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Abstract
Food intake is an essential animal activity, regulated by neural circuits that motivate food

localization, evaluate nutritional content and acceptance or rejection responses through the

gustatory system, and regulate neuroendocrine feedback loops that maintain energy

homeostasis. Excess food consumption in people is associated with obesity and metabolic

and cardiovascular disorders. However, little is known about the genetic basis of natural

variation in food consumption. To gain insights in evolutionarily conserved genetic princi-

ples that regulate food intake, we took advantage of a model system, Drosophila melanoga-
ster, in which food intake, environmental conditions and genetic background can be

controlled precisely. We quantified variation in food intake among 182 inbred, sequenced

lines of the Drosophila melanogasterGenetic Reference Panel (DGRP). We found signifi-

cant genetic variation in the mean and within-line environmental variance of food consump-

tion and observed sexual dimorphism and genetic variation in sexual dimorphism for both

food intake traits (mean and variance). We performed genome wide association (GWA)

analyses for mean food intake and environmental variance of food intake (using the coeffi-

cient of environmental variation, CVE, as the metric for environmental variance) and identi-

fied molecular polymorphisms associated with both traits. Validation experiments using

RNAi-knockdown confirmed 24 of 31 (77%) candidate genes affecting food intake and/or

variance of food intake, and a test cross between selected DGRP lines confirmed a SNP

affecting mean food intake identified in the GWA analysis. The majority of the validated can-

didate genes were novel with respect to feeding behavior, and many had mammalian ortho-

logs implicated in metabolic diseases.

Introduction
Food intake is a fundamental fitness trait as it is essential for the maintenance of energy balance
and survival. In humans, consumption of excessive calories is associated with an increased inci-
dence of type 2 diabetes, obesity, cardiovascular disease, and other disorders and diseases [1–3];

PLOSONE | DOI:10.1371/journal.pone.0138129 September 16, 2015 1 / 25

a11111

OPEN ACCESS

Citation: Garlapow ME, Huang W, Yarboro MT,
Peterson KR, Mackay TFC (2015) Quantitative
Genetics of Food Intake in Drosophila melanogaster.
PLoS ONE 10(9): e0138129. doi:10.1371/journal.
pone.0138129

Editor: Dennis C. Ko, Duke University, UNITED
STATES

Received: July 20, 2015

Accepted: August 25, 2015

Published: September 16, 2015

Copyright: © 2015 Garlapow et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: This work was supported by the National
Institute of General Medical Sciences R01 GM45146
to TFCM, and by the National Institute on Alcohol
Abuse and Alcoholism R01 AA016560 to TFCM. The
funders had no role in study design, data collection
and analysis, decision to publish, or preparation of
the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0138129&domain=pdf
http://creativecommons.org/licenses/by/4.0/


while insufficient caloric intake is correlated with abnormal liver function and skin and other dis-
orders [4, 5]. However, dissecting the genetic and environmental contributions to variation in
food intake in human populations is challenging, due to difficulties in quantifying food intake
[6–13] and small effects of segregating variants that together account for only a small fraction of
the estimated genetic variance [14–18]. Using model organisms such asDrosophila melanogaster
to delineate the genetic and neural basis of food consumption and metabolism, obesity, type 2
diabetes, and other traits and disorders connected with food consumption can identify evolution-
arily conserved candidate genes and pathways relevant to human biology [19, 20].

The development of rapid and reproducible techniques for quantifying food intake has facil-
itated many recent studies on the genetic, neural, and environmental factors modulating food
consumption in D.melanogaster. Measuring feeding frequency by quantifying proboscis exten-
sion provides an estimate of total food intake, and can be applied to the same group of flies
over time [21] and automated for continuous resolution [22]. Radioactive tracers can permit
measurement of food intake and fecal and egg excretion [23], while the development of the
Capillary Feeding (CAFE) assay allows for continuous measurement of food intake with high
resolution [24, 25].

The genetic and environmental basis of food consumption inDrosophila has many compo-
nents. Drosophila utilize gustatory receptors (GRs), olfactory receptors (ORs) and odorant bind-
ing proteins (OBPs) to sense food and assess its quality as they integrate food cues with
physiological state to affect feeding decisions. Expression of short neuropeptide F (sNPF) and its
receptor in OR42b neurons is required for increasing food search behavior induced by starvation
[26]. Food odors elicit rapid, transient physiological and transcriptional increases in circulating
glucose and expression of four of the eightDrosophila Insulin-Like Peptides (DILPs) and adipo-
kinetic hormone (AKT) [27]. OBPs are thought to transport bitter hydrophobic tastants to gusta-
tory receptors to modulate food intake [28]. The receptor for trehalose, Gr5a, acts with the G-
protein alpha subunit, Gsα, to allow sugar taste transduction [29]. Gustatory perception of food
quality can distinguish among major tastant groups but not individual compounds within a
modality [30]. Gustatory sugar acceptance is modulated by dopaminergic signaling [31]. Accep-
tance of unpalatable, often bitter, foods increases with long-term exposure, with attenuation of
gustation achieved through activation of Transient Receptor Potential-Like (TRPL) localized in
the GR neurons [32]. In the brain, Gr43a senses fructose circulating in the hemolymph, pro-
motes feeding in hungry flies, and suppresses feeding in satiated flies [33]. Integration of OBPs,
GRs, and subsequent neuroendocrine and motor responses can be modulated by gustatory inter-
neurons connecting food sensing modalities with neuroendocrine and motor outputs [34].

