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Abstract

The pelagic ecosystems of the Western Antarctic Peninsula are dynamic and changing

rapidly in the face of sustained warming. There is already evidence that warming may be

impacting the food web. Antarctic krill, Euphausia superba, is an ice-associated species

that is both an important prey item and the target of the only commercial fishery operating in

the region. The goal of this study is to develop a dynamic trophic model for the region that

includes the impact of the sea-ice regime on krill and krill predators. Such a model may be

helpful to fisheries managers as they develop new management strategies in the face of

continued sea-ice loss. A mass balanced food-web model (Ecopath) and time dynamic sim-

ulations (Ecosim) were created. The Ecopath model includes eight currently monitored spe-

cies as single species to facilitate its future development into a model that could be used for

marine protected area planning in the region. The Ecosim model is calibrated for the years

1996–2012. The successful calibration represents an improvement over existing Ecopath

models for the region. Simulations indicate that the role of sea ice is both central and com-

plex. The simulations are only able to recreate observed biomass trends for the monitored

species when metrics describing the sea-ice regime are used to force key predator-prey

interactions, and to drive the biomasses of Antarctic krill and the fish species Gobionotothen

gibberifrons. This model is ready to be used for exploring results from sea-ice scenarios or

to be developed into a spatial model that informs discussions regarding the design of marine

protected areas in the region.

Introduction

The Western Antarctic Peninsula (WAP) is one of the most rapidly warming regions on Earth

[1–3] with an average air temperature increase at the surface of approximately 5-6˚ C since

1960 [4, 5]. Long-term datasets describing the sea-ice regime illustrate significant changes in

response to this prolonged warming and increasing number of days where the air temperature

exceeds freezing [4]. “Permanent” ice shelves that rest over the sea have been retreating for the
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past 20 years, and winter sea-ice concentration and extent are both decreasing [1, 2]. Sea ice is

forming later in the season and retreating earlier [1, 4]. Throughout the Antarctic Peninsula

region the winter-ice season has decreased by one to two days per year on average [4], and the

total the sea-ice season shrank by 92 days from 1979–80 to 2012–13 [2]. Sea ice is critically

important in structuring WAP marine ecosystems [1, 2].

Marine food webs in the WAP are often described as krill-centric [6–8]. Diet studies of

numerous predators in the region indicate that Antarctic krill (Euphausia superba, hereafter

krill) is an important prey species for a wide variety of predators [9]. Krill are the target of the

largest (by tonnage) Antarctic fishery, with about 155,000 t yr-1 landed from around the WAP,

within Statistical Subarea 48.1 as defined by the Commission for the Conservation of Antarctic

Marine Living Resources (CCAMLR) [10, 11]. Krill are patchily distributed, and krill abun-

dance can vary by orders of magnitude [12–15]. These realities imply that the role of krill in

the food web can vary both spatially and temporally.

There is evidence that warming around the WAP has altered the food web [1]. In areas that

have experienced sustained warming and associated ice loss, salps (Salpa thompsoni) may

replace krill as the dominant phytoplankton consumer [16]. Top predators such as Adélie

(Pygoscelis adeliae) and chinstrap (P. antarcticus) penguins may be declining throughout the

WAP, and these declines are correlated with increasing temperatures and ice loss [17]. Abun-

dant piscine predators like Gobionotothen gibberifrons also appear to have experienced signifi-

cant declines yet it is unclear what is causing these trends [18]. The changing sea-ice regime is

likely influencing predator-prey dynamics and population dynamics at all levels of the food

web. Marine-resource managers for the region may find it useful to explore how changes in

the sea-ice regime and consequent effects on the food web could impact harvested and moni-

tored species before making changes to fisheries-management strategies. Such explorations

may be particularly helpful in light of ongoing discussions regarding the design of marine pro-

tected areas (MPAs) in the region (paragraphs 5.63–5.69 of [19]).

The software package Ecopath with Ecosim (EwE) was designed to facilitate the creation of

dynamic food-web models that can be used to aid the development of fisheries-management

strategies, including the development of MPAs [20, 21]. To explore such options, EwE imple-

ments a mass balanced food-web model (Ecopath) and time dynamic simulations (Ecosim)

that aim to recreate observed biomass trends for key components in the ecosystem. There are

three published EwE models that overlap in whole or in part with the WAP: Cornejo-Donoso

and Antezana [22], Ballerini et al. [7] and Suprenand and Ainsworth [23]. Two other EwE

models have been made available in the grey literature [24, 25]. All five sets of authors pro-

duced mass balanced Ecopath models, but none of the models were calibrated by fitting to

time-series observations in Ecosim. The previous models do not recreate observed trends in

the biomasses of several monitored species. Furthermore, because species are aggregated, the

existing models do not facilitate consideration of species-specific responses to environmental

change and alternative management decisions. These existing models are poorly suited to be

used as decision support tools for the MPA process.

The objectives of this study are to1) develop a mass balanced food-web model that explicitly

describes the dynamics of monitored and declining species and 2) calibrate the model by fit-

ting time dynamic simulations to observed trends in the biomasses of species that are moni-

tored in the WAP. Having accomplished these objectives, we assert the model would be

suitable for further development into a spatial model to be used as a decision support tool

within the CCAMLR process to designate MPAs. The work presented here evaluates the extent

to which changes in sea-ice cover explain observed variations in species biomass by including

the sea-ice regime as an environmental driver. We note that the relationship between krill and

sea ice is uncertain [14] and that other environmental drivers may influence krill and its
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predators. The work presented here focuses on the role of sea ice in structuring the food web

in the WAP as one plausible hypothesis to explain temporal patterns of biomass for eight mon-

itored species.

Methods

Study area

The study area was Statistical Subarea 48.1 as defined by the Commission for the Conservation

of Antarctic Marine Living Resources (CCAMLR). This is a region of the southwest Atlantic

that includes the WAP and South Shetland Islands [10]. Subarea 48.1 has an area of approxi-

mately 630,279 km2 [9] and is south of South America (Fig 1). The only commercial fishery

currently operating in Statistical Subarea 48.1 is the krill fishery, which removed an average of

approximately 51,000 tonnes of krill per year in the 1990s and 33,000 tonnes of krill per year in

Fig 1. Study area detail. Map, including reticules, was created using ArcMap 10.6. The Antarctic continent shapefile is freely available from the

Antarctic Digital Database [26], the boundary of Statistical Area 48.1 is freely available from CCAMLR’s online GIS [27]. The Natural Earth (https://

www.naturalearthdata.com/) provides public domain shapefiles of the countries of the world. The polygon bounding the Palmer LTER Study Area was

drawn to bound the stations identified in the Palmer LTER Basic Grid[28] The displayed sea-ice maxima is a climatology (1981–2010) describing the

median location of the sea edge in the month of August as made available from the National Snow and Ice Data Center [29]. The displayed sea-ice

minima is a climatology (1981–2010) describing the median location of the sea ice edge in February as made available from the National Snow and Ice

Data Center [29].

https://doi.org/10.1371/journal.pone.0214814.g001
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the early 2000s [10]. The krill catch in Statistical Subarea 48.1 has been increasing with catch

exceeding 150,000 tonnes in 5 of the last eight years [10].

Mass-balanced food-web model (Ecopath). Ecopath with Ecosim (EwE) is open source,

freely available software that has been used to model ecosystems worldwide [20, 21]. Ecopath

creates a mass balanced model of the food web assuming that predation, fishing pressure, and

competition are critical to structuring the community [20, 21].

Ecopath relies on two master equations to parameterize the model. As described in Chris-

tensen and Walters (2004), the first equation describes the production term, Pi.

Pi ¼ YiþM2i� Biþ Eiþ BAiþM0i� Bi ð1Þ

For each species i, Yi is the total fishery catch,M2i is the instantaneous predation rate, Bi is the

biomass, Ei is the net migration rate, BAi is biomass accumulation, andM0i is ‘other’

mortality.

