − 1, if Ek < η

ẼNO(n), else

(9)R(m) =
1

N

∑N−m−1

n=0
ẼNO(n)ẼNO(n+m)

(10)R′(m) =
1

N −m

∑N−m−1

n=0
ẼNO(n)ẼNO(n+m)
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thresholding is used to remove the side peaks. The energy signal of the UACF and the 
energy signal after thresholding are denoted as ER′ and ẼR′ , respectively.

where σ = 0.4 ×max(ER′).
The last peak of ẼR′ is likely to be a side peak that escaped from thresholding because 

of its relatively higher amplitude (see in Fig. 4c). This kind of side peak is usually gen-
erated by the multiplication and accumulation of S1 and S2. In order to calculate the 
cardiac cycle accurately, the last peak of ẼR′ is forcibly removed regardless of whether 
it is a side peak or a primary peak (see in Fig. 4d). Finally, the UACF of ẼR′ with the 
last peak removed is calculated, and this UACF is denoted as RFinal (see in Fig.  4e). 
Then, thresholding is performed on RFinal with a threshold of 0.5 × max (RFinal), leav-
ing only primary peaks in the thresholded RFinal. The intervals between adjacent peaks 

(11)ER′(m) = R′2(m), m = 0, 2, . . . ,N − 1

(12)ẼR′ =

{

ER′ , ER′ ≥ σ

0, ER′ < σ

Fig. 3  PACF and UACF of heart sound: a is the thresholded heart sound envelope ẼNO ; b is the PACF of a; c is 
the UACF of a. The peaks that are marked by red circles are primary peaks, while the peaks unmarked are side 
peaks
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of thresholded RFinal are then calculated and averaged to obtain the average cardiac 
cycle. Figure 4 shows the main procedures of cardiac cycle calculation.

Component recognition

After determining the cardiac cycle, the heart sound components can be recognized 
beat by beat. Under normal circumstances, in terms of the number of components in 
one heartbeat, heart sounds can be divided into three categories: two components (S1 
and S2), three components (S1, S2, S3, or S4) and four components (S1, S2, S3, and 
S4). Moreover, in the time domain, S1S2 interval < S2S1 interval, S2S3 interval < S3S1 
interval, and S2S4 interval > S4S1 interval, whereas in the frequency domain, the fre-
quencies of S1 and S2 are usually higher than those of S3 and S4 [8, 15]. These priori 
knowledge along with the mentioned three categories can be utilized to recognize the 
heart sound components.

Figure 5 presents the overall process of component recognition. The algorithm finds 
a heartbeat based on cardiac cycle and automatically obtains its component number. 
Then, the recognition processing is performed according to the component number 
found.

Fig. 4  The main procedures of cardiac cycle calculation: a is R′(m), the UACF of a heart sound with S4; b is 
ER′ (m) , the energy signal of R′(m); c is ẼR′ (m) ; d is c without the last peak; e is RFinal, the UACF of d 
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For the convenience of expression, in the following part, the jth component of the 
ith heartbeat is denoted as Cj

i, and the time interval between Cm
p and Cn

q is denoted as 
Tmn

p,q.
Assuming that the i th heartbeat is being analyzed, then the recognition processing 

can be expressed as follows.
Two components: In this case, Ti,i

12 and Ti,i+1
21 are calculated. If Ti,i

12< Ti,i+1
21, Ci

1is identified 
as S1, and Cj

2 is identified as S2; otherwise, Ci
1is S2, and Cj

2 is S1.
Three components: In this case, because S3 and S4 are less than S1 and S2 in fre-

quency, these three components can be recognized using three steps: detecting S3/S4, 
recognizing S1 and S2, and identifying S3/S4.

Time–frequency analysis is required for the detection of S3 and/or S4. In this study, 
S-transform is employed to accomplish this task. Assuming that the signal to be ana-
lyzed is h(n), n = 0, 1, …, N − 1, its Fourier transform is H(k/NT ), k = 0, 1, . . . ,N − 1, 
where T is the sampling interval. Then, the S-transform of h(n) is given by [20].

where j, m, n = 0, 1, …, N − 1.
To obtain sufficient time–frequency information, the S-transform is directly per-

formed on the original heart sound signal HSN(n). The result is a complex matrix and 

(13)

{

S
(

jT , n
NT

)

=
∑N−1

m=0 H
(

m+n
NT

)

e
− 2π2m2

n2 e
i2πmj
N , n �= 0

S
(

jT , 0
)

= 1
N

∑N−1
m=0

(

m
NT

)

, n = 0

Fig. 5  Flow diagram of heart sound component identification
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is written as S. Suppose that the element of the mth row in the nth column of the 
matrix is Sm,n = a + jb, then the modulus of Sm,n is defined as.