Gustatory and olfactory sensing assess the tastants and odorants of food, while the brain
assesses caloric content independent of gustatory and olfactory modalities. The brain directly
senses caloric content of circulating sugar without tasting sugar via the hemolymph, and com-
municates necessary feeding and metabolic changes [35]. In fact, caloric sensing by the brain
forms metabolic memories that allow Drosophila to balance caloric intake with metabolic state
independent of taste [36]. Adult D.melanogaster increase their feeding rate under dietary
restriction, thereby adjusting caloric intake to physiological needs [37]. Odorant sensing to
locate and anticipate feeding, gustation to assess palatability, and caloric density assessment by
the brain independent of taste are integrated with physiological state to regulate metabolism
and determine feeding behavior.

The central nervous system serves as the master regulator of food intake, integrating various
physiological signals with external cues. Decreases in food intake are achieved through various
peptides and signaling modalities: Leucokinin (Lk) and the Leucokinin Receptor (Lkr) [38],
Forkhead Box O transcription factor (FOXO) [39–41], Allatostatins [42], serotonin [43], neu-
ronal populations of c673a [44], peripheral cAMP-responsive transcription factor (CREB)
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[45], hugin [46–48], Rac2 [49], and Unpaired 2 (Upd2) [50] all elicit decreased food intake. In
comparison, there are fewer signaling peptides involved in increasing food intake: SP [51],
sNPF [52–54], and dopamine [55] elicit feeding increases. Increases and decreases of food
intake are further modulated by a complex coordination of neuronal signaling. A single pair of
Feeding neurons control the initiation of food intake [56], and four GABAergic interneurons
promote the cessation of feeding in response to satiety and gustatory cues [57]. Insulin, seroto-
nergic, octopaminergic, GABAergic, and dopaminergic signaling pathways all act and interact
to orchestrate physiological and metabolic cues, sensory input, and signaling peptides into the
appropriate feeding responses [31, 43, 49, 57–61]. The decision to eat is accompanied by exten-
sion of the proboscis and fluid ingestion by motor neuron-driven pumping; these neurons
exhibit prolonged activation to palatable tastants [62].

Despite these recent advances in understanding the integration of environmental, physio-
logical, and neuroendocrine factors affecting initiation, continuation, and cessation of food
intake, the extent to which these genes and pathways affect natural variation in food intake in
Drosophila is unknown. Here, we used the inbred, sequenced lines of the D.melanogaster
Genetic Reference Panel (DGRP) [63, 64] to quantify substantial genetic variation in both
mean food consumption and the within-line environmental variance (measured using the coef-
ficient of environmental variation, CVE) of food consumption [65–71]. We performed genome
wide association (GWA) analyses for both traits and identified novel candidate genes, many of
which we functionally validated using single nucleotide polymorphisms (SNPs) in the DGRP
[72] or RNAi alleles.

Results

Quantitative genetics of mean food consumption in the DGRP
We assessed total consumption of 4% sucrose over 24 hours for 182 DGRP lines (S1 Table)
using a modified version of the CAFE assay [24]. We found substantial genetic variation in
food consumption among the DGRP lines, with a broad sense heritability ofH2 = 0.45 (Fig 1A,
Table 1). Food intake is sexually dimorphic (P< 0.0001 for the sex term), with females gener-
ally consuming more than males. In addition, there is genetic variation among the DGRP in
the magnitude of sexual dimorphism in food consumption (Fig 1B, Table 1, P< 0.0001 for the
sex by line interaction term), with a cross-sex genetic correlation of rGS = 0.68. Thus, we expect
the genetic architecture of mean food intake to be at least partially sex-specific.

Many other physiological and life history traits have been measured in the DGRP lines,
enabling us to estimate genetic correlations between these traits and food intake. In total, we
tested correlations with food intake for 33 traits in females and 66 traits in males. The most sig-
nificant correlation with food intake was a negative correlation with starvation resistance in
both sexes (r = -0.31, P< 0.0001 for males and females) [64]. We observed nominally signifi-
cant and modest correlations between food intake and several sleep traits and lifespan in both
sexes [67, 73]; resistance to oxidative stress induced by paraquat [74] and menadione sodium
bisulfite (MSB) in females [75]; and several nutritional index values in males [76] (S2 Table).
None of the correlations between food intake and body weight or aspects of metabolism [77]
approached significance, suggesting that consumption is independent of size.

Quantitative genetics of within-line variation in food consumption in the
DGRP
Several studies have shown that the within-line environmental variance of inbred lines is heri-
table [65–69, 71]. We used Brown-Forsythe and Levene’s tests to assess whether there was
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heterogeneity of within-line environmental variance in food consumption among the DGRP
lines. These tests are modifications of one-way ANOVA that use, respectively, the absolute
deviation of each data point from the line median and mean as the response variable. Indeed,
we find highly significant heterogeneity of environmental variance among the DGRP lines

Fig 1. Variation in mean food intake in the DGRP. (A) Mean food intake in 182 DGRP lines, arranged in order from lowest to highest in females (red
diamonds). Mean food intake of males (blue squares) are given in the same order as the female scores. (B) Sexual dimorphism of food intake. The female-
male difference in mean food intake of each line is ordered from lowest to highest. All error bars are ± SE.

doi:10.1371/journal.pone.0138129.g001

Table 1. Analyses of variance (ANOVA) of food intake.

