
© 2019 Xue et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php 
and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you 

hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission 
for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

OncoTargets and Therapy 2019:12 549–559

OncoTargets and Therapy

This article was published in the following Dove Medical Press journal: 
OncoTargets and Therapy

Dovepress

submit your manuscript | www.dovepress.com

Dovepress 
549

R e v i e w

open access to scientific and medical research

Open Access Full Text Article

http://dx.doi.org/10.2147/OTT.S192234

epigenetic mechanism and target therapy 
of UHRF1 protein complex in malignancies

Busheng Xue,1 Jiansong 
Zhao,1 Penghui Feng,2 Jia 
Xing,3 Hongliang wu,1  
Yan Li1

1Department of Spine and Joint 
Surgery, Shengjing Hospital, China 
Medical University, Shenyang, People’s 
Republic of China; 2Department 
of Obstetrics and Gynecology-
Reproductive Medical Center, 
Shengjing Hospital, China Medical 
University, Shenyang, People’s Republic 
of China; 3Department of Histology 
and embryology, Basic Medicine 
College, China Medical University, 
Shenyang, People’s Republic of China

Abstract: Ubiquitin-like with plant homeodomain and really interesting new gene finger 

domains 1 (UHRF1) functions as an epigenetic regulator recruiting PCNA, DNMT1, histone 

deacetylase 1, G9a, SuV39H, herpes virus-associated ubiquitin-specific protease, and Tat-

interactive protein by multiple corresponding domains of DNA and H3 to maintain DNA 

methylation and histone modifications. Overexpression of UHRF1 has been found as a potential 

biomarker in various cancers resulting in either DNA hypermethylation or global DNA hypo-

methylation, which participates in the occurrence, progression, and invasion of cancer. The role 

of UHRF1 in the reciprocal interaction between DNA methylation and histone modifications, 

the dynamic structural transformation of UHRF1 protein within epigenetic code replication 

machinery in epigenetic regulations, as well as modifications during cell cycle and chemotherapy 

targeting UHRF1 are evaluated in this study.
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Introduction
Ubiquitin-like with plant homeodomain (PHD) and really interesting new gene (RING) 

finger domain 1 (UHRF1, also called ICBP90 or Np95) was identified as a transcrip-

tion factor which could regulate the expression of topoisomerase IIα by binding to an 

inverted CCAAT box located in its promoter.1 The nuclear protein UHRF1 consists of 

multiple domains such as ubiquitin-like domain (UBL), tandem tudor domain (TTD; 

TTDN and TTDC), PHD, SET and RING-associated domain (SRA) as well as RING 

domain, which play an important role in the epigenetic regulation of gene expression 

and tumorigenesis.

Epigenetic modification refers to inherited changes in gene expression without 

variations in DNA structure or sequence2–4 and includes DNA methylation, histone 

modification, genome imprinting, X-chromosome inactivation, and microRNA 

regulation,4,5 where DNA methylation and histone modification are most important 

and their aberrant changes are always involved in cancer and neurological diseases. 

UHRF1 serves as a key regulator that participates in both DNA methylation and 

histone modifications.

UHRF1 allows crosstalk between DNA methylation 
and histone code as an epigenetic coordinator
DNA methylation is a fundamental epigenetic process in the regulation of gene expres-

sion. The process occurs at the carbon-5 position of cytosines mainly within CpG sites 

mediated by DNA methyltransferases (DNMTs). In detail, DNMT3A and DNMT3B are 

mainly responsible for de novo methylation during gametogenesis and early embryonic 
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development, whereas DNMT1 preferentially methyl-

ates hemi-methylated CpG sites for maintenance of DNA 

methylation by a self-inhibitory mechanism during DNA 

replication and cell division.6 Aberrant DNA methylation 

can lead to abnormal embryogenesis,7 neurological diseases,8 

and cancers,9,10 including global DNA hypomethylation and 

specific CpG island hypermethylation in which the former 

can lead to chromosomal instability,11 activation of certain 

transcription factors,12 and loss of genetic imprints;13 the lat-

ter often results in the inhibition of tumor suppressor genes.