The second master equation describes the energy balance of each group such that

Consumption ¼ productionþ respirationþ unassimilated food ð2Þ

This equation requires that the consumption of any one model group is always less than or

equal to its production, thus ensuring energy balance within each group [20].

For this study, the food web of the WAP was simplified into 35 single- and multi-species

groups, and these groups were selected to represent all levels of the food web, from detritus to

apex predators. (see S1 File for group definitions). Due to the importance of krill in the region

[2, 7, 8], special attention was paid to krill and monitored krill predators. Species that the

CCAMLR have designated as indicator species [30, 31] were represented as single-species

groups. It was our intention that this model eventually be developed into a spatial model (Eco-

space) that can be used to inform the development of marine protected areas in the region. All

currently monitored species seem likely to feature in a research and monitoring plan associ-

ated with a new MPA and were modeled as single species. Other species, such as non-krill zoo-

plankton, phytoplankton, and fishes for which relatively little data exist, were combined into

multi-species functional groups.

Specification of Ecopath biomass. The base year of the model was 1996. Initial biomass

estimates for all consumer groups reflected data collected during the period 1992–2002, and

for many groups only a single estimate was available during this time frame (S2 File). For large

krill, multiple density estimates are available during this time period and we averaged densities

for the years 1996–2001 to determine the biomass to input to Ecopath. Data on the biomass of

primary producers in the region are scarce and region-wide estimates are not available. While

satellite imagery describing chlorophyll concentrations is available nine months of the year

[32], measurements of chlorophyll concentrations do not capture ice algae and may not corre-

late well with in situmeasurements of phytoplankton biomass [33]. Rather than introduce

additional complexity and uncertainty by attempting to estimate the biomasses of the phyto-

plankton and ice-algae functional groups from remotely sensed imagery, we used the model

itself to calculate biomass for primary producers. This was accomplished by setting the eco-

trophic efficiency (EE), the proportion of production of any given model group utilized in the

system (see equation 6 of [20]), and allowing the model to calculate the biomass required to

balance this proportion of utilization. This was the same approach used by Ballerini et al. [7].

Following the advice of Heymans et al. [34], the EE for primary producers in this largely

pelagic ecosystem was set to 0.5 [33]. For all other groups, we input biomasses and used the

model to calculate the EEs. Fisheries catch data are regularly reported to the CCAMLR [10],

and the average krill catch for the years 1995–2001, which represented catches near the base
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year of the model, was included as “landings” in Ecopath. We did not include discards as dis-

cards are not clearly identified in the publicly available CCAMLR data [10].

The abundances of two species of whales are known to be increasing in the study area [35,

36]. However, while estimates of the rate of increase have been presented, no reliable times

series of abundance are available. Humpback whales (Megaptera novaeangliae) have experi-

enced an estimated average population growth for the region of 4.5% per year with a 95% con-

fidence interval of -2.9% to 12.3% [35]. Initially, we used a biomass accumulation term of

4.5%, but the model failed to balance if the biomass accumulation term for humpback whales

was greater than 3.9%, so we used this later value. While annual population-growth rates have

not been published for fin whales (Balaenoptera physalus) in the study region, reported sight-

ings data [36] reveal that fin whale sightings have increased at a similar, but slightly lesser rate.

A biomass accumulation term of 2.9% per year was used for Fin whales.

Specification of Ecopath production to biomass ratio. The production to biomass ratio

(P/B) describes the turnover rate, or rate at which a trophic group can replace itself. This rate

is poorly described for many species at lower trophic levels. Due to lack of data, the P/B ratios

for primary producers, micro-, meso-, and macro- zooplankton, salps, and benthic inverte-

brates were adopted from previously published models. Ballerini et al. [7] estimated phyto-

plankton productivity from satellite imagery; the estimated P/B for the “other euphausiid”

functional group was from studies conducted in Japan [37]; and the estimated P/B value for

salps was from Pakhomov [38].

Krill were modeled as a multi-stanza group, with one stanza for animals younger than 24

months (small krill) and a second for animals older than 24 months (large krill). Instead of P/

B, base mortality (Z) was input for each stanza [20]. The multi-stanza approach assumes that

body growth for the species follows a von Bertalanffy curve and that the species’ population, as

a whole, has reached a stable age-size distribution [20]. These assumptions seem valid for the

Antarctic krill population [39, 40]. A recent review of published mortality rates for krill indi-

cates that temperature, age composition of the population, and sub region where the krill are

sampled can significantly influence estimated mortality rates; estimates range from 0.38 to

1.22 [41]. Models currently used to inform the management of the krill fishery use a natural

mortality value of 0.8 [42]. Krill catches, approximately 210,000 tonnes for the entire fishery

during the period 1992–2002 [10] are low compared to consumption by predators [43], so the

natural mortality rate is a good approximation of Z for krill. We used the mortality value used

to inform management of the krill fishery, 0.8, for both large and small krill. This value, and

the von Bertalanffy curvature constant (K) of 0.440 are derived from the work of Rosenberg

et al. [40] and of Candy and Kawaguchi [39].

Hill et al. [9] provide a compilation of all estimates of P/B ratios for fishes. The P/B value

for myctophids ranges between 0.86–1.14. The value of 1.1 was used in the current model.

Similarly, Hill et al. [9] note that the P/Bs of fishes living on the continental shelf range from

0.19–0.60 and recommend a value of 0.46, which was adopted here. A natural mortality rate of

0.29 is recognized as the best estimate for Notothenia rossii [18] and was used in our model.

Iverson [44] estimated that the pre-exploitation natural mortality rate of Champsocephalus
gunnari ranged between 0.23–0.96, and models used to inform fisheries management for this

species use the midrange value of 0.48 [9]. We also used the value of 0.48. A specific P/B value

for G. gibberifrons could not be found in the literature. The species is included in the Hill et al.

[9] assessment of the mortality for shelf-associated fishes, and, therefore, our model used a P/B

of 0.46 for G. gibberifrons.
For upper level predators, the P/B ratio can be represented by the annual rate of adult natu-

ral mortality [7, 45], and this is a commonly published parameter (S3 File). For all marine

mammal and penguin groups, our model used published values of survival or mortality.
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Following Ballerini et al. [7], the P/B value for flying birds was calculated using a weighted

average of annual survival for each species included in the functional group. Weights were pro-

portional to the relative abundances of the species as described by Ribic et al. [46].

Specification of Ecopath production to consumption ratio. To create a mass balanced

model, Ecopath uses an estimate of consumption (Eqs 1 and 2). This estimate is often input to

the model as either a production to consumption (P/Q) ratio or a consumption to biomass (Q/

B) ratio. The P/Q ratio can be calculated as growth efficiency, or the product of the assimila-

tion efficiency (AE) and production efficiency [PE; 7]. Published AE values exist for many

groups (S4 File). The PE values were derived from Townsend et al. [47]. Consistent with Bal-

lerini et al. [7] we calculated Q/B ratios by dividing group specific estimates of P/Q into group

specific estimate of P/B.

Specification of Ecopath diet matrix. The diet matrix describes trophic interactions

among all species and functional groups in the model. Cannibalism was not allowed to occur

for any group as it can cause instability [7, 48]. We note that for the multispecies functional

groups where cannibalism is most likely to occur, there are not sufficient data to support fur-

ther subdivision of the groups or creation of multi stanzas for the group to circumvent within

group cannibalism. The diet matrix was informed by published diet-composition studies and

publicly available reports of prey choices. Except for sperm whales, diet data were sourced

from studies conducted in the Antarctic. Diet studies referenced include gut content analyses,

visual observation of prey consumption, and stable isotope analysis. Sources for the diet matrix

and notes describing how the diets were adapted from the values provided in the published lit-

erature are provided in S5 File.

