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Aneurysmal subarachnoid hemorrhage (SAH) is one of the special stroke subtypes with

high mortality and mobility. Although the mortality of SAH has decreased by 50% over

the past two decades due to advances in neurosurgery and management of neurocritical

care, more than 70% of survivors suffer from varying degrees of neurological deficits

and cognitive impairments, leaving a heavy burden on individuals, families, and the

society. Recent studies have shown that white matter is vulnerable to SAH, and white

matter injuries may be one of the causes of long-term neurological deficits caused

by SAH. Attention has recently focused on the pivotal role of white matter injury in

the pathophysiological processes after SAH, mainly related to mechanical damage

caused by increased intracerebral pressure and the metabolic damage induced by

blood degradation and hypoxia. In the present review, we sought to summarize the

pathophysiology processes and mechanisms of white matter injury after SAH, with a

view to providing new strategies for the prevention and treatment of long-term cognitive

dysfunction after SAH.

Keywords: subarachnoid hemorrhage, white matter injury, oligodendrocyte, diffusion tensor imaging, therapeutic

targets

INTRODUCTION

Aneurysmal subarachnoid hemorrhage (SAH) is one of the special stroke subtypes with high
mortality and mobility. Neurosurgical clipping or endovascular coiling is highly recommended for
the early repair of ruptured aneurysms (1), focusing the medical management of SAH patients on
early brain injury and delayed cerebral ischemia (2). However, more than 70% of survivors suffer
from varying degrees of neurological deficits and cognitive impairments, leaving a heavy burden
on individuals, families, and the society (3). Compared with cohorts with unruptured intracranial
aneurysm, patients with aneurysmal SAH have higher mean diffusivity in white matter, leading
to cognitive impartment 3 months after SAH onset (4). Apparently, the mammillothalamic tract is
more vulnerable than the corticospinal tract in SAH patients with a good GlasgowOutcome Scale at
3months after ictus (5), which demonstrates a correlation between early brain injury and long-term
cognitive dysfunction after SAH.
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White matter contains most of the volume of human brain
and is made up of neural axons and myelin sheath. As early as
1989, the autopsy of six SAH cases had reported the remarkable
hyperemia and edema in the deep frontal white matter, with
microscopic axonal degeneration (6). Despite that enormous
progresses have been made in the pathophysiology of early brain
injury after SAH, the mechanisms of white matter injury are
still a blur (7). Unlike intracerebral hemorrhage and traumatic
brain injury, most SAH patients, especially those without obvious
hematoma volume, do not usually fracture the nervous tract
due to primary mechanical stress but suffer with remarkable
secondary brain injury and neurological deficits. Mechanical
pressure due to increased intracerebral pressure, glial response,
and ischemia is considered as the pivotal mechanism of white
matter injury after SAH but lacks high-quality clinical and basic
research evidence (7).

In the present review, we sought to summarize the
pathophysiology processes and mechanisms of white matter
injury after SAH, with a view to providing new strategies for
the prevention and treatment of long-term cognitive dysfunction
after SAH.

WHITE MATTER INJURY AFTER SAH

Previous clinical studies have not significantly improved
neurological outcomes in patients with SAH. Recent studies have
shown that there is a significant white matter injury after SAH,
which plays an important role in the early brain injury secondary
to SAH. The development of stroke imaging techniques suggests
that the protection of white matter injury is very important for
the recovery of neurological function and prognosis in patients
with SAH.However, the relationship between whitematter injury
and SAH remains unclear. It has been reported that common
cognitive dysfunction after SAH may be caused by white matter
injury (8). Studies have shown that white matter injuries such as
demyelination and axial rupture are reversible to a certain extent
(9), while gray matter injuries such as neuronal apoptosis are
difficult to recover. Therefore, the study of white matter injury
after SAH may be of more importance than we currently know.
Lee et al. found extensive white matter abnormalities in SAH
patients through tract-based spatial statistical analysis, but not
in retrolenticular parts of the internal capsule, right superior
longitudinal fasciculus, or right superior corona radiata (10),
providing important data support for the accurate diagnosis
of the presence and severity of nerve injury in patients with
subarachnoid hemorrhage. Clinical studies did find different
types of white matter lesions in SAH patients. For example,
the white matter lesions around the ventricle are mostly moon-
shaped, thin-shaped, or cap-shaped, and these small spots or
caps are asymptomatic and progress slowly (11); the white matter
lesions in the deep brain are mostly patchy, macular, or fused
largemasses which progress rapidly and lead to long-term disease
(11). In addition, autopsy observations of death cases with SAH
showed white matter edema and demyelination (12). Brain tissue
from a patient who died in the acute phase of SAH showed
multiple subcortical white matter abnormalities in the brain,

cerebellum, and brainstem (13). Distinct kinds of white matter
injuries lead to cognitive dysfunction, memory loss, emotional
apathy, movement disorders, and many other related clinical
manifestations in SAH patients (11).