Eukaryotic DNMT1 is composed of an N-terminal 

nuclear localization sequence, a replication foci targeting 

sequence (RFTS) that localizes DNMT1 to the DNA rep-

lication fork, a zinc finger CXXC domain that specifically 

recognizes unmethylated CpG dinucleotides,14,15 a pair of 

bromo-adjacent homology (BAH) domains, and a C-terminal 

methyltransferase domain including the catalytic core and the 

target recognition domain (TRD). Although the occlusion of 

the CXXC-BAH1 linker at the catalytic site and restraint by 

BAH2-TRD loop preventing TRD from binding to unmeth-

ylated CpG sites facilitate DNMT1-mediated maintenance 

of DNA methylation,16,17 the auto-inhibitory role of RFTS 

domain and DNMT1-interacting proteins which affect its 

activity, such as UHRF1, have been revealed.18,19 UHRF1 

recognizes and binds to hemi-methylated DNA (hmDNA) 

through its SRA domain by the thumb (444–499 residues) 

and NKR finger (483–496 residues) sub-domains target-

ing minor and major grooves, respectively,20 and recruits 

DNMT1 by targeting the RFTS domain which leaves the 

catalytic pocket of DNMT1 in the S phase of the cell cycle 

to replication foci21,22 and relieves the auto-inhibitory activity 

of DNMT1 to maintain the cytosine in newly synthesized 

DNA methylation with high fidelity. In addition, the UHRF1 

C-terminal RING finger functions as an ubiquitin E3 ligase 

to establish histone H3 ubiquitination at Lys23 and Lys18 

recognized by the RFTS domain of DNMT123,24 to promote 

its localization onto replication foci, which also has a prereq-

uisite role in the maintenance of DNA methylation. Recently, 

the N-terminal UBL domain of UHRF1 was found to bind 

directly to DNMT1 enhancing DNMT1 enzymatic activity 

toward newly replicated chromatin by controlling targeted H3 

ubiquitylation through a hydrophobic patch.25,26 Furthermore, 

the UBL domain can bind the E2 Ube2D and form a stable 

E2/E3/chromatin complex that is equally required for the 

DNMT1-mediated maintenance of DNA methylation.26,27

Posttranslational modification of histone participates 

in DNA replication, DNA damage response, chromosome 

translocation, transcription activation and suppression, 

X chromosome inactivation, and heterochromatin replication.28 

To date, the most studied histone modifications include the 

methylation of arginine (R) and lysine (K), acetylation of 

lysine, phosphorylation of serine (S) and threonine (T), 

and lysine ubiquitination. The histone lysine methylation is 

divided into monomethylation, dimethylation, and trimethyl-

ation, which greatly increases the complexity of histone modi-

fication and gene expression. Lysine acetylation of histone 

tails leads to transcriptional activation by neutralization of a 

positive charge at a lysine side chain, triggering a detachment 

of the side chain from the negatively charged DNA strands.