The modulus of each element of S is calculated, and the modulus matrix |S| is then 
obtained. Unless otherwise specified, both the expression “S transform” and “S coef-
ficient” in the following text refer to |S|.

The two-dimensional |S| matrix is relatively difficult to analyze; thus, the one-
dimensional instantaneous frequency is utilized to detect S3 and S4, and is defined as.

where F(m) = m
NT =

m·fs
N  represents the frequency of the mth row of the S-transform, 

and fs is the sampling rate. Because the maximal frequency of the sampled signal is half 
of the sampling frequency, F(m) was set as 12

m
NT =

m·fs
2N ,m = 0, 1, . . . ,N − 1 in this study.

Furthermore, the boundaries of heart sound components are obtained in the 
boundary detection phase (i.e., SPT and EPT). Therefore, by extracting the parts 
between these onsets and offsets from fH(n), the instantaneous frequency of heart 
sound components is obtained (see in Fig. 6(3)).

Finally, the average instantaneous frequency is calculated. Figure  6a–d present an 
example of these operations. It is observed that the average instantaneous frequency 
of S4 is significantly lower than those of S1 and S2. Similarly, the instantaneous fre-
quency of S3 is also the lowest among S1, S2 and S3. Consequently, the component 
with the lowest frequency of each heartbeat is S3 or S4, which means that the previ-
ous component is S2 and the next is S1.

Without loss of generality, assuming that Ci
2 is the component with the lowest fre-

quency, Ci
1 and Ci

3 can be easily determined as S2 and S1, respectively. Then, Ti,i
12 and 

Ti,i
23 are calculated and compared. If Ti,i

12 < Ti,i
23, Ci

2 is recognized as S4; otherwise, if 
Ti,i

12 > Ti,i
23, Ci

2 is S3.
Four components: In this case, the four components are arranged in the order: S1 

→ S2 → S3 → S4 → ··· S1 → S2. Thus, the first one of the two components with the 
lowest instantaneous frequencies is S3, and the second is S4. Moreover, the compo-
nent preceding the detected S3 and S4 is S2, and the following component is S1.

After all the components in the ith heartbeat are recognized, the algorithm finds the 
next beat, and performs the same recognition processing. When all the heartbeats are 
analyzed, the recognition process is finished.

Finally, the heart sounds are divided into segments. For the sounds containing S1 
and S2 only (including the sounds with murmurs), they are segmented into S1, S1S2 
interval, S2 and S2S1 interval. For the sounds containing extra S3/S4 (sounds with 
murmurs are also included), they are segmented into S1, S1S2 interval, S2, S2S3/S2S4 
intervals, S3/S4, S3S1/S4S1 intervals.

(14)|S|m,n = |Sm,n| =
√

a2 + b2

(15)fH (n) =

∑N−1
m=0 F(m) · |S|m,n
∑N−1

m=0 |S|m,n
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Results
Experimental setup

Murmur elimination evaluation

For the evaluation of murmur elimination, a novel index, the signal murmur ratio (SMR), 
is proposed as follows:

where X(n) is the heart sound signal, U is the region where heart sound components (S1, 
S2, S3, and S4) are located, and V is the region where murmurs are located. To ensure 
the validity of the indicator, both U and V  are manually determined from the original 
signal HSN(n). Thereby, for a certain heart sound, U and V are constant when calculating 
SMRs of the murmur-reduced heart sound and the non-murmur-reduced heart sound 
(see in Fig. 7). A higher SMR indicates a smaller murmur energy proportion in signal 
X(n) , which means a stronger murmur removing effect.

Boundary detection and component identification evaluation

To validate the performance of boundary detection and component identification, three 
classical metrics, sensitivity (Se), positive predictive value (PPV), and accuracy (Acc) are 
calculated. These three indices are defined as follows:

(16)SMR = 10 · lg

∑

n∈U X2(n)
∑

m∈V X2(m)

(17)Sensitivity(Se) =
TP

TP+ FN
× 100%

(18)Positive predictive value (PP) =
TP

TP+ FP
× 100%

Fig. 6  Time–frequency analysis: a is a heart sound with murmurs and S4; b is the instantaneous frequency 
of this heart sound; c is the instantaneous frequency only for the heart sound components; d is the average 
instantaneous frequency of c. “NA” represents “normalized amplitude”
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In this experiment, the onsets and offsets of heart sound components were automatically 
marked with green circles and red stars by the algorithm (see in Fig. 8c), respectively. In 
addition, the names of these components were automatically labeled above them (see in 
Fig. 8d). The results of boundary localization and component identification were judged 
by human and quantified using (17)–(19), in which the FN means false negative, FP 
means false positive, TN means true negative and TP means true positive.