Retrospective quantitative MRI studies have also shown
diffuse vasogenic edema and white matter injury after SAH (14).
In recent years, diffusion tensor imaging (DTI) has been used
to evaluate the neural tracts and structures in SAH patients
(15). Jang et al. found 62.5% of SAH patients had at least
one hemisphere of mammillothalamic tract abnormal 6 weeks
after SAH onset (16). Some other SAH patients may have
severe memory impairment and provoked confabulation in clear
consciousness since SAH onset, with Papez circuit injury even
3 months later (17). In addition, Schweizer et al. also reported
a reduction in hippocampal white matter integrity and long-
term memory loss of SAH patients (18). In 2007, Liu et al.
suggested that SAH may cause whole brain edema in the deep
gray and white matter (19). Subsequently, Rejmer et al. reported
that themean white matter diffusion rate 2 weeks after onset in 49
patients with aneurysmal SAHwas higher than that in 22 patients
with unruptured aneurysms (4). Moreover, the gray matter/white
matter ratio has been proved to be a good predictor for long-term
cognitive function and quality of life in SAH patients (20). These
studies suggest that it is essential to pay attention to white matter
injury for the recovery of neurological function after SAH.

POTENTIAL PATHOPHYSIOLOGY
MEDIATED SECONDARY WHITE MATTER
INJURY AFTER SAH

Acute white matter injury in ICH and TBI is similar in
principle and is caused by barotrauma and physical expansion
of hematoma masses (21, 22). The difference is that barotrauma
in TBI is caused by a blow to the outside of the head,
whereas ICH is caused by the impact of a large amount of
blood rushing out of the arteries in the brain cavity (21). In
addition, neuroinflammation, oxidative stress, and excitatory
toxicity induced by hematoma effect played major roles in
the injury of secondary white matter (23). White matter,
especially deep white matter, receives less collateral circulation
than gray matter and is more sensitive to ischemia (24). Thus,
ischemic stroke damages white matter rapidly and profoundly.
In addition, oliodendrocytes are highly susceptible to cerebral
ischemia-induced oxidative stress (25), excitotoxicity (26), and
neuroinflammation, leading to oliodendrocyte apoptosis and
consequent white matter damage.

Since most blood spread into the subarachnoid space without
direct nervous tract disruption, white matter injury after SAH is
initially considered to be the consequence of blood–brain barrier
disruption (27, 28) and neurotoxicity of blood disintegration
(29). Physical factors such as biological stress, mainly caused by
elevated intracranial pressure, attack the whole brain in the acute
phase, while biochemical factors including thrombin, excitatory
amino acids, and inflammatory cytokines lead to subsequent
white matter injury after SAH (Figure 1).
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FIGURE 1 | Schematic representation of the process of white matter injury in the brain after SAH. Blood from the ruptured vessel enters the subarachnoid space and

increases the intracranial pressure. Subsequently, biochemical factors, including thrombin, excitatory amino acids, and inflammatory cytokines, lead to disruption of

the blood–brain barrier, neural apoptosis, and demyelination, eventually causing white matter injury after SAH.

Elevated Intracranial Pressure
Changes occurring within 1min after aneurysmal SAH cause
early brain injury, and the degree of early brain injury affects
the final prognosis of patients (30). There is evidence that
acute intracranial hypertension after SAH is often accompanied
by sudden loss of consciousness and worse prognosis (31).
Therefore, control of intracranial pressure in the acute phase
of SAH is helpful to improve patient prognosis. Blood breaks
into the enclosed cranial cavity after SAH, causing a sharp
increase in intracranial pressure (ICP). Cerebral white matter
midline displacement directly caused by uneven pressure causes
the brain tissue to bulge into the tentorium cerebellum and
foramen magnum, inducing the herniation of the supraoptic
temporal lobe or cerebellar tonsillar hernia, and then squeezes
the brain stem and respiratory center, resulting in acute crisis,
loss of consciousness, respiratory depression, and cardiac arrest
(32). Therefore, almost one-third of patients suffering from SAH
consequently die of cerebral hernia due to high intracranial
pressure. The indirect effects of high intracranial pressure on
white matter after SAH seem clear as well. First, elevated
intracranial pressure leads to neurovascular coupling disorders,