Methylation of histone H3 plays an important role in 

transcription, among which H3K4 methylation often causes 

transcriptional activation while H3K9 methylation always 

coordinates gene silencing. Unmethylated or methylated 

lysine can be modified by some proteins to regulate gene 

expression. Generally, UHRF1 recognizes the dimethylated 

or trimethylated H3K9 (H3K9me2/3) mediated by G9a29 

or SuV39H through TTDN and PHD (TTD-PHD) as well 

as identifies unmodified arginine 2 (R2) and unmodified 

lysine 4 (K4) through the PHD domain.30–36 The association 

with histone marks are all required for DNA methylation.34,37 

Moreover, UHRF1 reportedly adopts a closed conformation 

in the absence of chromatin in which a polybasic region 

(PBR) in the C-terminus binds to the TTD and inhibits its 

recognition of H3K9me3, whereas the SRA domain binds to 

the PHD domain and inhibits recognition of unmethylated 

histone H3 at residue R2 (H3R2); upon binding to hmDNA 

by the SRA domain, UHRF1 impairs the intramolecular 

interactions and transfers to an open state,30,34,38 which 

allows TTD-PHD to recognize H3K9me3 and facilitates 

SRA-PBR to either recognize hmDNA or recruit DNMT1 

for an accurate methylation heredity36 (Figure 1). In addition, 

phosphatidylinositol 5-phosphate (PI5P) in the nucleus can 

interact with the PBR through phosphorylation of S651 to 

participate in the regulation of heterochromatin localization 

of UHRF1 and crosstalk between H3K9 methylation and 

DNA methylation.39,40 Phosphorylation of S298 in the linker 

residue abrogates the UHRF1-H3 interaction by altering 

the relative position of the two reader modules, indicating 

the linker region may act as a functional switch of UHRF1 

involved in multiple regulatory pathways such as mainte-

nance of DNA methylation, transcriptional repression, and 

cell cycle progression.41 In contrast, Zhao et al42 found only 

a 10% reduction of DNA methylation in various tissues 

after abolishment of the association between H3K9me2/3 

and UHRF1 in mammals, indicating that H3K9 methylation 

binding of UHRF1 is not the only process to ensure 
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Figure 1 Schematic representation of UHRF1 with structure–function domains in the maintenance of DNA methylation.
Notes: (A) Domain architecture of UHRF1 with their corresponding epigenetic function including DNA methylation and histone modification. (B) Conformational changes 
of UHRF1 from close to open state mediated by hmDNA.
Abbreviations: DNMT, DNA methyltransferases; H3K9me2/3, dimethylated or trimethylated H3K9; H3R2, unmethylated histone H3 at residue R2; hmDNA, hemi-
methylated DNA; HAUSP, herpes virus-associated ubiquitin-specific protease; PBR, polybasic region; PHD, plant homeodomain; PI5P, phosphatidylinositol 5-phosphate; 
RiNG, really interesting new gene; SRA, SeT and RiNG-associated domain; TTD, tandem tudor domain; UBL, ubiquitin-like domain.

DNA methylation. A positive correlation exists between 

UHRF1 and EZH2 in cancer cells,43,44 and EZH2 participates 

in H3K27 methylation which mediates gene silencing.45,46 

Ferry et al47 found nonhistone mammalian DNA ligase 1 

(LIG1), which contains a conserved H3K9-like mimic can 

also be methylated by G9a/GLP at K126 and subsequently 

recruit UHRF1 to replication foci, which is similar to binding 

H3K9me2/3 to maintain DNA methylation.

UHRF1 can also lead to global DNA hypomethylation 

in cancers.48–50 Long interspersed nucleotide element-1 

(LINE1) is considered a surrogate marker of global DNA 

methylation.51 Nakamura et al48 found that overexpression of 

UHRF1 could drive global DNA hypomethylation in esopha-

geal squamous cell carcinoma (ESCC). Paradoxically, Ye 

et al52 reported that knockdown of UHRF1 results in LINE1 

hypomethylation in ESCC. Because the states of promoter 

methylation in tumor suppressor genes were not mentioned 

in these two studies, Hoshimoto et al53 hypothesized that 

ESCC was associated with global DNA hypomethylation 

and specific tumor-related gene hypermethylation.

Although DNMT1 has a 30- to 40-fold preference for 

hmDNA sites,54 it can still bind to unmethylated DNA, and 

exert de novo methylation activity.55,56 UHRF1 may lead 

to aberrant DNA methylation state in cancer cells for two 

reasons: 1) UHRF1 recruits DNMT1 to hm-CpG islands 

or CpG islands, which have not been previously methyl-

ated because DNMT1 also has the property of de novo 

methylation19,56 which undergoes hypermethylation, over 

time, finally leading to the malignancy of cancer; 2) when 

the UHRF1 protein levels become high, ubiquitination may 

occur, and DNMT1 is ubiquitylated to a proper level to 

maintain the malignancy state of cancer, including hyper-

methylation of specific tumor suppressor gene promoters as 

well as global DNA hypomethylation.