(19)Accuracy (Acc) =
TP+ TN

TP+ TN+ FP+ FN
× 100%

Fig. 7  Murmur elimination effect for heart sound containing S4 and systolic murmurs using the three 
methods. a Is the non-murmur-reduced heart sound, and b–d show the sounds filtered by ALPF, WT and 
200-LPF, respectively. In the calculation of SMR,U = U1+ U2+ · · · + U6 , and V = V1+ V2+ V3

Fig. 8  The results of murmur elimination, boundary detection and component identification for heart sound 
containing S4 and systolic murmurs
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Results of murmur elimination

The performance of ALPF was compared with two existing methods. The first method 
is the conventional low-pass filter with a constant cutoff frequency of 200 Hz (200-
LPF), and the second method is the wavelet package transform method with a db10 
mother wavelet and a scale of 5 (WPT) [14]. In the WPT method, the heart sound 
components were reconstructed by nodes (5, 0) to (5, 5) to remove interference com-
ponents such as murmurs. The SMR of the heart sounds filtered by the ALPF, WPT 
and 200-LPF are denoted as SMRA, SMRWPT, and SMR200, respectively. Moreover, the 
SMR of the original heart sounds HSN(n) was calculated and denoted as SMROri . In 
addition, the SMR gains of these three methods were achieved by subtracting SMROri 
from SMRA , SMRWPT  and SMR200 , respectively. All the experimental parameters of 
these three methods were identical.

Tables  1 and 2 show the statistical results of SMR and SMR gains. It is observed 
that the proposed ALPF has the highest score of SMR and SMR gains. The overall 

Table 1  Statistics of SMR

The italic values are represent the optimal results, compared with the results achieved in other methods/studies

UMich no. Heart sound 
types

Length 
(s)

Cycle number SMRA/db SMRWPT/db SMR200/db SMROri/db

6 Early Systolic 
Murmur, Apex

60 66 24.24 22.91 15.52 14.60

7 Mid Systolic Mur-
mur, Apex

67 72 28.34 25.37 22.01 12.51

8 Late Systolic 
Murmur, Apex

61 63 30.27 28.93 29.16 21.64

9 Holosystolic Mur-
mur, Apex

60 63 24.26 22.20 21.96 16.07

4 Mid Systolic Click, 
Apex

60 72 25.12 22.25 19.50 19.14

10 Systolic Click and 
Late Systolic 
Murmur, Apex

64 72 29.03 26.35 24.18 23.23

11 S4 and Mid Sys-
tolic Murmur, 
Apex

65 72 34.35 28.18 28.93 17.06

12 S3 and Holosys-
tolic Murmur, 
Apex

64 87 27.63 26.35 26.77 16.09

16 Early Diastolic 
Murmur, Aortic

61 81 32.12 31.92 31.88 31.37

21 Ejection Systolic 
Murmur and 
Transient Split 
S2, Pulmonic

56 75 26.41 23.68 21.33 20.47

22 Split S2 and Ejec-
tion Systolic 
Murmur, 
Pulmonic

66 78 18.07 14.46 12.52 11.26

23 Ejection Systolic 
Murmur and 
Single S2 and 
Ejection Click, 
Pulmonic

75 87 24.30 20.20 21.96 16.07

Arithmetic average ± SD 26.95 ± 4.30 24.42 ± 4.54 22.61 ± 5.86 18.35 ± 5.41

Weighted average ± SD 26.92 ± 4.14 24.38 ± 4.43 22.61 ± 5.67 18.39 ± 5.29
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performances were evaluated by two indices, arithmetic average (AA) and weighted 
average (WA). AA was achieved by simply averaging the SMRs of 12 types of heart 
sounds and WA was affected by the weight of each type’s cycle number. In terms of 
SMR, the AA (± SD) and WA (± SD) of SMRA reach 26.95 ± 4.30 db and 26.92 ± 4.14 
db, respectively; by contrast, the AA and WA are 24.42.07 ± 4.54 and 24.38 ± 4.43 for 
SMRWPT and 22.61 ± 5.86 and 22.61 ± 5.29 for SMR200. In terms of SMR gains, the 
heart sounds filtered by the ALPF have an arithmetic average and weighted average 
SMR gain (± SD) of 8.66 ± 4.52 db and 8.59 ± 4.37 db; by contrast, the arithmetic 
average and weighted average SMR gains (± SD) are 6.07 ± 3.88 and 5.99 ± 3.76 for 
WPT and 4.26 ± 4.51 and 4.21 ± 4.51 for 200-LPF.