Balancing the Ecopath model. We collated the data described above to create a mass bal-

anced food-web model for the WAP, specifically Statistical Subarea 48.1. When the model was

initially implemented, with parameters taken directly out of the literature, EE values for several

groups, including important prey species such as krill and on-shelf fish, were significantly

greater than 1. Predation pressure was too high on those groups. Many of the diet studies refer-

enced within the diet matrix have small, spatially constrained sample sizes relative to their

respective populations (e.g.[49, 50, 51]). It was assumed that the diets presented in studies cov-

ering small or restricted areas accurately represent the diversity of important prey items for

each species, but that the percentage of mass in the diet was uncertain. Thus, we balanced the

model by adjusting the diet matrix. Starting with the diets of predators that ate the prey items

with the highest EE, diets were adjusted incrementally until the model balanced. This was an

iterative process during which we made small changes to diets, less than 5% at a time, and then

checked the EE values for all prey items to ensure the latter parameters were less than one. Bal-

ance was achieved, and diet iterations complete, when the EEs for all groups were less than

one.

Time dynamic simulation (Ecosim)

Equations. Ecosim allows for time dynamic simulations of the balanced model created in

Ecopath. Ecosim employs coupled differential equations that are derived from the Ecopath

Master Equation [20] and are expressed as:

dBi
dt
¼ gi

X

j
Qji �

X

j
Qij þ Ii � ðMOi þ Fi þ eiÞ � Bi ð3Þ

Where
dBi
dt is the growth rate during time t of the biomass of group i; gi is the net growth effi-

ciency; Qji represents the total consumption by predator group i of prey from group j (Qji is
similar); Ii is the biomass immigration rate and is assumed constant over time;MOi is the
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mortality rate that is not associated with predation; Fi is the fishing mortality rate; and ei is the

emigration rate. The net migration term is ei x Bi—Ii and is composed of terms that are held

constant over the simulation (Ii) and those that vary over the course of the simulation (ei x Bi)
[20].

Consumption rates in Ecosim are based on a simple Lotka-Volterra predator-prey model

that has been modified to include “foraging arena” characteristics [20]. The foraging-arena

concept recognizes that prey can occur in states that are vulnerable to predation and states that

are not. Prey shift between these states as they seek to access resources like shelters that make

them safer or seek food in areas that leave them more exposed. The different vulnerabilities of

the prey can affect the consumption rate by predators. [20]. Consumption rates, Qij, are calcu-

lated as follows:

Qij ¼
aij � vij � Bi � Bj � Ti � Tj � Sij � ðMij=DjÞ

vij þ vij � Ti �Mij þ aij �Mij � Bj � Sij � ðTj=DjÞ
ð4Þ

Where aij is the effective search rate for prey i by predator j; vij is the vulnerability of the prey i
to predator j; Bi is the biomass of group i; Ti is the relative feeding time of group i; Sij is a forc-

ing function;Mij represents mediation (which is not used in this model); and Dj describes how

handling time limits consumption rates [20]. Further information describing how forcing

functions can be used to drive consumption dynamics is provided by Christensen et al. (see

Equations 4 and 5 and Figure 1 in [52]).

Ecosim time series. Three types of data were used in the time dynamic simulations for

the WAP. The first were time series that describe trends in the biomasses of eight monitored

species for the years 1996–2012 and which were used to asses model fit. None of the biomass

time-series data were used to force corresponding biomasses the model. Reliable, yearly time-

series datasets dating back to at least the 1990s are available for five species included in the

model: Antarctic fur seals, Adélie penguins, chinstrap penguins, gentoo penguins, and Antarc-

tic krill. Less regular time-series data are available for three fishes: N. rossii, C. gunnari, and G.

gibberifrons (S6 File provides sources and notes describing the biomass time-series data). The

time series-data used for fur seals were collected at the colony that is responsible for approxi-

mately 80% of the pup production in the region[53]. The time-series data for the three penguin

species reflect region-wide trends [17, 54]. Krill recruitment patterns are similar in terms of

timing and magnitude in both the northern and southern half of the study area [41] and there-

fore using data collected in the northern half of the study area can be considered to reflect

region wide trends. Datasets for air-breathing vertebrates represent counts of animals in dis-

crete locations; krill data represent estimated densities from acoustic surveys (fisheries inde-

pendent) and fisheries catch (fisheries dependent); and fish data are biomass estimates derived

from trawl surveys. Fisheries independent measurements of krill density were used to asses fit

of the model. All time-series data describing trends in biomass were included in the model as

“relative biomass”, which allows the model to fit to trends for these species, without informa-

tion on scale. To keep the start of the time dynamic simulations consistent with the model

year, data prior to 1996 were not included in the Ecosim runs.

Times series for catches taken by the krill fishery and krill-fishing effort [10] were initially

included in the model. It is possible to asses model fit for krill biomass using the catch data.

However commercial fishing activity has recently concentrated in relatively confined areas

defining preferred fishing grounds [11]. These data may not be representative of the region

and may show patterns more related to the economics of fishing than to krill biology. There-

fore, the model was fitted to the fisheries independent data. Fishing effort data, as reported to
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CCAMLR [10] were included in the model to capture the temporal dynamics of the fishery

from 1996–2012.

The third type of data used in Ecosim simulations were time series describing environmen-

tal conditions that may have influenced biomass trends, called forcing functions. Four forcing

functions were used: sea-ice area, open water area, chlorophyll a concentration, and observed

predation mortality rate of fur seal pups. Forcing functions were applied as multipliers to

impact specific predator-prey interactions, or for primary producers as a multiplier on produc-

tion rate. For consumers, the multiplier can be applied to search rate, vulnerability, foraging

arena area or a combination of vulnerability and arena area [20]. Forcing functions were also

applied to more directly drive the biomasses of krill and G. gibberifrons using response curves

to tie the increases in biomass to changing environmental conditions. The processes for evalu-

ating applications of forcing functions and response curves are discussed in the Model Calibra-

tion section below. Due to the hypothesized importance of the sea-ice regime in influencing

krill abundance and ecosystem dynamics [1, 2, 16], special attention was paid to sea-ice

forcing.

The Palmer Long Term Ecological Research program (LTER) program serves time series of

monthly average sea-ice and open water areas in km2 for their study area (https://

oceaninformatics.ucsd.edu/datazoo/catalogs/pallter/datasets/34). The sea-ice area is sensed by

microwave satellite. Areas are considered “iced” when they have more than 15% ice cover [55]

and a time series was created of the monthly average total iced area (in km2). Initially, the satel-

lite derived, unaltered time series of total sea-ice covered area (in km2) for the Palmer LTER

study area was incorporated in the model. However, that appeared to have little or no impact

on model patterns of biomass (hereafter model results); model results did not fit the time-

series data describing changes in biomass. A sea-ice index was made to identify “good ice

years” and smooth some of this variability. Since winter sea ice is thought to affect Adélie pen-

guin survivorship [56, 57] attempts were made to focus on winter ice conditions. However, the

Palmer LTER sea-ice dataset does not exhibit sufficient variability in the maximum winter sea-

ice area. For many years, the entire LTER study area was completely covered in ice, and thus

this measure does not adequately distinguish between years. Instead, the annual summer sea-

ice area minimum was used to construct the sea-ice index. The assumption that years with

greater sea-ice in the summer also have greater annual ice coverage underlies our index. This

may be a reasonable assumption as warmer summers are known to contribute to accelerating

sea-ice loss through a positive feedback loop [2, 58, 59], and therefore cooler icier summers

would not cause ice to be lost as rapidly as warmer, less icy, summers. We used annual sea-ice

minima, as documented in the Palmer LTER data, that were scaled by the average value to con-

struct the index. Years where the minimum sea-ice area was greater than average had index

values greater than one; those below average had index values less than one. The scaled dataset

(Fig 2) was used as the sea-ice forcing function in the model. The annual value was repeated

for each monthly time step of that year, and, during the calibration process, the forcing func-

tion was applied as a multiplier to impact specific predator-prey interactions.

Functional response curves were used to describe how the biomasses of krill and G. gibberi-
frons respond to changes in the sea-ice index. Curves were fitted for both species indepen-

dently, after forcing alone failed to help the model fit the time-series data for these two species.