Self-regulation of UHRF1 
macromolecular complex 
during the cell cycle
UHRF1, DNMT1, HAUSP, HDAC1, Tip60, Hsp90, 

Suv39H1, PCNA, and pRb form a macromolecular complex 
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termed epigenetic code replication machinery (ECREM)57 to 

undergo temporal and spatial control during the cell cycle. 

During DNA replication, DNMT1 is partially recruited into 

the replication forks by PCNA.58–60 Tip60 interacts with SRA 

and RING domain of UHRF161 through its enzymatic MYST 

domain, and overexpression of Tip60 leads to the downregu-

lation of UHRF1.62 In addition, UHRF1 can repress the activ-

ity and expression of Tip60.63 Furthermore, overexpression 

of Tip60 leads to acetylation and subsequent ubiquitylation-

dependent proteasomal degradation of DNMT1 mediated 

by UHRF1.64 Although increased DNMT1 abundance in 

multiple cancers is largely due to the reduced degradation 

at the protein level rather than higher mRNA level,65,66 the 

consequence appears diverse based on cell cycle status or 

cell types,63,67–69 and DNMT1 stability might be regulated by 

other upstream factors such as pRb and ATM.70 However, 

the mechanism remains to be elucidated.

Conversely, HAUSP interacts with PBR of UHRF1 

through UBL1 and UBL2 domains to stabilize UHRF1 via 

deubiquitination and protects it from autoubiquitination as 

well as promote the open state of UHRF1 to facilitate the 

binding of UHRF1 to H3K9me3.34,71–73 When S652 (located 

in PBR) is phosphorylated by M phase-specific kinase  

CDK1-cyclin B71 during mitosis, UHRF1 is separated from 

HAUSP and the PBR domain is exposed to Tip60 for acety-

lation and ultimate degradation.39 In addition, HAUSP can 

deubiquitinate Tip60.74

HAUSP binds to the KG linker of DNMT1 at its acidic 

pocket near the C-terminal to deubiquitinate DNMT1 from 

proteasomal degradation.64 In addition, HAUSP functions 

as a deubiquitylating enzyme toward ubiquitylated histone 

H3, and is likely involved in DNMT1 recruitment to DNA 

replication sites and the regulation of maintenance of DNA 

methylation without affecting the kinetics and efficiency 

of DNA replication.75 Simultaneously, Cheng et al76 found 

that acetylation of the KG linker lysine residues impairs 

DNMT1–HAUSP interaction and promotes the degrada-

tion of DNMT1. Treatment with HDAC inhibitor not only 

increases the level of acetylated DNMT1 but also decreases 

the total DNMT1 protein level. HDACs can be recruited 

by both DNMT1 and UHRF1 to repress gene expression, 

and HDAC1 can deacetylate DNMT1 to protect it from 

degradation.64,77 In addition, the stability of DNMT1 is 

maintained in part through the recruitment of Hsp90 medi-

ated by the ubiquitin-proteasome pathway.78 Suv39H1 and 

G9a are both H3K9 histone methyltransferases found in the 

same macromolecular complex with UHRF143,67,79 to prevent 

transcriptional activation;80,81 the latter can maintain the DNA 

methylation state required for de novo DNA methylation 

and the establishment in mouse embryonic stem cells.82–84 

UHRF1 is necessary for binding Suv39H1 and H3K9me3 

modification,43 however, the underlying interaction mecha-

nisms remain to be elucidated.