Analysis Source of Variation df MS F P-value σ2 (SE)

Sexes Sex 1 423.60 33.43 <0.0001 Fixed

Pooled Line 183 125.29 9.89 <0.0001 8.21 (1.09)

Sex x Line 181 24.43 1.93 <0.0001 1.92 (0.42)

Error 1867 12.37 12.66 (0.41)

Females Line 182 86.15 5.35 <0.0001 11.42 (1.48)

Error 938 16.09 16.09 (0.74)

Males Line 182 63.62 6.90 <0.0001 8.91 (1.10)

Error 929 9.22 9.21 (0.43)

df: degrees of freedom; MS: type III mean squares; F: F-statistic; σ2 variance component estimated using restricted maximum likelihood.

doi:10.1371/journal.pone.0138129.t001
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(Table 2), suggesting heritability of this trait. Within some inbred DGRP lines, individuals con-
sume relatively constant amounts of food, whereas within others, individuals consume widely
varying amounts of food.

We used the coefficient of within-line variation (CVE) as the metric for within-line environ-
mental variance (Fig 2). The correlation of CVE between males and females is r = 0.16,
P = 0.031 (Fig 2). The approximate 95% confidence limits of this correlation are 0.012–0.308;
thus the correlation is barely significantly different from zero and clearly different from unity,
suggesting largely sex-specific genetic architecture of variation in environmental variance. The
correlation between mean and CVE in food intake is significantly different from zero, but small
and negative (r = -0.27, P = 0.0002 for females; and r = -0.29, P< 0.0001 for males). Therefore,
only 7–8% of the total variance in CVE for food consumption can be explained by the associa-
tion with the mean. We assessed whether variance in CVE could be a consequence of variation
in the numbers of segregating sites in the DGRP lines [64], as it has been hypothesized that
within line environmental variation may be inversely related to heterozygosity [78, 79]. This
hypothesis was not supported by these data: the correlation between CVE and the number of
segregating sites was not significant for females (r = 0.026, P = 0.72) or males (r = -0.106,
P = 0.16; S1 Fig).

GWA analyses of food consumption
We performed GWA analyses for mean and CVE of food intake using 1,920,276 polymorphic
variants with minor allele frequencies� 0.05. We performed four analyses for each trait: the
average of females and males, the difference between females and males (formally equivalent to
the sex by line interaction), and for females and males separately. Prior to performing the
GWA analyses, we tested and corrected for any effects ofWolbachia infection and common
polymorphic inversions as well as polygenic relatedness [64]. For mean food intake, we
observed a significant effect ofWolbachia in females (P = 0.03) and for the difference between
females and males (P = 0.026); a significant effect of In(3R)K for males (P = 0.05); and a signifi-
cant effect of In(3R)Mo for males (P = 0.04) and for the difference between females and males
(P = 0.04) (S3 Table). None of these covariates was significant for CVE of food intake (S3
Table).

At a nominal reporting threshold of P< 10−5, we found 74 variants in or near (± 1 kb) 54
genes affecting mean food intake (S4 Table) and 160 variants in or near 101 genes affecting
food intake CVE (S5 Table). Two genes, Dystrophin (Dys) and CG1136, were associated with
both the mean and CVE. None of the variants were significant following a Bonferroni correc-
tion (P = 2.6 × 10−8) for multiple tests. However, 12 of the 153 genes implicated in these analy-
ses have been previously associated with aspects of feeding (S6 Table). Among the candidate
genes for mean food intake, retained (retn), CG10477 and CG42788 were previously associated
with adult amino acid consumption from gene expression and GWA analyses in the DGRP

Table 2. Brown-Forsythe and Levene’s tests for unequal variance.

Test Sex df F P-value

Brown- Male 181 1.2246 0.0337

Forsythe Female 182 1.4663 0.0002

Levene Male 181 1.6288 <.0001

Female 182 2.0492 <.0001

df: degrees of freedom; F: F statistic.

doi:10.1371/journal.pone.0138129.t002
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[80], and Aldolase (Ald) was associated with adult transcriptional response to dietary restric-
tion [81] (S6 Table). Among the candidate genes for CVE of food intake, previous associations
have been reported for Ecdysone-inducible gene L1 (ImpL1) with larval sugar feeding [82];
CG3502, frizzled (fz) and Zwilch with amino acid intake [80]; Octopamine β3 receptor (Octβ3R)
with larval hunger-driven feeding [83]; Organic anion transporting polypeptide 74D (Oatp74D)
with high glucose rearing [76]; pointed (pnt) with larval nutritient control of mitochondrial
biogenesis [84]; and Tyramine β hydroxylase (Tbh) with adult sweet taste-induced memory for-
mation [85] and adult response to sucrose concentration [86] (S6 Table).

We used gene ontology (GO) enrichment analyses [87, 88] to place the top associations in
context. None of the GO terms for either trait had enrichment scores passing a 5% false discov-
ery rate (S7 Table). At nominal P-values< 0.05, the top genes associated with mean food intake
were enriched for olfactory and chemosensory behavior, and epidermal growth factor (EGF)
signaling (S7 Table). The top genes associated with CVE of food intake were associated with
behaviors, G-protein coupled signaling, and regulation of transcription (S7 Table).