While our understanding regarding how krill responds to sea ice conditions is still evolving

[14], previous studies have shown that krill exhibit declining abundance and may be replaced

by salps in areas that have experienced significant ice loss [16]. Krill recruitment is often higher

following winters with greater sea-ice extent [41, 60, 61]. Data provided in the literature were

not sufficient to directly construct a response curve for large krill. To further explore the

hypothesis that krill generally respond positively to increased sea-ice, two curves were
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evaluated (Fig 3), both of which caused krill biomass to increase with the sea-ice index: linear

(Ecosim parameters: start = 0; end = 60) and sigmoidal (Ecosim curve parameters: Yzero = 0;

Ybase = 1.5; Yend = 5; Steep = 3).

Gobionotothen gibberifrons is a benthic fish that breeds in the winter, and releases pelagic

eggs [62]. Available time-series data indicate a large decline in the biomass of this species. This

decline was first noted in 2001, but its cause is currently unknown [18, 63]. This fish species

dwells in the northern part of the study area and is not considered ice dependent [62]. How-

ever, this animal breeds in the winter and could possibly respond positively to sea ice, or oce-

anic conditions associated with sea ice. After applying forcing using the sea-ice index and the

open water forcing function to predator-prey interactions both directly involving this species

and more broadly to fit the model for the seven other species for which time series the model

failed to recreate the decline as described in the biomass of G. gibberifrons. Instead the model

predicted an increase in this species. In an attempt to help the model recreate the observed

decline in this species, simulations were run with sea ice driving the biomass for G. gibberi-
frons. We note that the sea-ice index could be serving as a proxy for other unmodeled environ-

mental conditions to which G. gibberifrons responds positively. However, using the sea-ice

index as a driver of G. gibberifrons biomass resulted in the model recreating the documented

Fig 2. Annual sea-ice index values.

https://doi.org/10.1371/journal.pone.0214814.g002
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decline. The simulations used curves drawn directly in Ecosim (Fig 3): linear curve (start = 0,

end = 304) and normal curve (Ecosim curve parameters: SD left = 12; data width = 560; SD

right = 100; mean = 24; max = 1).

While some Antarctic species thrive in icy conditions, other species have increased success

in open water. Gentoo penguin populations have been increasing as the amount of sea ice in

the region has declined [17, 57]. Similarly, Antarctic fur seals are pelagic predators that tend to

aggregate at the ice edge or in open water to forage [64, 65]. The average monthly open water

area as described in the Palmer LTER data [55] was used as a multiplier to force foraging inter-

actions for these pelagic species (Fig 4).

Fig 3. Evaluated functional responses curves. Black lines are the linear curves, grey lines represent the sigmoidal (krill) and normal (G. gibberifrons)
curves.

https://doi.org/10.1371/journal.pone.0214814.g003

Fig 4. Open water area as documented by the Palmer LTER.

https://doi.org/10.1371/journal.pone.0214814.g004
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The Palmer Long Term Ecological Research (LTER) program has provided weekly mea-

surements of chlorophyll a at Palmer Station since 1995 [66]. This is the only year-round

chlorophyll time series available for the region during the years 1996–2012; satellite imagery

is obscured by clouds during the austral winter [32]. Due to equipment failures, there are

several months of missing data in the Palmer LTER chlorophyll a time-series. The long-term

monthly average was used to approximate the missing months of data. The chlorophyll a
forcing function (Fig 5) was applied to the primary producers, using the built-in Ecosim

multiplier of production rate. This caused primary production in the model to cycle with

empirical observations.

Goebel and Reiss [53] provide a time series (Fig 6) of observed leopard seal predation on

Antarctic fur seal pups. These data were used solely to force the trophic interaction between

leopard seals and Antarctic fur seals. Goebel and Reiss [53] estimate a single predation rate per

Fig 5. Monthly chlorophyll a concentration documented by the Palmer LTER.

https://doi.org/10.1371/journal.pone.0214814.g005
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Antarctic season. The annual value was repeated for October through May (the season when it

was probable to have pups at Cape Shirreff) and zero was assigned to June through September

(the months when pups were highly unlikely to be on the beach). Significant leopard seal pre-

dation on fur seal pups was first recorded in October of 2003. A value of zero was used from

the start of the time series until 2003 [53].

Calibration of the model. To begin the calibration process, the model was initially run

with only the chlorophyll a time series forcing primary producer groups. In this case, the

model failed to recreate the documented trends of biomass for all species for which time series

were available, except for C. gunnari. Forcing functions were then applied to specific predator-

prey interactions to influence the prey’s vulnerability to predation, the predator’s search rate,

or the size of the area where prey are vunerable to predation (i.e., the foraging arena). This

type of forcing was applied in Ecosim without the use of response curves. Choices of which

time series were applied as forcing functions to each predator-prey interaction were influenced

by hunting strategies documented in the diet studies used to build the diet matrix. For exam-

ple, gentoo penguins forage in near shore environments [67] and have been increasing in

abundance as seaice has declined [17]. This suggests that gentoo penguins are more successful

foragers in open water conditions. Thus we used the open water environmental driver to force

predator-prey interactions between gentoo penguins and on-shelf fish and krill. This applica-

tion made those prey items more vulnerable to gentoo predation where open water was more

prevalent.

Model fit was measured by sums of the squared differences (SS) between simulation results

and biomass time series for the eight monitored species, where a smaller SS indicates a better

fit. If applying a forcing function to a specific predator prey interaction did not improve the fit,

Fig 6. Observed leopard seal predation rate on Antarctic fur seal pups. Figure recreated from Goebel and Reiss [53].

https://doi.org/10.1371/journal.pone.0214814.g006
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or otherwise help the model recreate trends documented in the time series, that function was

no longer applied to that foraging interaction. To improve model fit for large krill and G. gib-
berifrons, we used our sea-ice index to directly drive the biomasses of both species. We evalu-

ated two curves for each species and retained the curve that resulted in the lowest total sum

of squares. Once the model was able to recreate the trends of biomass as documented in the

time-series data, and each group-specifc SS had been minimized, the model was considered

calibrated.

We used the Monte Carlo (MC) routine provided within EwE [20] to assess model sensitiv-

ity. The MC routine randomly selects initial values of the input parameters (Biomass, P/B, and

EE) for all model groups using a coefficient of variation (C.V.) of 0.1 and computes the total

sum of squares using these new input values. The degree of difference in the sum of squares

between the user-specified model, and randomly selected runs is used to infer sensitivity to

small changes in input parameters. We ran 200 MC simulation trials to assess sensitivity.

Results

Ecopath

After adjusting the diet matrix (Table 1), the Ecopath model balanced (Table 2).

Ecosim

After applying forcing functions and drivers, and fitting the model to observations, the model

was successfully calibrated for the seventeen-year period 1996–2012. The application of forcing

functions to specific predator-prey interactions improved the fit of the model by reducing sum

of squares differences between model results and time-series data. A list of forcing function

applications retained in the final model is presented in Table 3. While many alternative appli-

cations of forcing functions were evaluated, we retained only those that reduced the total SS,

with two notable exceptions. The final model includes open water forcing of the interaction

between on-shelf fish and C. gunnari and the interaction between C. gunnari and other

euphausiids because they are necessary for the model to recreate the increase in C. gunnari bio-

mass documented in time-series observations of this species [63]. To assess the impact of each

forcing function application on the total SS, we singularly removed each forcing function

application and noted the difference in total SS.

We used the sea-ice index to drive the biomasses of krill and G. gibberifrons. The linear

response curve improved the group-specific SS for Large Krill from 20.5 to 11.69 (Fig 7).

Applying a sigmoidal response curve with a steep positive response further improved the

group-specific SS of Large Krill to 10.18 and coincidently made slight improvements to the fits

for Adélie penguin, chinstrap penguin, gentoo penguin, C. gunnari and G. gibberifrons. The

total SS for the model, was approximately four less using the sigmoidal response curve than

when using the linear response curve. We retained the sigmoidal response curve in the model.