The macromolecular complex may function as follows 

(Figure 2): UHRF1 and DNMT1 adopt a closed conforma-

tion and an auto-inhibitory state after protein synthesis, 

respectively. During DNA replication, the ECREM binds 

to replication foci. First, the closed conformation of 

UHRF1 shifts to an open state due to the following reasons: 

1) HAUSP binds to PBR as well as the hmDNA; 2) SRA 

domain binds to hmDNA; and 3) phosphorylation of S651 

by PI5P leads to TTD relief from PBR and forms a histone 

binding cassette with the PHD domain and linker. Second, 

UHRF1 in the open state binds to H3K9me2/3 or H3K9me3e 

mimic LIG1 by TTD or TTD-PHD as well as binds to H3R2 

via the PHD domain. Third, the RING domain of UHRF1 

ubiquitinates H3K18 and/or H3K23, which recruits the 

RFTS domain of DNMT1. The RFTS domain of DNMT1 

also binds to the SRA domain or UBL of UHRF1 to relieve 

the self-inhibitory activity. HDAC1 and HAUSP can prevent 

UHRF1 and DNMT1 from acetylation and ubiquitination 

for degradation mediated by Tip60 during S phase when the 

abundance of Tip60 is relatively low. HAUSP can also deu-

biquitinate H3 which recruits the RFTS domain of DNMT1 

to maintain a faithful inheritance of DNA methylation. At 

the beginning of G2 phase, when DNA replication is com-

pleted and methylation inheritance is formed, UHRF1 and 

DNMT1 undergo degradation. In detail, HAUSP dislocates 

from the UHRF1/DNMT1 complex due to phosphoryla-

tion of the S652 position by CDK1-cyclin B followed by 

ubiquitination of UHRF1. Degradation of UHRF1 leads to 

upregulation of Tip60 and acetylation of DNMT1, which is 

subsequently ubiquitylated by UHRF1 and other ubiquitin-

related enzymes. Finally, the abundance of UHRF1 and 

DNMT1 decreases to ensure the normal cell cycle.

UHRF1 regulation and target therapy
Due to overexpression in various types of cancers such as 

gastric cancer,85 colorectal cancer,86 hepatocellular carcinoma,87 

ESCC,48,88 prostate cancer,89,90 bladder cancer,91 breast cancer,92 

lung cancer,93,94 melanoma,95 medulloblastoma,96 lympho-

blastic leukemia,97 and osteosarcoma.98 UHRF1 appears a 

potential biomarker and is promising in the target therapy of 

cancers. High expression of UHRF1 inhibits a variety of tumor 

suppressor genes (Table 1) such as p16INK4,99–101 BRCA1,102 
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Figure 2 working model for dynamic regulation of UHRF1 macromolecular complex during cell cycle.
Notes: (A) The spatialization of UHRF1 macromolecular complex including UHRF1 at open state and other members of eCReM recruited into replication forks during 
S phase. (B) The separation of HAUSP from the complex owing to phosphorylation mediated by CDK1-cyclin B at the beginning of G2 phase. (C) Acetylation and 
ubiquitination of UHRF1 and DNMT1 by Tip60 due to release of HAUSP and HDAC1 from eCReM during G2-M phase. (D) The ubiquitination-mediated protein degradation 
of UHRF1 and DNMT1 in order to enter the normal cell cycle.
Abbreviations: DNMT, DNA methyltransferases; ECREM, epigenetic code replication machinery; HAUSP, herpes virus-associated ubiquitin-specific protease; HDAC1, 
histone deacetylase 1; PBR, polybasic region; PHD, plant homeodomain; RiNG, really interesting new gene; SRA, SeT and RiNG-associated domain; Tip60, Tat-interactive 
protein; TTD, tandem tudor domain; UBL, ubiquitin-like domain; UHRF1, ubiquitin-like with PHD and RING finger domains 1; PCNA, proliferating cell nuclear antigen; 
CDK1, cyclin-dependent kinase 1.