Figure  7 shows an example of the murmur elimination results using the three 
methods.

Results of boundary detection and component identification

A detailed quantitative description of the boundary positioning result is shown in 
Table 3. It is observed that the proposed method achieves a sensitivity of 100% for all 
16 types of heart sounds, and both the PPV and accuracy are 99.93%, indicating an 
outstanding performance.

Table 4 presents the quantitative data of component identification. Because of the 
good positioning effect, the identification performance is high, with an average Se of 
98.63%, an average PPV of 99.86%, and an average accuracy of 98.49%.

Figure  8 shows the complete process of the proposed method, including murmur 
elimination, boundary detection, and component identification. The first compo-
nent (S4) in Fig.  8d is not labeled. This is because the identification of S4 requires 

Table 2  Statistics of SMR gains

The italic values are represent the optimal results, compared with the results achieved in other methods/studies

UMich no. Heart sound types Length 
(s)

Cycle number SMR gains

ALPF WPT 200LPF

6 Early Systolic Murmur, Apex 60 66 9.64 8.31 0.91

7 Mid Systolic Murmur, Apex 67 72 15.84 12.86 9.50

8 Late Systolic Murmur, Apex 61 63 8.64 7.29 7.52

9 Holosystolic Murmur, Apex 60 63 8.20 6.13 5.90

4 Mid Systolic Click, Apex 60 72 5.99 3.11 0.37

10 Systolic Click and Late Systolic 
Murmur, Apex

64 72 5.79 3.12 0.95

11 S4 and Mid Systolic Murmur, Apex 65 72 17.29 11.12 11.88

12 S3 and Holosystolic Murmur, Apex 64 87 11.54 10.25 10.68

16 Early Diastolic Murmur, Aortic 61 81 0.765 0.55 0.51

21 Ejection Systolic Murmur and 
Transient Split S2, Pulmonic

56 75 5.94 3.21 0.86

22 Split S2 and Ejection Systolic Mur-
mur, Pulmonic

66 78 6.81 3.20 1.26

23 Ejection Systolic Murmur and 
Single S2 and Ejection Click, 
Pulmonic

75 87 7.51 3.70 0.79

Arithmetic Average ± SD 8.66 ± 4.52 6.07 ± 3.88 4.26 ± 4.51

Weighted Average ± SD 8.59 ± 4.37 5.99 ± 3.76 4.21 ± 4.37
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information obtained from the previous cardiac cycle. However, this cycle lacks the 
information. The unlabeled S4 component is identified in the previous segment. 
Therefore, there is no problem of missed detection.

Discussion
Tables 1 and 2 show the results of murmur elimination, all three methods exhibit an 
improvement in SMR compared with SMROri. As a result of selecting the appropriate 
cutoff frequency, the proposed ALPF has the highest SMR gain among all the tested 
methods. The arithmetic and weighted average SMR gains of ALPF reach 8.66db and 
8.59db, which are 42.67% and 43.41% higher than WPT’s 6.07db and 5.99db, and 
103.29% and 104.04% higher than 200-LPF’s 4.26db and 4.21db, respectively, indicat-
ing optimal murmur elimination performance.

In order to verify the superiority of the proposed method for murmur elimination, in 
this study, the paired two-sample t-test was performed on the SMR gains calculated for 
12 types of heart sounds filtered with these three methods. In the paired two-sample 
t-test, the significance level α was set to 0.01. Under this condition, the rejection region is 
|t| ≥ tα/2(n − 1) = t0.005(11) = 3.1058, and tA,WPT = 5.5499 > 3.1058, tA,200 = 5.5039 > 3.1058, 
and tWPT,200 = 2.6273 < 3.1058. Thus, the proposed murmur elimination method was ver-
ified to have significant advantages compared with WPT and 200-LPF.

For boundary detection results shown in Table 3, among all 16 types of heart sounds, 
the proposed method failed on one signal labeled as a mid-systolic click: two click com-
ponents were not removed in boundary detection process and were erroneously posi-
tioned as true components. Time–frequency analysis was then performed to determine 
the reason for this.

The time–frequency analysis revealed that these click components have a rela-
tively high number of overlaps with S1 and S2 in frequency, resulting in the failure 
in removing them. Compared with this sound, the other signals’ interference compo-
nents (clicks, murmurs, and residues of noise) show a smaller overlap with the true 
components; thus, the positioning score is higher. In fact, setting a higher threshold θ 
can completely remove the clicks, resulting in a higher performance score. However, 
the higher threshold causes a larger deviation between the calculated boundaries and 
the real values. After weighing the pros and cons, this approach was abandoned.