The model fit for krill was further improved after the fit for G. gibberifrons improved. Applying

a linear curve to drive G. gibberifrons, changed the trajectory of the model results to align with

the documented decline in the biomass of this species and reduced the group-specific SS from

9.321 to an SS of 0.621. Applying a normal response curve to drive G. gibberifrons decreased

model performance, with the group-specific SS rising to 20.20. We retained the linear response

curve in the model.

The total SS for the model without forcing was 70.77 and simulation results did not fit

observed trends in biomass (Fig 8). After sea-ice forcing of predator-prey interactions and

driving the biomasses of krill and G. gibberifrons, the group-specific SS for krill alone

decreased nearly 50% from 19.71 to 10.04. The total SS dropped to 25.39, and the simulation
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Table 1. Final diet matrix.

Model Group Prey

Killer Whale 3% Leopard Seals, 46.5% Weddell Seals, 36.5% Crabeaters Seals, 1% Elephant Seals, 1%

Blue Whales, 1% Fin Whales, 1% Minke Whales, 1% Humpback Whales,<1% Emperor

Penguins, <1% Gentoo Penguins, 2% Chinstrap Penguins, <1% Adélie Penguins, 3%

Myctophid fish, 2% On-shelf Fish, <1% N. rossii, 1% G. gibberifrons
Leopard Seal <1% Antarctic Fur Seals, <1% Gentoo Penguins, 3% Chinstrap Penguins, 7.8%

Cephalopods, 4% Myctophids, 15% G. gibberifrons, 70% Large Krill

Weddell Seal 8% Cephalopods, 5% Myctophids, 60% On-shelf Fish, 22% G. gibberifrons, 5% Benthic

Invertebrates

Crabeater Seal 7.5% Cephalopods, 7.5% Myctophids, 7% On-shelf Fish, 78% Large Krill

Antarctic Fur Seal 1% Gentoo Penguins, 3% Chinstrap Penguins, <1% Adélie Penguins, <1% Macaroni

Penguins, 5.4% Cephalopods, 20% Myctophids, 20% On-shelf Fish, 50% Large Krill

S Elephant Seal 60% Cephalopods, 10% Myctophids, 14% On-shelf fish, 10% N. rosii, 6% G. gibberifrons
Sperm Whale 85% Cephalopods, <1% Myctophids, 4.5% On-shelf Fish, 10% Benthic Invertebrates

Blue Whale 61% Large Krill, 20% Other Euphausiids, 19% Macrozooplankton

Fin Whale 1.5% Myctophids, 1.5% On-shelf Fish, 71% Large Krill, 12% Other Euphausiids, 1%

Mesozooplankton, 13% Macrozooplankton

Minke Whales 1% Myctophids, 1% On-shelf fish, 76% Large Krill, 11% Other euphausiids, 11%

Macrozooplankton

Humpback Whale 6% Cephalopods, 4% Myctophids, 4% On-shelf Fish, 76% Large Krill, 1.5%

Mesozooplankton, 8.5% Macrozooplankton

Emperor Penguin 10% Cephalopods, 38% On-shelf Fish, 52% Large Krill

Gentoo Penguin 10% Myctophids, 10% On-shelf-fish, 80% Large Krill

Chinstrap Penguin 2.25% Myctophids, 2.25% On-shelf Fish, 95% Large Krill, <1% Macrozooplankton

Adélie Penguin 1.25% Myctophids, <1% C. gunnari, 1.25% G. gibberifrons, 96.2% Large Krill, 1.25%

Macrozooplankton

Macaroni Penguin 1% Cephalopods, 10% Myctophids, 12% On-shelf Fish, 34% Large Krill, 35% Other

Euphausiids, 8% Mesozooplankton

Flying Birds 46% Cephalopods, 4.3% Myctophids, 8.7% On-shelf Fish, 30% Large Krill, <1%

Mesozooplankton, 10.5% Macrozooplankton

Cephalopods 2% Myctophids, 2% On-shelf Fish, 21% Benthic invertebrates, 40% Large Krill, 15%

Other Euphausiids, 20% Macrozooplankton

Myctophids 25% Large Krill, 35% Other Euphausiids, 5% Mesozooplankton, 35% Macrozooplankton

On-shelf Fish 5.5% Cephalopods, 2% Myctophids, 1.5% C. gunnari, 1% Salps, 20% Benthic

Invertebrates, 25% Large Krill, 13.5% Other Euphausiids, 8.5% Mesozooplankton, 23%

Macrozooplankton

N. rossii 10% Myctophids, 2% Salps, 2% Benthic Invertebrates, 60% Large Krill, 20% Other

Euphausiids, 6% Ice algae

C. gunnari 1% Myctophids, 90% Large Krill, 8% Other Euphausiids, 1% Macrozooplankton

G. gibberifrons 1% Cephalopods, 2% Myctophids, 17% Salps, 59% Benthic invertebrates, 9% Large Krill,

2% Macrozooplankton, 10% Ice algae

Salps <1% Small Krill, 10.4% Microzooplankton, 3% Mesozooplankton, 41.5% Small

phytoplankton, 45% Large Phytoplankton

Benthic invertebrates 100% Detritus

Large Krill (�24

months)

10% Mesozooplankton, 50% Large phytoplankton, 10% Ice Algae, 30% Detritus

Small Krill (< 24

months)

10% Microzooplankton, 27.5% Small phytoplankton, 27.5% Large phytoplankton, 25%

Ice Algae, 10% Detritus

Other Euphausiids 20% Mesozooplankton, 60% Large phytoplankton, 20% Detritus

Microzooplankton 60% Small phytoplankton, 25% Large phytoplankton, 15% Detritus

Mesozooplankton 3% Microzooplankton, 24% Small phytoplankton, 66% Large phytoplankton, 7%

Detritus

Macrozooplankton 1% Large Krill, 2% Small Krill, 1% Other euphausiids, 50% Mesozooplankton, 10% Small

phytoplankton, 21% Large phytoplankton

https://doi.org/10.1371/journal.pone.0214814.t001

Using sea-ice to calibrate a dynamic trophic model for the Western Antarctic Peninsula

PLOS ONE | https://doi.org/10.1371/journal.pone.0214814 April 2, 2019 14 / 28

https://doi.org/10.1371/journal.pone.0214814.t001
https://doi.org/10.1371/journal.pone.0214814


results better fitted the observed data (Fig 8; model results from the final fitted model for the

27 uncalibrated species are presented in S7 File). Although the total SS decreased considerably,

the fit for C. gunnari worsened but its approximation of the patterns documented in the time

series for this species improved (Fig 8). Sums of squares difference for each species group ran-

ged from less than 0.5 to 10.04 in the final fitted model. Species for which yearly data points

were available, and which demonstrated an obvious trend in the biomass, had the smallest

group-specific SS values. The largest group-specific SS (10.04) was associated with large krill,

Table 2. Balanced ecopath model.