KISS1,103 RASSF1,94 MEG3,104 CDH4,85,105 Keap1,106 KLF17,107 

RIP3,108 SHP1,109 RUNX3, FOXO4, CDX2,85 PPARG,110 

Slit3,105 CDH1,43,98,111 GPX3,43 IGFBP3,43,112 RGS2,113 

UBE2L6,114 and miR-145.115 Knowledge regarding the 

regulation of UHRF1 is limited; overexpression of UHRF1 

may be involved in aberrantly high expression of transcrip-

tion factors. Moreover, cell cycle regulators such as E2F8, 

E2F1,116,117 FOXM1,118 leptin, SP1,119,120 Hsp90,121 P53/P21,122 

and WDR79123 can also protect UHRF1 from ubiquitination. 

Conversely, microRNAs such as miR-124,124 microRNA-9,86 

miR-101,125 miR-378, miR-193a-3p,126 miR-1455 p/miR-145-3 

p,127 miR-146a/b,105 and let-7a-3128 play an important role in 

the downregulation of UHRF1 (Table 2). Most of the related 

microRNAs have been found suppressed in multiple cancers 

and can regulate the expression of UHRF1 by base pairing 

with 3′ UTR at the mRNA level to inhibit protein synthesis. 

The expression and activity of UHRF1 are also regulated 

by posttranslational modification. Chen et al129 found that 

casein kinase 1 delta could catalyze the phosphorylation of 

UHRF1 at S108 to undergo ubiquitination and degradation 

mediated by SCFβ-TrCP in response to DNA damage; kinase 

Pim1 destabilizes UHRF1 by phosphorylation at S311;130 

methyltransferase PRMT6 can induce H3R2me2a and inhibit 

the association of the PHD of UHRF1 with H3R2 leading to 

DNA hypomethylation,131 which provides new insights for 

cancer therapy targeting UHRF1. Graf et al132 found the LRR 

domain of Pramel7 in embryos interacts with the SRA and 

RING domain of UHRF1 which subsequently undergoes deg-

radation and hypomethylation. Wang et al120 found that globu-

lar adiponectin inhibited leptin-stimulated cell proliferation 

in esophageal adenocarcinoma via the inhibition of UHRF1 

mediated by adiponectin receptor 2.
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Table 1 inhibition of TSGs by overexpression of UHRF1 in various types of cancers

TSGs Functions Cancers

P16iNK4 Growth, metastasis, and apoptosis Colorectal cancer [22219067]
Cervical cancer [23688286]
Glioblastoma [25550546]

BRCA1 DNA damage repair, transcription regulation, chromatin remodeling, cell cycle  
checkpoint control, and apoptosis

Breast cancer [19943104]

RUNX3 Hypoxia and immune cell maintenance Hepatocellular carcinoma [26147747]
KiSS1 Tumor differentiation, the depth of invasion, lymph node metastasis, and  

distant metastasis
Bladder cancer [25272010]

RASSF1 Proliferation, invasion, and apoptosis Non-small-cell lung cancer [21351083]
MeG3 Proliferation Hepatocellular carcinoma [25641194]
CDH4 Proliferation, invasion, and metastasis Gastric cancer [26147747] [23982143]
Keap1 Oxidative stress and reductive stress Pancreatic cancer [26497117]
KLF17 invasion and epithelial–mesenchymal transition Breast cancer [28744404]
SHP1 Tumor differentiation or muscular infiltration depth endometrial carcinoma [26597461]
CDX2 Lymph node metastasis and tumor, nodes, metastasis stage Gastric cancer [26147747]
PPARG Proliferation and migration and wnt/β-catenin signaling pathway Gastric cancer [26147747]

Colorectal cancer [22286757]
FOXO4 Proliferation and metastasis Gastric cancer [26147747]
RiP3 Cell survival, cell apoptosis, and cell necrosis Colorectal cancer [28981102]
Slit3 invasion and metastasis Gastric cancer [23982143]
CDH1 invasion and epithelial-to-mesenchymal transition Prostate cancer [22330138]  [29466696]

Osteosarcoma [26548607]
iGFBP3 Colony formation, migration, and invasion Prostate cancer [22330138]

Hepatoblastoma [29507645]
GPX3 ROS, migration, invasion, metastasis Prostate cancer [22330138]
UBe2L6 Apoptosis Cervical cancer [29157076]
RGS2 Proliferation Bladder cancer [25323766]
miR-145 Proliferation, migration and invasion Non-small-cell lung cancer [25961369]

Abbreviations: UHRF1, ubiquitin-like with PHD and RING finger domains 1; TSGs, tumor suppressor genes; ROS, reactive oxygen species. 