SNP-based functional validation
In order to assess whether a putative regulatory SNP affects feeding behavior, we chose one
SNP, 3R_13637022_SNP, an A/C polymorphism 174 bp upstream of CG18012 and 241

Fig 2. Variation in CVE of food intake in the DGRP. (A) CVE of food intake, arranged in order from lowest to
highest in females (red diamonds). CVE of food intake of males (blue squares) are given in the same order as
the females. (B) Association of mean andCVE for food intake for females (red diamonds) and males (blue
squares).

doi:10.1371/journal.pone.0138129.g002
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upstream of tincar with a female-specific effect on food intake (female P-value = 5.14 × 10−6;
male P-value = 2.11 × 10−4, S2 Table) to functionally validate in outbred genetic backgrounds.
We selected this SNP based on its P-value and a minimum of ten minor-allele-containing
DGRP lines that we had measured. We created five different F1 genotypes from 10 DGRP lines
homozygous for the minor allele (C) and five F1 genotypes from 10 DGRP lines homozygous
for the major allele (A), and measured their food intake (Fig 3A, S8 Table). These lines have
randomized genetic backgrounds with the exception of the target polymorphism. We indeed
confirmed a significant (P = 0.029; Fig 3B) female-specific effect of this polymorphism on food
consumption in the predicted direction from the GWA analysis, with the major allele associ-
ated with an increase in food intake. However, the magnitude of this effect (0.36 μL), was not
as large as the effect from the GWA analysis (1.37 μL). This discrepancy of effect size can be
attributed to the Beavis Effect [89, 90], whereby the effect sizes from GWA analyses are overes-
timated as the predicted effects are generated from quantitative trait loci (QTL) that reach a
critical, predetermined threshold; the distribution of QTL from which effect size is predicted is,
therefore, truncated, creating an upward bias in predicted effects [89–91].

RNAi functional validation
We selected 31 genes for functional validation using RNAi knockdown and a weak, ubiquitous
GAL4 driver, Ubi156-GAL4. We chose these genes based on the availability of RNAi lines, pat-
terns of adult gene expression in Drosophila (ubiquitous, or in gut, fat body, and/or brain), the
existence of a human ortholog (S9 Table) and/or involvement in feeding-related processes (S6
Table). The weaker Ubi156-GAL4 driver line was used to prevent lethality often observed with
stronger ubiquitin promoters, while still allowing ubiquitous expression. Although the top can-
didate genes from the mean and CVE GWA analyses are largely distinct, this is a consequence
of using CVE as the metric for the within-line variance, as it ameliorates the dependency of the
variance on the mean. However, there is a real relationship between mean and within-line vari-
ance of food consumption; therefore, we assessed both traits with the RNAi lines and controls.
In total, 24 (77%) of the tested RNAi knockdown alleles affected the mean and/or within line
variance relative to the control: 21 genes affected the mean, 12 affected the variance, and nine
affected both the mean and variance, suggesting at least partial joint regulation of mean and
within line variance of food intake (Fig 4, S9 Table). The effects of RNAi knockdown alleles on
the mean and variance of food intake were highly sex-specific, as expected from the quantita-
tive genetic and GWA analyses, and elicited both increases and decreases in both traits, sug-
gesting RNAi knockdown does not result in ‘sick’ flies. The functionally validated genes
affecting mean and/or within line variance of food intake included octopaminergic genes
[Octopamine β3 receptor (Octβ3R) and Tyramine β hydroxylase (Tbh)]; EGF signaling genes
[Epidermal growth factor receptor (Egfr), pointed (pnt), LDL receptor protein 1 (LRP1), and
CG7466]; a hydrolase (CG33226); phosphatases [Spn, twins (tws), and Protein tyrosine phos-
phatase 99A (Ptp99A)]; and a calcium channel [transient receptor potential (trp)] (Fig 4, S9
Table, S10 Table).

Discussion

The genetic architecture of food consumption
There is substantial natural variation in food intake both within and between the sexes in the
DGRP, ranging from the lowest intake in males from DGRP_307, which consume less than
half a microliter over 24 hours, to the largest intake in females from DGRP_42, which consume
more than four times that volume in the same time frame. The genetic architecture of mean
food consumption from quantitative genetic analyses of feeding behavior in the DGRP, GWA
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analyses and functional validation studies is strikingly sex-specific. Perhaps surprisingly, natu-
ral variation in food intake is not highly correlated with organismal phenotypes related to body
size and metabolism. Although there is a significant correlation with starvation resistance, less
than 10% of the total phenotypic variation in food consumption can be explained by this
association.

In addition to variation in mean food consumption, we show significant genetic variation in
within-line environmental variance of food intake, adding to the growing list of quantitative
traits for which there is genetic control of the magnitude of environmental variance [65–71].
We show for the first time in Drosophila that micro-environmental variance of food intake is
heritable and that examining its genetic basis can yield insights into the regulation of both
mean and micro-environmental variance of food intake. We tested 31 candidate genes from
the GWA analyses for the mean and CVE of food intake, and validated 24 (77%) of them. The
validations were not always for the trait for which they were predicted by GWA. We speculate
this is because the mean and variance of food consumption are correlated. Our functional vali-
dations were for the mean and variance; whereas the GWA was for the CVE. A common biolog-
ical mechanism may underlie both feeding traits, which is not always true for the mean and
micro-environmental plasticity of other Drosophila quantitative traits [92]. Note also that the
direction, magnitude, and sex-specificity of the effects predicted by natural variants in the
GWA analyses were not the same as for the effects of RNAi knockdown. This is not unexpected
because the RNAi analyses test whether reducing gene expression affects feeding behavior,
whereas the variants implicated by GWAmay affect the trait via other mechanisms or may be
associated with increased gene expression. In addition, the genetic background of the lines
used for RNAi is different from the DGRP lines. Nevertheless, we can conclude from signifi-
cant effects of RNAi knockdown on feeding behavior that these genes affect the traits when
their function is compromised. In the future, more precise validations will be possible by
CRISPR/Cas9 allelic replacements in the DGRP lines.