Model Group B (t/100km2) P/B Q/B EE Trophic Level

Killer Whale 0.75 0.02 1.08 (0.00) (4.72)

Leopard Seals 0.84 0.27 15.17 (0.11) (3.41)

Weddell Seal 8.12 0.08 4.60 (0.584) (4.16)

Crabeater Seal 109.78 0.10 5.95 (0.03) (3.36)

Antarctic Fur Seal 0.10 0.17 9.66 (0.72) (3.69)

S Elephant Seal 0.10 0.21 12.07 (0.37) (4.23)

Sperm Whale 2.84 0.29 16.67 (0.00) (4.12)

Blue Whale 0.72 0.04 2.53 (0.28) (3.21)

Fin Whales 4.28 0.03 2.55 (0.98)�� (3.21)

Minke Whales 4.73 0.10 5.65 (0.02) (3.19)

Humpback Whale 8.12 0.04 2.38 (1.0)�� (3.30)

Emperor Penguin 0.01 0.19 13.89 (0.00) (3.67)

Gentoo Penguins 0.12 0.22 15.28 (0.95) (3.34)

Chinstrap Penguin 2.14 0.22 15.28 (0.90) (3.16)

Adélie Penguin 0.58 0.12 36.62 (0.12) (3.14)

Macaroni Penguin 0.01 0.11 7.64 (0.79) (3.45)

Flying birds 0.40 0.09 4.89 (0.00) (3.83)

Cephalopods 249.00 3.15 30.29 (0.29) (3.24)

Myctophids 327.00 1.10 10.58 (0.75) (3.30)

On-shelf fish 525.00 0.46 4.42 (0.93) (3.30)

N. rossi 13.80 0.29 2.79 (0.03) (3.18)

C gunnari 90.00 0.48 4.62 (0.81) (3.13)

G gibberifrons 120.00 0.46 4.42 (0.19) (2.98)

Salps 16000.00 3.00 12.25 (0.00) (2.14)

Benthic invertebrates 8553.75 0.50 2.19 (0.55) (2.00)

Large Krill (�24 months) 8126.00 �0.8 3.57 (0.97) (2.10)

Small Krill (< 24 months) (2893.07) �0.8 6.51 (0.35) (2.1)

Other Euphausiids 148000.00 1.5 6.70 (0.14) (2.21)

Microzooplankton 2500.00 55 275.00 (0.22) (2)

Mesozooplankton 13000.00 4.81 19.63 (0.71 (2.03)

Macrozooplankton 3500.00 2.5 8.93 (0.37) (2.56)

Small phytoplankton (15023.17) 75 0.5 (1.00)

Large phytoplankton (13712.00) 75 0.5 (1.00)

Ice algae (306.67) 50 0.5 (1.00)

Detritus 577.00 (0.11) (1.00)

Values in parentheses were calculated by the model. Values marked with an asterisk (�) are Z values for the multi stanza description of krill.

EE values marked with two asterisks (��) include a biomass accumulation term. All values have been rounded to 2 decimal places. Biomass values have been multiplied

by 100 km for ease of presentation.

https://doi.org/10.1371/journal.pone.0214814.t002
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Table 3. Forcing function applications retained in the final model to influence predator-prey interactions.

Predator Prey Forcing

Killer Whale Gentoo penguin vulnerability increases with open water (0.62)

Leopard Seal Antarctic fur seal vulnerability increases with open water and observed predation rate

(2.16); Chinstrap penguins vulnerability increases with sea-ice index (0.35); Myctophids

arena area increases with sea-ice index (0.15)

Antarctic Fur Seal Cephalopods vulnerability and arena area increase with open water (0.09); On-shelf fish

vulnerability and arena area increase with open water (0.68); Search rate for Large krill

increases with sea-ice index (0.1)

Gentoo Penguin On-shelf-fish vulnerability increases with open water (0.69); Large krill vulnerability

increase with open water (0.43)

Chinstrap Penguin Myctophids vulnerability and arena area increase with sea-ice index (0.09); On-shelf fish

vulnerability and arena area increase with sea-ice index (0.1); Large Krill vulnerability and

arena area increase with sea-ice index (1.33); Macrozooplankton vulnerability and arena

area increase with sea-ice index (0.02)

On-shelf fish C. gunnari arena area increases with open water (-2.91)

N. rossii Large krill vulnerability increases with open water (2.22); Other euphausiids vulnerability

increases with open water (8.32)

C gunnari Other euphausiids vulnerability increases with open water (-4.06)

Large Krill (�24

months)

Mesozooplankton vulnerability increases with sea-ice index (0.04); Large phytoplankton

vulnerability and arena area increase with chlorophyll-a (3.8); Ice algae vulnerability and

arena area increase with chlorophyll-a (1.48)

Small Krill (<24

months)

Small phytoplankton vulnerability and arena area increase with sea-ice index (0.17); Large

phytoplankton arena area increases with chlorophyll-a (0.82); Ice algae vulnerability and

arena area increase with sea-ice index (1.09)

The predator column indicates the impacted predator of the predator-prey interaction. The Prey Forcing column

indicates the prey item and which forcing function was applied. The values in parentheses indicate the change in total

SS when that forcing was removed. If a predator does not appear in the table, interactions with its prey are not forced

in the final model.

https://doi.org/10.1371/journal.pone.0214814.t003

Fig 7. Evaluation of response curves for krill. Comparison of model fits (by group-specific SS) for krill when no curve was applied (a), the linear

functional response curve was applied (b), and the sigmoidal functional response curve was applied(c). Curves are displayed in Fig 3 In all panels the

dots represent the observed data and the lines represent model results. Note that the y-scale in panel a is significantly larger than the other two panels.

https://doi.org/10.1371/journal.pone.0214814.g007

Using sea-ice to calibrate a dynamic trophic model for the Western Antarctic Peninsula

PLOS ONE | https://doi.org/10.1371/journal.pone.0214814 April 2, 2019 16 / 28

https://doi.org/10.1371/journal.pone.0214814.t003
https://doi.org/10.1371/journal.pone.0214814.g007
https://doi.org/10.1371/journal.pone.0214814


which has high variability in the time-series data and lacks an obvious trend in biomass. Krill

data were entered into the model without any smoothing because krill biomass is known to be

highly variable both temporally and spatially [12, 13]. While the model was not able to recreate

all the variability evident in the krill dataset, the simulation result was a reasonable approxima-

tion of krill’s temporal dynamics in Statistical Subarea 48.1.

The MC sensitivity analysis yielded 200 simulations that produced balanced models. The

total SS for each simulation varied between 21.85 and 38.17. The groups that exhibit the high-

est variability and contributed most to the SS, and thus were the most sensitive to the input

parameters, were the two fish species N. rossii and C. gunnari (Fig 9). The “best” MC simula-

tion identified a slightly better total SS than that achieved during the model calibration process.

This better fit was achieved on runs where the adjusted input parameters resulted in better

Fig 8. Results of Ecosim simulations. Biomass time series are plotted as black points. The relative biomass results from the model

are plotted as lines. Simulations without sea-ice forcing are shown in grey; simulations with sea-ice forcing are shown in black. The

group-specific sum of squares (SS) difference between simulation results and observed data are shown for each species.

https://doi.org/10.1371/journal.pone.0214814.g008
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fitting simulations for C. gunnari. Among various differences in biomasses and rates, the best

fitting MC simulation had notably higher biomass for large krill (9402 t/100 km2), and salps

(17458 t/100km2) and lower biomass for myctophids (276 t/100 km2). We chose the purpose-

fully calibrated model over the best MC simulation because the biomass densities of krill and

salps in the former model were more consistent with values found in the literature and better

supported by field observations. The best fitting MC simulation used parameter estimates that

we consider to be less plausible in reality.

Discussion

The model was calibrated and successfully recreated observed trends in the biomasses of key

monitored species. The calibration of the model represents a significant advancement over the

previously published, uncalibrated EwE models for the region [see: 7, 23, 24]. The decrease in

total SS by 65% (relative to a balanced but uncalibrated model) highlighted the potential

importance of the sea-ice regime in structuring the marine ecosystem of Statistical Subarea

48.1. This finding agrees with long-term ecological studies in the area [1, 2].

Fig 9. Results of twenty randomly selected Monte Carlo trials. Each line represents the relative biomass trajectory of

that species over the course of a single trial. Note that the starting value for all species is one, and model results is

relative to that value. Also Note that the y-axis scales forN. rossii and C. gunnari are two to three orders of magnitude

larger than the scales for the other species, indicating much higher sensitivity and uncertainty for these two species.

https://doi.org/10.1371/journal.pone.0214814.g009
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The Monte Carlo sensitivity analysis revealed that two fishes (C. gunnari and N. rossii) were

sensitive to input parameters and were responsible for the greatest variability between runs.

This result was unsurprising for four key reasons. First, population-dynamics and diet data for

these fishes s are scarce [9, 18]; second, there are large gaps in the biomass time series; third,

the group-specific SS associated with C. gunnari in the fitted model was large compared to

other groups; and fourth, small changes in the biomass of other modeled groups, specifically

on-shelf fish, could have a large impact on C. gunnari (S8 File, trophic impact analysis). The

sensitivity analysis indicated that a better fit could be achieved if the starting biomasses of large

krill and salps were both increased, but the levels to which these biomasses would need to be

increased do not seem realistic in our view.