The identification results of Table 4 shows that the fourth signal (Umich No. 4) is 
consistent with the result of positioning. A difference appears in the result of the 13th 
signal (Umich No. 14). The FN of the signal reaches 36, resulting in a low Se and low 
Acc of 73.91%. Initially, this result was puzzling because the signal was labeled as nor-
mal. After a comprehensive analysis, the rhythm of some parts of this heart sound 
was found to be irregular, resulting in the failure of heart cycle calculation in these 
parts. Therefore, components of these parts could not be recognized.

For the performance evaluation, because the cycle number of each heart sound was 
very close and the performance of each type of signal was analyzed separately, the uti-
lized dataset did not suffer from the problem of unbalance.

Some other operating characteristics obtained in this study and 11 previous studies 
are listed in Table  5 for comparison. Both the Se and PPV for positioning in litera-
ture [6] consist of two values separated by a slash. The two values are for normal and 
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pathological cases of heart sounds, respectively. As mentioned in the “Background”, a 
complete segmentation is comprised of boundary detection and component identifi-
cation. However, several existing works only focus on one of them. Moreover, some 
studies could be applied only to the basic situation, for example, heart sounds without 
murmurs. Therefore, in addition to achieving excellent performance, the proposed 
approach achieves the functions of both boundary localization and component iden-
tification and can be applied in more conditions.

Conclusions
This paper presents an accurate heart sound segmentation algorithm that combines 
time-domain, frequency-domain and time–frequency-domain analysis. Compared to 
existing studies, this method is applicable to a wide range of heart sounds, from nor-
mal to those containing S3, S4 and various murmurs. To verify this method, quantita-
tive experiments were performed using the University of Michigan’s Heart Sound & 
Murmur Library, an authoritative open database. The experimental materials incor-
porated two types of normal heart sounds and 14 types of abnormal heart sounds. 
The results show that the boundary localization has an average Se of 100%, an average 
PPV of 99.3% and an average Acc of 99.93%. Moreover, the Se, PPV and Acc of the 
component identification reach 98.63%, 99.86% and 98.49%, respectively, indicating 
outstanding performance of the proposed method. There are still some shortcomings 
of this work. For example, the component identification relies on the success of car-
diac cycle calculation; therefore, this method cannot be applied to the heart sound 
with severe arrhythmia because of the failure to achieving accurate cardiac cycle by 
using UACF. The study of segmentation provides a good basis for extracting signifi-
cant features of heart sounds. Therefore, the further study will focus on the classifica-
tion of heart sounds.

Table 5  A comprehensive comparison with other studies

The italic values are represent the optimal results, compared with the results achieved in other methods/studies
a  N: normal; Mur: murmurs
b  P: positioning; I: identifying; ✓*: only available for S1 and S2
c  NM: not mentioned

Methods Application 
capabilitya

Functionsb Positioningc Identifying

N S3 S4 Mur P I Se PPV Acc Se PPV Acc

Proposed method ✓ ✓ ✓ ✓ ✓ ✓ 100 99.93 99.93 98.63 99.86 98.49

Naseri et al. [8] ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ 99.00 98.60 NM

Varghees et al. [21] ✓ ✓ ✓ ✓ ✓ ✗ 99.43 93.56 93.06 ✗ ✗ ✗
Sepehria et al. [22] ✓ ✓ ✓ ✓ ✗ ✓* ✗ ✗ ✗ ✗ ✗ 93.6

Moukadem et al. [6] ✓ ✗ ✗ ✓ ✓ ✓ 96/97 95/95 NM 95 97 NM

Moukadem et al. [26] ✓ ✗ ✗ ✓ ✓ ✗ 95 98 NM ✗ ✗ ✗
Pedrosa et al. [23] ✓ ✗ ✗ ✗ ✓ ✓ 89.2 98.6 NM ✗ ✗ ✗
Wang et al. [24] ✓ ✗ ✗ ✓ ✓ ✓ NM NM NM NM NM NM

Schmidt et al. [25] ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ 98.8 98.6 NM

Tseng et al. [2] ✓ ✗ ✗ ✗ ✗ ✓ NM NM NM 92.4 88.1 NM

Zhong et al. [27] ✓ ✗ ✗ ✗ ✓ ✓ NM NM NM 92.84 NM NM

Wang et al. [28] ✓ ✗ ✗ ✗ ✓ ✓ NM NM NM 96.8 NM NM
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