Fig 3. SNP-based functional validation. (A)Mating scheme for generating outbred lines homozygous for major and minor SNP alleles. Two parental
genotypes homozygous for the focal highlighted SNP and the tested F1 genotype are depicted. (B) 3R_13637022_SNP validation results for females (red
bars) and males (blue bars) (± SE). *: P = 0.029.

doi:10.1371/journal.pone.0138129.g003
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Previous studies examining the genetic underpinnings of food intake in D.melanogaster
revealed interconnected sensory inputs, signaling pathways, and feedback loops integrated in
the central nervous system [31–33, 35–45, 49–60, 93–105]. The GWA analyses for the mean
and environmental variation of food intake complement these studies and identify many novel
candidate genes. Two of the functionally validated genes affecting octopaminergic signaling,
Tbh and Octβ3R, have been implicated previously to affect feeding behavior using different

Fig 4. RNAi functional validation. Effects of RNAi knock down on (A) mean food intake and (B) within-genotype variance of food intake of females (red
bars) and males (blue bars) for 31 candidate genes. All values are deviations from the control. Error bars are ± SE. *: P < 0.05; **: P < 0.01; ***: P < 0.0001.

doi:10.1371/journal.pone.0138129.g004
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assays [83, 85, 86]; and a third functionally validated gene, pnt, has been implicated in feeding
behavior by showing that mitochondrial biogenesis is influenced by larval nutrition [84]. The
remaining functionally validated genes have no prior associations with food consumption.

SNP functional validation andCG18012
We functionally validated a female-specific effect of 3R_13637022_SNP on mean food intake.
This potential regulatory polymorphism located upstream of tinc and CG18012 could affect
either gene. tinc encodes a transmembrane protein expressed in cardioblasts [106] and has no
known mammalian orthologs [107]. CG18012 was also validated to affect mean food consump-
tion in males using RNAi. The human ortholog of CG18012 is Chitobiosyldiphosphodolichol
beta-mannosyltransferase (ALG1) (S10 Table) [107], which catalyzes the mannosylation step of
lipid-linked oligosaccharide biosynthesis [108]. Mutations in ALG1 can result in congenital
defects of glycosylation, caused by deficient mannosyltransferase [109]. Characteristics of the
congenital defect include abnormal adipose distributions and aberrant blood coagulation
resulting in thromboses and hemorrhages [109]. Thus, 3R_13637022_SNP most likely affects
the gene to which it is most proximal, CG18012, although further work is necessary to under-
stand the underlying mechanism. Note that the experimental design to test additive effects of
SNPs implicated by GWA analyses in outbred DGRP genotypes can be generalized to any vari-
ant, including those in gene deserts. The observation that the SNP effect was female-specific
and the RNAi-knockdown effect was male-specific is not unusual; different alleles of the same
gene typically vary in the magnitude, direction and sex-specific effects on quantitative traits
[reviewed in [110]].

Bioamine signaling and feeding behavior
Two functionally validated genes from RNAi knockdown of gene expression were Tyramine β
hydroxylase (Tbh) and Octopamine β3 receptor (Octβ3R). These genes both affect octopamine
signaling. Tbh converts tyramine to octopamine [111]. Tbh is integral in the response to differ-
ent sucrose concentrations and the habituation to sucrose in adult D.melanogaster and may
affect carbohydrate metabolism since Tbhmutants are starvation resistant [86]. Octβ3R is a G-
protein coupled octopamine receptor [112]. Mutations in Octβ3R affect post-starvation feeding
in Drosophila larvae, suggesting Octβ3R is required for this response in fasted larvae [83]. The
mammalian orthologs of Octβ3R, histamine receptor H2 (HRH2) and 5-hydroxytryptamine
receptor 4, G protein-coupled (HTR4) and of Tbh, dopamine beta-hydroxylase (DBH) [107],
function in human food ingestion and gastric emptying [113, 114] and rat feeding and glucore-
gulatory responses [115, 116] and post-prandial decreases in food intake [117], respectively.
We functionally validated an effect of CG34362 on food consumption using RNAi. The pre-
dicted mammalian ortholog of CG34362 is the RNA metabolic gene TIA1 granule-associated
RNA binding protein (TIA1). TIA1 is down regulated in the fatty livers of obese humans and
mice fed a high fat diet [118]. TIA1 functions in thyroid hormone regulation, and thyroid hor-
mone signaling is integrated with adrenergic signaling in liver, adipose tissues, and the hypo-
thalamus [reviewed in [119]]. Octopamine is the functional analog of mammalian
norepinephrine. These results implicate an evolutionarily conserved pathway integrating meta-
bolic information with bioamine signaling affecting feeding behavior.