reducing the focal cerebral blood flow and blood supply to the
white matter (33). Second, high intracranial pressure disrupts
the blood–brain barrier (BBB) at a very early phase after SAH.
Excessive water (H[[sb]]2[[/s]]O) and Na+ diffuse into the brain
parenchyma via the impaired BBB, resulting in vasogenic white
matter edema. Edema also aggravates intracranial pressure again
after SAH (34). Third, increased intracranial pressure causes the
extrusion of H[[sb]]2[[/s]]O into the extracellular mesenchyme
along the white matter fiber bundles, enhancing interstitial
cerebral edema following SAH (33, 35). Since cerebrospinal fluid
penetrates the ventricle wall and infiltrates the white matter
surrounding the ventricle, it increases hydrostatic pressure
and results in myelin disintegrating and disappearing rapidly
(34). Finally, increased intracranial pressure suppresses the
venous and lymphatic systems, leading to obstruction of venous
and lymphatic influx, further increasing cerebral edema and
intracranial pressure (36).

It is of great importance to develop intervention strategies
that target pathogens to improve ICP-induced white matter
injury after SAH. The primary cause is the occupancy effect of
excess blood in the subarachnoid space. Hence, early intracranial
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hematoma evacuation and cerebrospinal fluid drainage can
alleviate white matter damage after SAH. Another cause
of increased ICP after SAH is hydrocephalus. Both traffic
hydrocephalus and non-traffic hydrocephalus aggravate the
increase in ICP (34) and further compress the central aqueducts,
impeding the absorption and circulation of cerebrospinal fluid
(37). Therefore, a lumbar puncture and drainage procedure or
application of diuretics is urgently needed to reduce white matter
injury after SAH. As mentioned above, mitigation of brain edema
is beneficial to reduce the damage of intracranial pressure on
the white matter. However, at present, hormone drugs based on
improvement of the BBB are not recommended because of their
disadvantages, such as poor specificity and side effects (38).

Thrombin
Thrombin plays inclusive roles in the human brain, including
coagulation cascades and non-clotting processes. Under
physiological conditions, thrombin exists in the form of
prothrombin participating in the endogenous and exogenous
coagulation cascade (39). Thrombin is also involved in non-
clotting processes, such as maintenance of the blood–brain
barrier, aggregation and activation of platelets, formation of
cerebral edema, inflammatory cell infiltration, physiological
proliferation, and repair of brain tissue (40). Cerebrovascular
spasm is highly correlated with the prognosis of SAH patients
(41), and thrombin plays an important role in it (42). The
stimulative effect of thrombin on vasospasm after SAH is
irreversible (43). Therefore, how to reduce the enhancing
effect of thrombin on vasospasm after SAH so as to reduce
the subsequent toxic effect and improve the prognosis of SAH
patients remains to be further studied.

Excessive activation of thrombin during pathological
scenarios shows neurotoxic effects. First, thrombin activates
its membrane receptors and accumulates intracellular calcium
(Ca2+), which activates the calcium-dependent apoptosis
signaling pathway, killing the neurons and glial cells (44).
Second, thrombin activates matrix metalloproteinases (MMPs),
which may degrade various extracellular matrix proteins (such
as tight junction proteins), increasing blood–brain barrier
permeability and aggravating posterior cerebral edema after SAH
(45). Third, activation of microglia in the brain and peripheral
blood immune cells, which enter the central nervous system
through an impaired blood–brain barrier, may cause serious
neuroinflammatory injury (46). Fourth, studies regarding
ischemia–reperfusion injury in mouse models have reported
that astrocytes originally activated by thrombin may aid in
the production of MMP-2 and reduce myelin cells (47). The
MMP-2 inhibitor reduced the proliferation of astrocytes and
the damage of myelin cells but failed to reduce the damage to
oligodendrocytes caused by thrombin (47), which suggests that
the damage of thrombin to oligodendrocytes may occur through
apoptotic or inflammatory pathways rather than through the
MMP pathway.

Although thrombin receptor inhibitors should work against
white matter injury after SAH, very few antagonists of thrombin
receptors have been applied to SAH patients because of the risk of
secondary hemorrhage (48). Furthermore, most small molecular

inhibitors of thrombin have been found to be effective in animal
experiments, yet failed in clinical trials (49). Recent research in
our laboratory found that the direct use of antagonist peptides
of the thrombin receptor in a mouse model of SAH promoted
remyelination and neurological recovery (50). However, in
consideration of the substantial differences among species, there
is still a long way to go to achieve a clinical transformation.