Ecological implications of model choices for the 1996–2012 WAP model

Our model builds on previous Ecopath models of the region [7, 22–25], and uses many of the

same data sources as the previous models to inform choices regarding Ecopath and Ecosim

parameters. Yet, our model has some key features which could influence ecological interpreta-

tion of the results.

As noted by the earlier models, data describing the total biomass of primary production for

the region were not readily available. Heymans et al. [34] highlighted that coastal ecosystems

with strong seasonal patterns in primary production typically have EE values less than 0.5. By

adopting this EE value, we modelled the WAP as if there was ample primary production. The

phytoplankton biomass values estimated by the model were high, but Statistical Subarea 48.1 is

a region that generally experiences high chl-a concentrations and high krill growth rates [68],

and high sedimentation rates in the summer [69]. Collectively this indicates that there may be

ample food for krill and that setting the EE value to 0.5 was reasonable.

Our model included a larger biomass of krill than most of the earlier models. The increased

biomass of krill resulted from using the NOAA-AMLR acoustic time series of krill density

(https://swfsc.noaa.gov/AERD-Data/), to both set the biomass in Ecopath and serve as the ref-

erence time series used for calibration. The NOAA-AMLR study area may encompass a partic-

ularly krill rich region, as densities reported by NOAA-AMLR were higher than the average

densities reported in a concurrent synoptic survey for entire the region [70]. With the excep-

tion of Cornejo-Donoso and Antezana [22], the previously published models adopted krill bio-

masses that were more consistent with the average values presented in the synoptic survey

[70]. Using a higher biomass in our model could imply that krill predators were less food lim-

ited than in the earlier studies. However, that comparison is challenging to make across mod-

els. The Ecotrophic Efficiency (EE) for krill in the present study was 0.97, indicating that

roughly 97% of the available krill were consumed by predators and caught by the fishery. Cor-

nejo-Donoso and Antezana [22] and Erfran and Pitcher [25] set the EE for krill in their models

to 0.95 and allowed their models to estimate the biomass of krill needed to satisfy predators at

that level of consumption. The results were very different; the Cornejo-Donoso and Antezana

[22] model estimated a biomass of approximately 105 t/km2 and Erfran and Pitcher [25]esti-

mated approximately 27 t/km2. Suprenand and Ainsworth [23] and Hoover et al. [24], used

low biomasses of adult krill (approximately 9 t/km2) and also estimated low EEs, both of which

were less than 0.8. Collectively, the existing Ecopath models for the region, seem to portray the

possibility of food limitations for krill predators quite differently. Such conflicting information

may not be helpful to marine resource managers. Our estimate that 97% of krill is either con-

sumed by predators or caught by the fishery is consistent with work by Trivelpiece et al. [54]

and Hinke et al. [71] which suggested that in areas where the fishery is active krill predators

may be limited by krill availability. Our model used actual field data to describe krill biomass
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and was calibrated to time-series data for both krill and krill predators. Therefore, we suggest

that our model may better suited than the earlier Ecopath models for examining trends in krill

biomass and the potential of food limitation for krill predators.

Our model included a large biomass of salps; salp biomass was roughly twice the size of the

biomass of large krill. This was a significant departure from the previously published models

where salp biomass was well below the biomass of krill [7, 22–25]. The high biomass of salps

in this model was informed by the work of Loeb and Santora [72] who found that, in the

NOAA-AMLR study area, salp abundance was highly variable but could be as much as six

times greater than that of krill. Additionally, Atkinson et al. [16] reported that the Antarctic

Peninsula region experienced at least a two-fold increase in salps and a similar decline in krill

during the 1990s and early 2000s. Salps rarely appear as a prey item in diet studies this may

possibly reflect low consumption of salps or the fact that once consumed, salp tissue because

unrecognizable more quickly than the remains of prey items that contain hard body parts. We

therefore estimate the EE of salps to be very low. As a result, in our model, much of the pri-

mary production was consumed by salps, rather than krill. Primary production was not trans-

ferred to higher trophic levels or available for krill to consume. Salp biomass is highly variable

and responsive to environmental conditions [72]. If warming and sea-ice loss continue in the

region, salp biomass might be expected to increase[16] and consume primary production that

krill could have consumed. In setting the EE for primary producers to 0.5 we modelled the sys-

tem as if krill were not food limited. However, in the future, in areas where salp biomass has

increased, it seems possible that krill may be food limited.

The calibration process, which involved fitting the model to times series using forcing func-

tions, provided an opportunity to explore environmental impacts on foraging interactions.

Two previously published models developed Ecosim scenarios [23, 24], but those models were

not calibrated, and the authors did not detail their application of forcing on predator-prey

interactions. We note that one of those models, Hoover et al. [24] also attempted to calibrate

their model using sea-ice forcing and evaluated use of the Palmer LTER data describing sea-ice

extent [55] to build the sea-ice forcing function. The final model developed by Hoover et al.

[24] ultimately used different sea-ice data, only applied sea-ice forcing to the ice algae func-

tional group, used sea-ice to drive the model for larval and juvenile krill rather than larger

adult krill, and was ultimately unsuccessful at recreating trends in the abundance of penguins.

Our model was the first to be successfully calibrated for the region and we are the first set of

authors to list the forcing function applications that helped us fit the model to time-series data.

As such, our model is a significant improvement over the Hoover et al. [24] model.

The application of forcing functions yielded some unexpected results. While the impacts of

removing a single forcing function application were small, each forcing application influenced

the others and their effects were collectively quite large. When all forcing functions and drivers

were used the total SS decreased by 65%. Adélie penguins were notably absent from the list of

predators where forcing was successfully applied. Hinke et al. [56] found that overwinter for-

aging success and survival of juvenile penguins was impacted by sea-ice conditions, and that

when conditions were icier, over winter foraging success and survival were both higher. Yet,

applying sea-ice forcing to Adélie penguin foraging interactions did not improve the model fit.

However, model fit was improved by driving large krill, the main prey of Adélie penguins [73]

with our sea-ice index. This implied that krill biomass, rather than specific foraging conditions,

affected Adélie penguin biomass, a finding consistent with the work of Trivelpiece et al. [54].

We did not expect myctophid vulnerability to predation by chinstrap penguins to increase

with the sea-ice index. The foraging arena describes the area where predator and prey are likely

to overlap and where prey will be vulnerable to predation [20]. It may be counter intuitive that

the foraging arena shared by chinstrap penguins and myctophids would increase in icier
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conditions. However, this could imply that in icy conditions chinstrap penguins were pushed

offshore and into areas where they were more likely to overlap with myctophids. The effect of

this forcing was quite small (0.09 reduction of total SS), and it may simply represent fitting to

noise in the data. A more influential forcing was applied to the interaction between chinstrap

penguins and large krill, where krill vulnerability to predation and foraging arena area

increased with the sea-ice index. This forcing reduced the total SS by 1.33, and had the second

largest positive impact on total SS. It was also consistent with the findings from Hinke et al.

[57] that chinstrap penguins experience greater foraging success and survivorship in icier con-

ditions and from Trivelpiece et al. [54] that krill availability influences predator success. The

physical forcing function that had the largest positive effect on model fit was particularly obvi-

ous. Ice algae were more vulnerable to consumption by large krill and shared a larger foraging

arena with krill when chlorophyll a concentration was high (1.48 reduction in total SS).