EGF signaling and food intake
We expected to find genes affecting insulin-like signaling in the GWA analyses, since aspects
of Drosophila feeding are affected by components of the insulin-like signaling pathway [53, 58,
120, 121]. However, we did not observe this, possibly because these genes are under strong
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purifying selection and do not harbor functional variants at high enough frequencies to be
detected by GWA analyses in the DGRP. We did, however, detect and functionally validated
four components of EGF signaling, which is known to regulate insulin-like signaling and sensi-
tivity [122–124]. EGF signaling is involved in sleep in D.melanogaster [125–127], but its role
in Drosophila food intake has not been demonstrated previously. We show from our RNAi
functional validation that the EGF receptor, Egfr, affects Drosophila feeding behavior. The
mammalian EGFR and components of the mammalian EGF signaling pathway are known to
enhance glucose absorption in the gut [128], induce obesity in ovariectomized [129] and aged
female mice [130], are decreased in adipose tissues of calorie restricted mice [131], and are
associated with hyperglycemia in humans [132]. Lipid Transfer Protein (LTP) is produced by
the Drosophila fat body and conveys information about dietary lipid composition to specific
neurons innervating insulin-like-producing cells and thereby affecting insulin signaling [124].
LRP1, which is a promiscuous receptor in EGF signaling, allows LTP to cross the Drosophila
blood brain barrier to affect insulin-like signaling [124]. Mammalian LRP1 regulates leptin sig-
naling and energy homeostasis [133], modulates cholesterol metabolism [134], controls adi-
pose tissue generation [135] in the development of obesity [136] with obese adipose tissue
upregulation [135, 137], is associated with blood biomarkers of diet-based obesity interventions
[138], controls post ingestion lipid transport and glucose regulation [139], and correlates die-
tary carbohydrate metabolism to metabolic syndrome [140] and fatty acid intake with body
mass index [141–143].

The EGF signaling gene pnt encodes an ETS-1 transcription factor; ETS1 and ETS2 ortho-
logs in mammals [107] are activated by EGF signaling [144, 145]. In Drosophila, persistent
EGF signaling via pnt induces insulin resistance, downregulating expression of the Insulin-like
receptor gene [123]. Further, pnt gene expression is correlated with larval nutrient control of
mitochondrial biogenesis [84]. The mammalian orthologs are increased in the serum of obese
humans [146], correlate with adipose tissue generation [147], increase obesity-related adipose
tissue inflammation [148], are upregulated in diabetes [149], act in the development of diabetic
retinopathy [150] and nephropathy [151], and reduce endothelial progenitor cells in diabetes
[152]. While the mammalian ortholog of the EGF signaling gene CG7466,multiple EGF-like-
domains 8 (MEGF8) [107], did not have a role in feeding or metabolically related mammalian
traits, we did functionally validate it in Drosophila. Given the variety of metabolically related
mammalian phenotypes these EGF signaling genes affect without directly affecting food con-
sumption, we posit Drosophila as an essential tool in elucidating the roles of EGF signaling
genes in directly regulating feeding behavior.

Novel insights in the genetic basis of feeding behavior
Eight of the 24 genes validated using RNAi either have mammalian orthologs with no known
function in metabolically related phenotypes (CG2121,mitochondrial ribosomal protein L54
(mRpL54), tropomodulin (tmod), Ptp99A, and CG7466) or have no known mammalian ortho-
logs (CG34356, and Gag related protein (Grp)) [107]. The remaining genes have mammalian
orthologs involved in the development of various metabolically related phenotypes and dis-
eases. The orthologs, however, typically do not affect mammalian food intake directly but
rather affect the etiology of these complex phenotypes. Future analyses of the mechanisms by
which these genes affect Drosophila feeding harbors the potential to better elucidate the means
by which various mammalian metabolic phenotypes are also regulated.

branchless (bnl) affects variance of food intake in males. bnl encodes a growth factor that
interacts with hedgehog signaling in a variety of developmental processes [153–155]. Hedgehog
signaling controls fat development in Drosophila [156, 157] and mice [156] and coordinates fat
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development with nutrients [158]. The mammalian orthologs of bnl include a variety of fibro-
blast growth factors (FGFs) (S10 Table) [107]. Treatment with FGF1 restores normal blood
sugar levels in a murine model of type 2 diabetes [159], and FGF1 knockout mice develop
aggressive type 2 diabetes and aberrant adipose expansion [160]. Additionally, FGF1 is critical
for energy homeostasis, and FGF10 plays an essential role in the development of white adipose
pads [reviewed in [161]].

CG33226 is nested within Egfr. CG33226 encodes a predicted serine protease of which Gran-
zyme B (GzmB), an immune system enzyme, is the mammalian ortholog [107]. GzmB increases
inflammation in type 1 and type 2 diabetes [162] and impairs insulin secretion from islet cells
[163] as part of the mechanism by which it kills pancreatic β cells in the development of type 1
diabetes [162, 164].

RNAi against LysP, which encodes the immune system enzyme glycoside hydrolase, affects
mean food consumption in males and females. A mammalian ortholog of LysP is Lysozyme
(Lyz) [107]. In mammals, high LYZ protein levels negatively correlate with decreased Paneth
intestinal cells observed in the development of obesity [165, 166], and Lyz vascular transcript
levels are upregulated in athersclerotic humans and obese juvenile swine [167]. RNAi of lillipu-
tian (lilli) affects mean food consumption in females. The human ortholog of lilli is AF4/FMR2
family,member 1 (AFF1) [107], an adipogenic transcription factor that is also upregulated in
juvenile obese adipose tissue [168].