Blood–Brain Barrier Damage
Approximately 10% of SAH patients suffer from severe edema in
many cerebral regions, including the whitematter, cortical cortex,
and corpus callosum (51). Vasogenic edema caused by disruption
of the blood–brain barrier is an independent risk factor for death
and disability in SAH patients (52). The blood–brain barrier
maintains the homeostasis of the internal environment of the
human brain with its particular structure: a basal membrane,
pericytes, an endothelium, and astrocytic endfeet (53). An
ultrastructural observation showed changes in the blood–brain
barrier after SAH, including a decrease in the number of
pericytes, a lack of connection between the pericytes and the
endothelium, disintegration of the astrocytic endfeet, destruction
of the tight junctions of the endothelium, degradation of the
basal membrane, vacuole-like changes in the endothelial cells,
and plasma leakage (54). Furthermore, some phenomena, such as
myelin edema, axonal energizing and information transmission
disorders, and disintegration of white matter fibers, have also
been observed after SAH (55). Interestingly, theMMPs that cause
destruction of the endothelial tight junctions and disruption
of the BBB have shown promotion of remyelination in the
peripheral nervous system (56, 57), suggesting that the potential
mechanism of correlation between BBB damage and white matter
injury remains elusive in SAH scenarios.

Two mechanisms have been involved in BBB maintenance:
tight junction and transcytosis (58). TheMMPs, as tissue scissors,
regulate the integrity of tight junctions, while docosahexaenoic
acid (DHA) suppresses endothelial transcytosis (58). Our
previous works found that both mechanisms were apparent in
the regulation of the BBB in white matter (where it is adjacent
to the blood clot directly) after SAH (58). Moreover, capillary
pericytes are involved in the two mechanisms by secreting matrix
metalloproteinase-9 (MMP-9) and DHA, revealing an interesting
role of pericytes in white matter injury after SAH.

Excitatory Amino Acids
Glutamate is the main excitatory amino acid (EAA) of the
human brain. Glutamatergic neurons participate in mediating
motor conduction in the spinal cord, red nucleus giant cells,
and Deiters’ nucleus giant cells (59). The concentration of
glutamate is abundant (up to 10µmol/g brain tissue) in the
human central nervous system (60). Its receptors (glutamate
receptor, GluR) include the metabotropic (mGluR) and ionic
(iGluR) receptors (60). The former, mGluR, is a G protein-
coupled receptor that activates protein modification and
regulates the process of learning, memory, anxiety, and pain
transmission. The latter, iGluR, is a ligand-gated ion channel
that is further subdivided into three subtypes: the N-methyl-
D-aspartate receptor (NMDAR), aminohydroxymethyl oxazole
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propionate receptor (AMPAR), and kainate receptor (KAR).
Studies have found that both mGluR and iGluR are widely
distributed in white matter (61). In pathological scenarios, excess
glutamate is released from damaged glutamatergic neurons,
causing demyelination, axonal injury, and glial cell death
(62). Furthermore, the blocking of reuptake and physiological
elimination of glutamate also lead to its excessive accumulation
(62). This reuptake failure is mainly because of the functional
inhibition of the presynaptic membrane of neurons or the
transporter of glutamic acids (GluTs, which consume ATP)
on the glial cell membrane (62). In the ischemic and hypoxic
environment caused by stroke, ATP supply is disturbed, and
glutamate reuptake is weakened (62). However, the antiport of
the sodium-dependent glutamate transporter further aggravates
the accumulation of glutamate and causes cell excitotoxicity
(62). Excessive glutamate leads to intracellular calcium overload,
oxidative stress, and endoplasmic reticulum stress, resulting in
oligodendrocyte apoptosis, and demyelination (62).

Excess glutamate is found in cerebrospinal fluid and brain
tissues of SAH patients. A correlation study analyzed the level
of excitatory amino acids in the intercellular substance of SAH
patients using microdialysis and found that the elevation of
aspartic acid and glutamate levels was negatively correlated with
the prognosis of SAH patients (63). Another animal experiment
showed that the expression of mGluR and the glutamate
transporter decreased significantly in the early stage of SAH
(64). In their report, upregulation of the glutamate receptor
and its transporter by using magnesium sulfate or nimodipine
significantly improved neurological functions (64). These studies
suggest that glutamate levels in the brain may be an important
indicator of white matter injury after SAH.