Two forcing function applications that increased the total SS and worsened model fit were

retained in the model. Both functions related to C. gunnari, and impacted interactions with its

other euphausiid prey (2.91 increase in SS) and with its on-shelf fish predators (4.06 increase

in SS). Without applying forcing to these interactions, the model was not able to recreate the

increase in biomass of C. gunnari as documented in the time-series data [63]. Systematic sur-

veys have yet to be undertaken since those submitted by Kock and Jones [63], but there is no

indication that the most recent estimates are erroneously high. Therefore, it seemed prudent

to force the model to recreate an increase in the biomass of this fish, despite worsening fits to

other time series. The MC simulations illustrated that the model was particularly sensitive to

inputs for C. gunnari. Given the gaps in the timeseries data, the relatively high uncertainty

associated with the Ecopath input parameters, and the demonstrated model sensitivity to the

input parameters, our results for C. gunnari should be viewed with some skepticism.

Our model was designed to investigate the effects of sea ice on biomass. Measures of the

sea-ice regime were the primary environmental drivers considered in this study, and the

dynamics of roughly 25% of the predator groups in the model were tied to changes in the sea-

ice regime through application of various forcing functions. Unsurprisingly, biomass projected

by the model thus reflects changes in the sea-ice index. Over the course of the calibration

period, the sea-ice index generally declined, except for in 2005 and 2006. The time-series data

describing abundance show declines over the same period for five out of the eight species. Two

of these species, Antarctic fur seals and Antarctic krill increased in biomass during 2007 and

these increases were moderately reflected in the model results. While using the sea-ice index to

drive the model for krill significantly improved the total SS and allowed the model to ade-

quately fit the observed time series of krill biomass, the model was not able to recreate all the

peaks in the time series. Some factor that is not currently captured by the model is likely influ-

encing krill population dynamics. The three species that increased both in the model results

and in the real world, had positive responses to more open water conditions.

Sea-ice in dynamic simulations

Current climate models indicate that sea-ice loss will continue [74]. In the future, successful

management of marine living resources around the WAP could depend on understanding and

predicting how species might respond to changes in the sea-ice regime. The simulations pre-

sented here investigated the role of temporal sea-ice dynamics as one possible mechanism

influencing biomass. This was accomplished by using sea ice to force predation interactions

and drive the model for large krill and the fish G. gibberifrons. Including the sea-ice regime

allowed the model to recreate documented biomass trends and improved the fit by decreasing

the total SS approximately 65%. While the model now adequately recreates documented
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changes in biomasses of the eight monitored species, it does not capture all the variability in

available time-series data. Some factor not currently included in the model likely has a notable

impact on the population dynamics of krill and krill predators. The results of our simulations

are consistent with previous studies [2] and indicate that the role of sea-ice in structuring the

WAP marine ecosystem may be both central and complex.

The sea-ice index used in our model was a normalized, relative measure of annual mini-

mum sea-ice area. Previous studies used the winter maximum sea-ice to model recruitment

and survival of krill dependent predators [56, 57]. Summer is the breeding season for moni-

tored krill predators such as penguins [75] and Antarctic fur seals [3]. These species are central

place foragers and are required to return to their colonies to feed their young during the breed-

ing season. Summer environmental conditions, including the interaction of sea-ice, tempera-

ture, and precipitation patterns, have been shown to impact breeding success and penguin

population dynamics [76, 77]. While summer sea-ice minima, rather than winter maxima,

were used in the present study, our work did not contradict earlier findings. Sea-ice loss is

impacted by a positive feedback loop of ice-free waters absorbing more solar radiation and

warming faster [2, 58, 59]; summers following colder icier winters are therefore likely to be

colder and icier. Hinke et al. [56] focused on the northern part of WAP, where there seemed to

be more winter sea-ice variability than what was recorded in the Palmer LTER data set. Here

we came to the same conclusion as Hinke et al. [56] that seasonal sea-ice dynamics, whether

lagged winter maxima in the north or normalized summer minima in the south, influence krill

and penguin abundance.

Krill have been considered ice dependent [16, 78, 79], and the size of the krill population

has increased following years of increased winter sea-ice extent [16, 41, 60, 61]. However,

previously published studies describe more general response patterns. Here we present a

well-fitting curve that describes how krill respond to our sea-ice index. The curve might be

useful in other modeling studies that explore how sea-ice dynamics affect the regional eco-

system. We assert that our model can be used to explore how krill might respond to future

changes in the sea-ice regime as the area continues to warm. Similarly, we identified a sea-ice

response curve for G. gibberifrons that allowed the model to recreate observed trends in the

abundance of this fish. A direct link between this species and sea ice has not previously been

noted in the literature. While the sea-ice response curve worked in the model, it may repre-

sent effects of other (environmental) drivers that have not been well documented for this

species.

Forcada et al. [80] indicated that sea-ice conditions alone were unlikely to affect penguin

population dynamics but suggested that ice might affect trophic dynamics. Similarly, Trivel-

piece et al. [54] suggested that krill availability, which may be tied to sea-ice conditions, influ-

ences predator abundance. Our results support the findings of Forcada et al. [80]. We were

only able to recreate historic trends in the biomasses of monitored species when the sea-ice

regime was simultaneously used to drive krill biomass and influence predator-prey dynamics

for 10 predators. Indeed, sea-ice might influence trophic interactions beyond what was sug-

gested by Forcada et al. [80], who focused on penguins.

Management applications for the model

The Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR), the

international organization responsible for managing Antarctic marine living resources, has

long recognized that understanding ecosystem structure and processes is essential to managing

a sustainable krill fishery [81]. The CCAMLR makes its fisheries management decisions within

a conservation framework that considers both harvested and associated species [81, 82]. The
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CCAMLR may find the model presented here useful when it considers future management

strategies for the krill fishery in Statistical Subarea 48.1. The model was created to purposefully

explore the influence of changes in the sea-ice regime. It may be possible to develop and

explore future sea ice scenarios to evaluate the potential effects of future changes in the sea-ice

regime on biomass. Some species, such as Antarctic krill might be expected to decline with ice

loss [16]. Our model could help explore how a decrease in krill biomass might impact the bio-

mass of krill predators and other species less directly connected to krill through the food web.

Such a study would complement the work done by Klein et al. [83]. Collectively, work using

two models to explore the potential impacts of climate change may be particularly useful to

CCAMLR as it seeks to meet its conservation objectives.

Recently, the CCAMLR agreed that creating a representative system of marine protected

areas could help to both conserve Antarctic marine biodiversity and aid in the management of

sustainable fisheries [84]. The CCAMLR has identified the Western Antarctic Peninsula and

Scotia Sea region, which includes Statistical Subarea 48.1, as a priority area for developing an

MPA [84]. The CCAMLR has also adopted a framework for the establishment of future MPAs

[85]. This framework stipulates that MPAs should be created using the best available science

and aim to protect key ecosystem processes, among other protection objectives. Trophic inter-

actions affect biomass and are important ecosystem processes to consider for protection. In

the face of sustained warming and continued sea-ice loss [1, 2], it could be useful to consider

dynamic trophic interactions when planning an MPA.

Our model is intended to aid in the MPA planning process for the region. The groups in

our model include single-species groups for most indicator species in Statistical Subarea 48.1

[30, 31]. These species will likely be important as the Members of CCAMLR set conservation

goals during the MPA planning process and develop monitoring and management plans.

Our model is calibrated to available time-series data. As such, the food-web model and time-

dynamic simulations presented here lay the foundation for developing a spatial model that

could explore MPA placement while considering the dynamic sea-ice regime and trophic

interactions.

Supporting information

S1 File. Taxa represented by model groups.

(PDF)

S2 File. Biomass sources.

(PDF)

S3 File. Production to biomass ratio references.

(PDF)

S4 File. Assimilation and production efficiency values.

(PDF)

S5 File. Diet matrix sources and notes.

(PDF)

S6 File. Time series sources.

(PDF)

S7 File. Calibrated model results for groups without time series data.

(PDF)

Using sea-ice to calibrate a dynamic trophic model for the Western Antarctic Peninsula

PLOS ONE | https://doi.org/10.1371/journal.pone.0214814 April 2, 2019 23 / 28

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0214814.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0214814.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0214814.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0214814.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0214814.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0214814.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0214814.s007
https://doi.org/10.1371/journal.pone.0214814


S8 File. Mixed trophic impact analysis. Black indicates a negative impact, white indicates a
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