We functionally validated Spn, tws, and Ptp99A to affect Drosophila feeding. The mamma-
lian orthologs of these genes are protein phosphatases (S10 Table). The orthologs of Spn, pro-
tein phosphatase 1, regulatory subunit 9A (PPP1R9A) and protein phosphatase 1, regulatory
subunit 9B (PPP1R9B), are associated with piglet birth weight [169] and pig food intake and
human obesity [170]. The mammalian orthologs of tws, protein phosphatase 2, regulatory sub-
unit B, alpha and delta (PPP2R2A and PPP2R2D) [107] dephosphorylate FOXO1 to cause its
nuclear import during the oxidative stress accompanying pancreatic β cell death of diabetes
[171], associate with increased lipid levels upon high fat feeding [172], and are regulated by
microRNA-136 in the aberrant proliferation of vascular smooth muscle cells that accompanies
atherosclerosis [173]. The orthologs of Ptp99A are not known to function in mammalian feed-
ing or metabolically related phenotypes, but the novel elucidation of these phosphatases affect-
ing feeding in Drosophila supports further Drosophila-based work to understand the
evolutionarily conserved mechanisms by which they act in food intake to better understand
how they act in other metabolically related traits.

RNAi of slamdance (sda) affects the mean and variance of food intake in females. The mam-
malian sda ortholog, alanyl aminopeptidase (ANPEP), is a receptor metalloproteinase. ANPEP
has been associated with regulating networks involved in the development of type 2 diabetes
[174] and may underlie pancreatic β cell fate during metabolic stress [175]. RNAi of Limpet
(Lmpt) affects females food intake. The Lmptmammalian ortholog is four and a half LIM
domains 2 (FHL2) [107], which has been reported to activate Wnt signaling in the pathogenesis
of diabetic nephropathy [176].

Transient receptor potential (TRP) channels are ion channels mediating a variety of sensa-
tions. InDrosophila, TRPL underlies long-term desensitization to bitter food compounds [32]
and painless, theDrosophila TRPA channel, mediates larval post-feeding migration away from
food [177] and avoidance of pungent tastants [178]. Here we demonstrate that trp, theDrosoph-
ila TRPC channel [107], affects total food intake in females. In mammals, TRPC channels play
an important role in platelet function [179–181], affecting thrombosis and platelet aggregation
[181]. TRPC3 is upregulated in platelets of type 2 diabetics [182]. TRPC channels at least par-
tially underlie diabetic complications including cardiovascular comorbid pathophysiology via
vascular tissue signaling pathway perturbation [183–185] and diabetic nephropathy [186–188].
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Conclusions
We have utilized natural variation in the mean and within line variance of food consumption
in the DGRP [63, 64] to identify and functionally validate novel genes and a SNP affecting food
intake. Most of these genes have mammalian orthologs that are implicated in the development
of many metabolically related diseases, such as type 2 diabetes, while not generally affecting
food intake volume directly. These results position D.melanogaster as a unique model to eluci-
date the etiology of these complex phenotypes. Future work to address the tissue specificity of
where and how these genes act and interact will shed further light on the extraordinary sexual
dimorphism and the genetic bases of food intake and variation of micro-environmental plastic-
ity of food intake. RNAi suppression of 17 of the confirmed candidate genes affecting mean
food intake led to an increase in mean food consumption, suggesting that these genes normally
act to limit food intake and that many more peptides, genes, and signaling pathways are
involved in the attenuation of food intake than in its initiation or continuation [38–50]. The
genetic regulation of D.melanogaster food intake behavior is similar to that of humans, further
establishing this model as an integral tool for understanding why individuals eat different
amounts of food.

Materials and Methods

Drosophila stocks and culture
We used 182 sequenced, wild-derived, inbred DGRP lines (S1 Table) to perform GWA analyses.
We obtained RNAi transgenic fly lines (bnl101377, CG10477103490, CG1801220580, CG2121109845,
CG32107102854, CG33226102384, CG34356109790, CG34362107503, CG746642462, CG792021577,
Dop1R2105324, Dys108006, Egfr107130, Grp110076, lilli106142, Lmpt100716, LpR2107597, LRP1109605,
LysP110747,Mp107319,mRpL54105729, Octβ3R101189, pnt105390, Ptp99A103931, sda100215, Spn105888,
Tbh107070, tmod108389, trp1365, tws104167, yip7102226) and the corresponding progenitor lines
(60000 and 60010) from the ViennaDrosophila RNAi Center (VDRC) [189]. We crossed these
lines to a weak, ubiquitously expressed driver, and we crossed the driver to the progenitor RNAi
controls (v60000 and v60010) to serve as our experimental controls. To generate the driver, we
obtained theUbiquitin-GAL4 stock from the Bloomington Drosophila Stock Center. We
replaced the major chromosomes with isogenic w1118; Canton-S-B [190] chromosomes, except
the X chromosome and chromosome 2 with the driver construct. A new driver stock, Ubiquitin-
GAL4[156], was created by introducing the originalUbi-GAL4 transgene onto the Canton-S-B
third chromosome using Δ2–3mediated hopping. The X and second chromosome were then
replaced with Canton-S-B chromosomes. The driver stock was generated and provided by Dr.
Akihiko Yamamoto. All lines were reared in small mass cultures on cornmeal/molasses/agar
medium under standard culture conditions (25°C, 12:12 hour light/dark cycle).

Behavior assays
We used mated 3–7 day old flies in all assays. After an 18-hour period of food deprivation on
1.5% agar, we placed groups of 8 flies from the same sex and genotype in individual vials con-
taining 2 mL 1.5% agar medium and three 5 μL capillary tubes (Kimble Glass Inc.) containing
a 4% sucrose solution inserted through a foam plug. Our modified version of the CAFE assay
[24] includes the agar medium to prevent desiccation affecting food consumption. We placed
the CAFE vials in a transparent plastic container in which high humidity is maintained with
open containers of water to minimize evaporation from the capillary tubes. In addition, we
assessed evaporation by placing CAFE vials with capillary tubes containing 4% sucrose but
without flies in the same humid chamber. We measured total food consumption in each CAFE
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vial after 24 hours, between 10 A.M. and 12 P.M. We adjusted the total amount of food con-
sumed by the average evaporation that occurred in the control vials and the total number of
flies alive at the end of the assay. We performed six replicate assays per sex and DGRP line, and
10–12 replicates per sex and genotype for RNAi knock down and their respective controls and
SNP-based crosses.