Inflammatory Injury
Neuroinflammation has been shown to be an important
pathogenic factor for white matter injury after SAH (65). A
case comparison study by Leviton and colleagues classified
neonatal intracerebral hemorrhage into three types according
to whether there was white matter injury: cerebral hemorrhage
with white matter injury (68 cases), cerebral hemorrhage without
white matter injury (123 cases), and no cerebral hemorrhage
or white matter injury (1,677 cases). This study found that
the inflammatory response was more significant and lasting
in patients who had white matter injury (66). After SAH, the
majority of inflammation was induced by the polarization of
microglia from the resting state (M0 type) to the immune
damage state (M1 type) or neuroprotection state (M2 type) (67).
Therefore, it was a promising direction of inflammatory therapy
by converting the polarization of microglia after SAH (68). Peng
et al. recently reported that low-density lipoprotein receptor-
related protein-1 activation could modulate M2 microglial
polarization and attenuate white matter injury after SAH (69),
and apolipoprotein E and its mimetic peptide COG1410 could
reduceM1microglia activation for the protection of white matter
injury after SAH (70). In addition, peripheral lymphocytes,
such as T lymphocytes and macrophages, penetrated into the
brain through the damaged blood–brain barrier after SAH (71).
These immune cells either killed or phagocytosed neurons and

glia, causing white matter inflammatory injury (71). Microglia
secrete proinflammatory factors such as TNFα, NIL1, and IL13,
leading to oligodendrocyte and periventricular white matter
injury in ischemic circumstances (72). Activation of microglia
also transformed inactive MMPs into active MMP-3 and MMP-
9, thereby destroying the BBB and degrading myelin (73). In
addition, intervention of inflammatory injury after SAH should
be undertaken as early as possible since inflammation can
interfere with the videographic diagnosis of SAH (74).

REPAIR FACTORS OF WHITE MATTER
AFTER SAH

Oligodendrocyte Precursor Cells
Oligodendrocytes are responsible for the myelination of axons.
During the development of the brain, oligodendrocytes usually
originate from the neuroepithelial area where neural stem cells
differentiate into oligodendrocyte precursor cells (OPCs) before
developing into early oligodendrocytes (75). Recent studies have
shown that OPCs develop in stages and form potentially diverse
populations (76). OPCs from different sources have different
susceptibilities and transcriptional profiles (76). If some OPCs
are more sensitive than others, there may be a promising
therapeutic strategy to target the vulnerable OPC subpopulation.
OPCs, which still exist in the adult brain, are crucial for myelin
maintenance and can be recruited for remyelination in the
case of myelin damage (77). Moreover, in adult mice, OPCs
account for ∼8–9% of the white matter cell population and 2–
3% of the gray matter cell population, suggesting that OPCs
are the most important cells mobilized in remyelination after
brain injury (77).

After proliferation, most OPCs are integrated into neural
circuits, and excessive ones are removed by microglia (78). In
addition, it has been shown that myelination is a dynamic and
plastic process (79). For example, studies in animals and humans
have shown that neural activity facilitates the differentiation and
myelination of OPCs during exercise and learning (79). OPCs
have a gross cone-like structure and can reach damaged areas
under the guidance of multiple chemokines (80). For example,
the concentration gradients of bone morphogenetic protein
(BMP), Sonic hedgehog (Shh), and Wnt protein determine
the direction of migration of OPCs (80). Other factors, such
as growth factors, extracellular matrix proteins, axon-inducing
molecules, and neural activity, can also influence themigration of
OPCs (77). In addition, it has been shown that the migration of
OPCs is also stimulated by extracellular matrix components such
as laminin, fibronectin, vitronectin, anosmin-1, and tenascin-
C (81). Interestingly, glutamate can promote the migration of
OPCs by stimulating the expression of polysialic acid–neuronal
cell adhesion molecules and activating the Tiam1/Rac1/ERK
signaling transduction pathway (82). A recent study by Tsai
and colleagues showed that correct cerebral vascularization was
essential for the migration of OPCs (83). More specifically,
OPCs migrated by “crawling” along the blood vessels and
could also “jump” from one blood vessel to another (83). This
behavior of OPCs may aim to ensure an adequate oxygen
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FIGURE 2 | Schematic representation of the main processes of NSCs, OPCs, and pericytes in white matter repair after SAH. OPCs proliferate and migrate to the

injured foci and differentiate into oligodendrocytes to repair damaged myelin. NSCs differentiate into white matter neurons and oligodendrocytes to repair axons and

myelin. Pericytes restore the blood supply to the white matter by modulating capillary constriction; moreover, pericytes enhance BBB integrity and alleviate white

matter injury after SAH. NSCs, neural stem cells; OPCs, oligodendrocyte precursor cells; SAH, subarachnoid hemorrhage; BBB, blood–brain barrier.

supply during the myelination process, which requires a high
oxygen consumption. Xu and colleagues recently reported that
perioxisomal dysfunction exacerbated white matter injury after
SAH, at least partly through thioredoxin-interacting protein and
glycerone phosphate acyl transferase signals (84).