Table 2 Regulation of UHRF1 by microRNA in various types of cancers

mRNAs Functions Cancers

miR-124 Proliferation, motility, angiogenesis Bladder cancer [26310391]
miR-9 Proliferation, apoptosis Colorectal cancer [25940709]
miR-101 Migration, invasion Renal cell cancer [27487138]
miR-378 Proliferation, apoptosis Medulloblastoma [28901497]
miR-193a-3p Metastasis Non-small-cell lung cancer [25833338]
miR-145-5 p/miR-145-3 p Proliferation, apoptosis, migration, invasion Bladder cancer [27628846]
miR-146a/b Metastasis Gastric cancer [23982143]

Renal cell carcinoma [26859141]

Abbreviation: UHRF1, ubiquitin-like with PHD and RING finger domains 1.

Anticancer drugs related to UHRF1 are as fol-

lows: uracil derivative NSC232003133 functions as the 

only direct inhibitor by targeting fit within the SRA of 

UHRF1. Shikonin134 induces downregulation of both 

UHRF1 and DNMT1 in MDF-7 and hela cell lines. In 

addition, hinokitiol,68 dihydroartemisinin,89 epigallocat-

echin-3-gallate,135 emodin,136 mTOR inhibitor torin-2,137 

luteolin,69 ERK1/2 pathway inhibitor PD98059, LY294002, 

AG490,138 Hsp90 inhibitor 17-AAG or 17-dimethylamino-

ethylamino-17-demethoxygeldanamycin,121 anisomycin,139 

and curcumin95,140 have been reported to be used in various 

types of cancers.

Other functions of UHRF1 apart from epigenetic modi-

fication include its participation in the oxidative stress and 

DNA damage response141,142 to inhibit caspase-dependent 

apoptosis to promote the proliferation, invasion, and 

metastasis,143 promoting the development of embryogenesis 

and preimplantation of embryos,73,144 and regulating the 
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 function and development of T lymphocytes145,146 as well as 

the plasticity of smooth muscle cells.147

Prospects
Great progress has been made in the functional and modula-

tion mechanisms of the UHRF1 protein complex, and it will 

likely become a universal biomarker for cancer and specific 

targets for cancer therapy. Emerging evidence indicates that 

UHRF1 modules do not act independently of each other 

but establish complex modes of interaction with patterns 

of chromatin modifications. Due to the variant abundance 

of ECREM and the distinct level of components in diverse 

cell lines, the UHRF1 protein complex possibly undergoes 

temporal and spatial control during the cell cycle, although 

the mechanisms remain to be elucidated. Furthermore, the 

phosphorylation sites of amino acids among the five domains 

are involved in the regulation of UHRF1 activity, protein 

stability, DNA methylation, and histone posttranscriptional 

modification. As mentioned above, the mechanisms regard-

ing degradation of UHRF1 by acetylation and ubiquitina-

tion and specific drugs targeting UHRF1 need to be further 

clarified. Because many drugs can downregulate UHRF1 as 

well as DNMT1, and lower expression of DNMT1 is more 

sensitive to 5-aza-CdR treatment,148 chemotherapy in cancer 

cells by using a DNMT1 inhibitor accompanied by UHRF1 

inhibitor for the treatment of cancer is yet to be investigated. 

In summary, DNA methylation within CpG varies in different 

organs and times149 when cells are supposed to differentiate 

by epigenetic regulation, without DNA mutations or chro-

mosomal translocation, indicating the important dynamics 

of UHRF1 in epigenetics and the various roles it plays over 

the life span.
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