Quantitative genetics of mean food consumption in the DGRP
We used a linear mixed model to partition variance in mean food consumption across DGRP
lines and between sexes with the following model: Y = μ + L + S + LxS + E, where Y is the phe-
notype, L is the random main effect of line, S is the fixed main effect of sex, and E is the error
term. We also fitted reduced models of form Y = μ + L + E for each sex separately. We esti-
mated the broad-sense heritability (H2) pooled across sexes asH2 = (σ2L + σ2SL)/ (σ

2
L + σ2SL +

σ2E), where σ
2
L, σ

2
SL, and σ

2
E are the among-line, sex by line and within-line variance compo-

nents, respectively. We estimated broad sense heritabilities for each sex asH2 = σ2L/(σ
2
L + σ2E).

We estimated the cross-sex genetic correlation as rGS = covMF/σLMσLF, where covMF is the
covariance of line means between males and females, and σLM and σLF are the among line stan-
dard deviations for males and females.

Associations of food intake with other quantitative traits in the DGRP
We computed Pearson’s product moment correlations of line means for food consumption
and other quantitative traits previously measured on the DGRP lines.

Quantitative genetics of within-line variation in food consumption in the
DGRP
We assessed whether there was heterogeneity of within-line environmental variance in food
consumption among the DGRP lines, using both Brown-Forsythe and Levene’s tests [65]. We
used the coefficient of environmental variation for each line (CVE = 100σE/mean), where σE is
the standard deviation of food consumption between replicate assays with each line andmean
is the line mean, as our metric of within line environmental variance, to partially account for
any dependence of the variance on mean food consumption.

GWA analyses for food consumption
We performed GWA analyses using the 1,920,276 SNPs and indels with minor allele
frequencies � 0.05 on the DGRP webserver [64] (dgrp2.gnets.ncsu.edu). We performed four
analyses each for the mean and for the CVE of food consumption: the average of females and
males, the difference between females and males (for assessing sexual dimorphism in the QTL
effects), and females and males separately. These GWA analyses account for effects ofWolba-
chia infection, cryptic relatedness due to major inversions, and residual polygenic relatedness
[64]. We performed gene ontology enrichment and network analyses based on the top
(P< 10−5) variants associated with the mean of food consumption using DAVID bioinformat-
ics [87, 88].

Functional validation
We functionally tested genes with top associations using RNAi knock down alleles and their
respective control lines. We assessed whether differences in mean food intake between RNAi
knock down alleles and the controls were significant using Dunnett’s tests (JMP 10, SAS), sepa-
rately for males and females. We also assessed significant variation in environmental variance
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between RNAi knock down alleles and the controls with pairwise Levene’s tests (JMP 10, SAS),
separately for males and females.

We performed one SNP-based test (3R_13637022_SNP near tinc and CG18012) using the
DGRP lines. We randomly selected ten minor-allele containing DGRP lines and ten major-
allele containing DGRP lines. Within each genotype class, we randomly selected five DGRP
lines to be the male parent and five to be the female parent, thus producing 10 F1 genotypes
that are homozygous for either the focal major or minor alleles and outbred elsewhere. We
assessed mean food consumption with 10–12 replicates per sex per F1 genotype, and used t-
tests to evaluate significant differences between the major and minor alleles, separately for
males and females.

Supporting Information
S1 Fig. Association between the number of segregating sites in the DGRP and CVE of food
intake. Red diamonds: females. Blue squares: males.
(PDF)

S1 Table. Food consumption in the DGRP. (A) Raw data. (B) Summary statistics.
(XLSX)

S2 Table. Phenotypic correlations (r) between food intake and other organismal pheno-
types in the DGRP. Cells highlighted in yellow depict significant (P< 0.05) correlations. Phe-
notypic values from the same sources have the same color codes.
(XLSX)

S3 Table. ANOVA of the effects ofWolbachia infection and common polymorphic inver-
sions on mean and CVE of food intake. df: degrees of freedom; SS: Type III sums of squares;
F: F statistic; AIC: Akaike information criterion. ���: P< 0.001; ��: P< 0.01; �: P< 0.05.
(DOCX)

S4 Table. Top (nominal P< 10−5) variants associated with mean food intake.
(XLSX)

S5 Table. Top (nominal P< 10−5) variants associated with CVE of food intake.
(XLSX)

S6 Table. Candidate genes affecting mean and CVE of food intake. Previous associations
with feeding related traits are given.
(XLSX)

S7 Table. Gene Ontology enrichment analyses for mean and CVE of food intake. Only nom-
inally enriched GO categories were observed.
(XLSX)

S8 Table. Functional Validation for 3R:13637022_SNP. (A) Summary statistics. (B) Raw
data. All units are μL/fly. M: male parent; F: female parent.
(XLSX)

S9 Table. RNAi functional validation. (A) P-values from tests of differences from controls.
(B) Raw data. (C) Summary statistics.
(XLSX)

S10 Table. Summary of genes validated by RNAi knock down.
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