OPCs will not stop proliferating after reaching their
destination until the number of OPCs reaches homeostasis (75).
OPCs are in a state of moderate proliferation and differentiation
inhibition. PDGF signaling is the main inducer of OPC
proliferation, while Notch and Wnt signaling and downstream
transcription factors are inhibitors of OPC differentiation
(85, 86). The inhibition of OPC differentiation is relieved after
white matter injury, and OPCs differentiate into immature
oligodendrocytes and eventually form myelin sheaths under the
promotion of transcription factors such as myelin regulators
(Myrf) (87). Mature oligodendrocytes ultimately achieve myelin
assembly of axons by expressing a large number of myelin genes
after contact with neuronal axons, including myelin-associated
glycoprotein (MAG), myelin oligodendrocyte glycoprotein
(MOG), myelin basic protein (MBP), and myelin protein
lipoprotein (PLP) (88). Therefore, the proliferation, migration,
differentiation, and maturation of OPCs, as well as the internal
regulatory mechanism, could provide new strategies for plastic
myelin regeneration after SAH (Figure 2).

Neural Stem Cells
Neural stem cells (NSCs) are located in the stem pool
(subventricular zone and hippocampus) of the brain and
are considered to be the center of cerebral regeneration

(89). Surprisingly, NSCs are the source of myelin repair by
differentiating into oligodendrocytes (90). Stem cell therapy
has been confirmed in rescue organs and tissues in a
variety of animal models (90). However, most of these
therapies are still experimental, and only small-scale and
experimental stem cell therapy trials have been conducted
in clinical practice (90). Furthermore, some issues that are
not negligible, including directional differentiation, side effects,
and risk of immune rejection, have not been resolved
at present.

Compared with other described therapeutic cells, including
embryonic stem cells, mesenchymal stem cells, umbilical cord
stem cells, and induced pluripotent stem cells, human NSCs
have shown the advantage of stable proliferation, mainly
differentiating into neurons and oligodendrocytes. Studies have
shown that nasal administration of mesenchymal stem cells
(MSCs) after 6 days of SAH in rats significantly reduced brain
injury and neuroinflammation and improved neurofunctional
outcomes after 21 days of SAH (91). The first case of venous stem
cell treatment of a high-grade aneurysmal SAH patient indicated
that the patient recovered rapidly and well after intravenous
infusion of bone marrow-derived allogeneic MSCs on day 3
after hemorrhage and achieved a modified Rankin Scale score
of 3 at 6 months (92). The immunological rejection of neural
stem cell transplantation may be improved by gene editing
in the future, and we may quickly obtain a large number of
neurons by using iPSC technology, reducing costs and shortening
the transplantation time (93). These clinical trials suggest that
neural stem cells have great clinical application value and
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should be used as one of the treatment options for white
matter injury.

In recent years, some achievements have been made in basic
and clinical studies of stem cell therapy, but there are still
some limitations. The safety and reliability of stem cell therapy,
especially the safety of long-term treatment, need to be verified
by more experiments. Stem cell type, delivery location and route,
and optimal time of intervention of stem cell therapy need to
be further explored. There are great challenges and still has a
long way to go from animal experiments to clinical applications,
but we believe that these findings provide a certain basis and
guidance for stem cell therapy in the treatment of white matter
injury after SAH (Figure 2).

Pericytes
The pericytes surrounding capillaries are essential for
maintaining the structure and function of the blood–brain
barrier. Pericytes have been found to be involved in white matter
injury in cerebral arterial disease with subcortical infarcts and
leukoencephalopathy, cerebral ischemia, and primary brain
calcification (94). Deletion of beta-type platelet-derived growth
factor receptor (PDGFRb) causes pericyte loss and affects
white matter functions in two ways: one is that the loss or
dysfunction of pericytes leads to blood–brain barrier leakage,
causing further toxic injury and white matter edema (95);
the other is that pericyte contraction causes microcirculatory
disturbance, blocking the white matter blood supply and
causing white matter ischemia and hypoxia damage (96).
Under pathological conditions, pericytes can be transformed
into α-smooth muscle actin (a-SMA)-positive phenotype,
showing the regulation of contractile function and leading to
neurological impairment (97). Our previous studies have shown
that regulating eNOS/NO signal can inhibit the conversion
of pericytes to a-SMA-positive phenotype, thereby increasing
the diameter of capillaries and regulating the neurological
dysfunction caused by microcirculation disturbance after SAH
(98). Moreover, increased expression and secretion of MMP-9 in
pericytes after SAH degrades endothelial tight junction protein
and basement membrane (99), while cyclosporine A (CsA) can
improve nerve injury caused by vasogenic edema by inhibiting
this process (58). The activation of oxidative stress induced by
SAH leads to increased apoptosis of pericytes, and edaravone
can inhibit this change and improve the early brain injury after
SAH (100). In addition, pericytes also show stem cell properties
and differentiate into neurons under certain conditions and
further repair nerve damage (101). Therefore, pericytes have
great potential in the treatment and intervention of white
matter injury (Figure 2).

POTENTIAL THERAPEUTIC STRATEGIES
TARGETING WHITE MATTER INJURY
AFTER SAH

Currently, clinical trials on SAH mainly focus on alleviating
vascular spasm, and there are few studies related to white
matter injury. The study on the neuroprotective effect of

ketamine infusion after aneurysmal SAH is in phase 3 clinical
trial now, which will provide an effective treatment for the
protection of neurocognitive function in patients with SAH
after completion (ClinicalTrials.gov identifier: NCT02636218).
Moreover, the effect of Xenon treatment on brain injury in the
acute phase after aneurysmal SAH is in the initial phase of a
phase 2 clinical trial and is expected to be a new approach
for treating white matter injury after SAH (ClinicalTrials.gov
identifier: NCT04696523).

In addition, there are a variety of drugs that promote
remyelination or impedance demyelination in preclinical and
clinical application stages. For example, bazedoxifene (BZA)
is one of the third-generation selective estrogen receptor
modulators that has been shown in preclinical studies to promote
myelin regeneration (102) and is currently undergoing phase
II clinical trials in MS patients (ClinicalTrials.gov identifier:
NCT04002934). In an animal model of cuprizone-induced
demyelination, testosterone promotes the proliferation and
differentiation of OPCs into mature oligodendrocytes through
targeting neuroandrogen receptors (103). Due to the potential
side effects and risk of overdose of hormone therapy, the phase
II clinical study of testosterone is currently being conducted
only in patients with testosterone deficiency, with the primary
objective of determining the efficacy of testosterone in MS
(ClinicalTrials.gov identifier: NCT03910738). Experiments have
shown that metformin can promote the expansion, migration,
and differentiation of endogenous neural progenitor cells in
injured rodent brains, so as to carry out self-repair and functional
recovery (104). The research on the effect of metformin on
endogenous neural progenitor cells in patients with multiple
sclerosis is undergoing phase II clinical trial (ClinicalTrials.gov
identifier: NCT04121468). Canavan disease is a congenital white
matter disorder characterized by severe motor abnormalities and
low myelination, and a phase II clinical trial of RAAV-Oligo001-
ASPA in the treatment of Canavan disease has just initiated
(ClinicalTrials.gov identifier: NCT04833907). RAAV-Olig001-
ASPA is the first gene therapy targeting oligodendrocytes, which
are critical for myelination and brain development (105). A
phase II clinical trial of nanocrystalline gold for multiple sclerosis
has initiated (ClinicalTrials.gov identifier: NCT03536559). If
these clinical trials are successful, the high specificity of gene
therapy and strong targeting of nanomaterials will provide
new therapeutic strategies for remyelination after SAH. Besides,
clomastine, solinacine, and benzotropine have been tested
in preclinical studies and approved for clinical use. Other
promising drugs, such as VX15/2503, BIIB033, and GSK239512,
promoted the differentiation of oligodendrocyte precursor cells
by inhibiting Wnt, Notch, and other signaling pathways in
vitro/animal experiments, thus promoting myelin regeneration.
However, no relevant clinical studies have been conducted so far.
Several drugs and their targets are summarized in Table 1.

PERSPECTIVE AND CONCLUSION

Previous studies have focused on early brain injury (EBI) and
delayed cerebral ischemia (DCI) in patients with SAH. Most of
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TABLE 1 | Advances in drug research for myelin repair.

Medicines Targets Mechanism Current state Correlational

research

Fingolimod S1P1 receptor Promotion of the maturity of

oligodendrocytes

FDA approved for RRMS (106)

Benzatropine Notch signal; muscarinic

receptor

Reduction in cholinergic demyelination;

promotion of the differentiation of OPC

Approved for Parkinson’s, dystonia, and

EAE

(107)

Quetiapine hemifumarate D2, 5-HT2A antagonist, H1,

α1, and 5-HT1A receptor

Promotion of the proliferation and

maturation of oligodendrocytes; increased

antioxidative stress

Approved for schizophrenia, bipolar

disorder; MS patient phase I clinical trial

(ClinicalTrials.gov: NCT02087631)

(108)

Simvastatin 3-Hydroxy-3-methylglutaryl-

CoA (HMG-CoA) reductase

inhibitor

Reduction in brain atrophy SPMS;

reduction in recurrent frequency or lesion

load

Approved for hypercholesterolemia; phase

III clinical trials of SPMS (NCT00647348)

(109)

Clobetasol Corticosteroid receptors Promotion of the differentiation of OPC

cells

Local antimicrobials; no clinical studies

have been conducted

(110)

Indomethacin Nonsteroidal

anti-inflammatory drugs;

drug (NSAID) inhibits cyclic

oxidase

Increase the phosphorylation of β-catenin

and induce its degradation; promotion of

differentiation of OPC cells

Approved as an OTC pain reliever. No

clinical studies have been conducted

(111)

BIIB033 LINO-1; RhoA signal Enhancement of oligodendrocyte

maturation, myelin formation, and

reduction in severity of EAE

MS phase II clinical trial (NCT01864148);

phase I of optic neuritis (NCT01721161)

(112)

Clemastine Antihistamine/anticholinergic

compounds; blocks

histamine H1 receptor

Enhancement of OPC cell differentiation RRMS patient II clinical trial

(NCT02040298)

(113)

Solifenacin Blocks CHRM3, an M3R

muscarine acetylcholine

receptor

Enhancement of OPC cell differentiation FDA approval for contractive bladder

contraction; no clinical studies have been

conducted

(114)

BQ788 Endothelin (ET) receptor

antagonist

Blocking of astrocytes and

oligodendrocyte demyelination

In vitro/animal experimental evidence, no

clinical application or related test

(115)

IRX4204 Retinoic acid receptor g

(RXR-g)

Enhancement of oligodendrocyte

differentiation

Clinical trials of MS patients are in the

planning stage

(116)

VX15/2503 SEMA4D/plexinB1 signal Promotion of OPC differentiation; repair of

the BBB

MS patient phase I clinical trial

(NCT01764737)

(117)

rHigM22 Hypoprotein/fibronectin

receptor

Reduction in glial cell apoptosis;

promotion of the regeneration of myelin

MS patient phase I clinical trial

(NCT01803867)

(118)

GSK239512 Histamine H3 receptor

agonist

Promotion of OPC differentiation Patients with MS were given an additional

therapy trial for the glatiramer acetate or

interferon b-1a, which was completed in

phase II (NCT01772199)

(119)

these studies focus on the cortical gray matter neurovascular
units or white matter neurons and ignore the myelin sheath
regeneration and the structure and function of white matter
fiber tracts. While <20% of the volume of white matter is
present in commonly used laboratory rodents, white matter
makes up more than 50% of the human brain. From the
perspective of clinical treatment, even if damage of gray matter
can be restored, the treatment of patients is difficult to achieve
ideal results without repair of white matter fiber bundle and
myelin sheath. These studies suggest that it is important to pay
attention to white matter injury for neurological rehabilitation
after subarachnoid hemorrhage.

The therapeutic strategies for white matter injury are
mainly limited to maintaining the balance of damage and
reconstruction of white matter components after SAH ictus.
The present review discusses the pathogenic factors and repair

mechanisms of white matter injury after SAH, as well as the
anti-inflammatory mechanisms to mitigate existing damage by
reducing blood–brain barrier destruction, decreasing intracranial
pressure, blocking thrombin-activating molecular cascades, and
other means. On the other hand, regeneration of the myelin
sheath and the repair of neurovascular can be promoted through
the repair and functional stability of OPC cells, neural stem
cells, and pericytes. The combination of these two strategies
can reduce white matter injury after SAH and accelerate
the recovery of neurological function. Potential drugs have
been approved for clinical use and are expected to be used
in the treatment of white matter injury after SAH. Given
these exciting works, especially in preclinical studies, new
breakthroughs in the treatment of neurological deficits caused
by white matter injury in SAH patients may be possible in the
near future.
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