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Abstract 

Fibroblast growth factor (FGF) 15/19 and FGF21 are two atypical members of FGF19 subfamily that function as hor-
mones. Exogenous FGF15/19 and FGF21 have pharmacological effects, and endogenous FGF15/19 and FGF21 play 
vital roles in the maintenance of energy homeostasis. Recent reports have expanded the effects of FGF15/19 and 
FGF21 on carbohydrate and lipid metabolism. However, the regulations of FGF15/19 and FGF21 on metabolism are 
different. FGF15/19 is mainly secreted from the small intestine in response to feeding, and FGF21 is secreted from the 
liver in response to extended fasting and from the liver and adipose tissue in response to feeding. In this work, we 
reviewed the regulatory effects of FGF15/19 and FGF21 on metabolism in the fast and fed states. This information may 
provide some insight into the metabolic regulation of FGF15/19 and FGF21 in different physiological condition.
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Background
Fibroblast growth factors (FGFs) are a group of structur-
ally related polypeptides, involved in various biological 
processes such as neuronal functions, development, dif-
ferentiation, and metabolism [1–3]. There have been 22 
FGFs, FGF1–FGF23, identified in mouse and/or human, 
among which human FGF19 is the orthologous gene of 
mouse FGF15. The FGFs can be divided into seven sub-
families according to their gene locus, phylogenetic anal-
yses and action modes [4].

These mammalian subfamilies are also classified into 
three groups based on their action mechanisms, includ-
ing the intracellular FGFs, the hormone-like FGFs and 
the canonical FGFs [5, 6] (Table  1). The intracellular 
subfamily, function as nonsecreted signaling molecules 
and mainly plays a role in neuronal functions [7, 8]. The 
hormone-like subfamily, functions over long distances in 
an endocrine manner and mainly plays a role in metabo-
lism [6]. Canonical FGFs, function as autocrine and/or 

paracrine in multiple developmental processes [2, 9, 10]. 
Most FGFs have a high affinity for heparin sulfate in the 
extracellular matrix except the endocrine FGFs, which 
include FGF15/19, FGF21, and FGF23, have little or no 
affinity for heparin sulfate [11].

FGF15/19 is mostly secreted from the small intes-
tine in response to feeding. The expression of FGF21 is 
induced in multiple organs in response to diverse nutri-
tion stressors, such as fasting and amino acid deprivation 
[12]. FGF15/19 is secreted from the ileum in response 
to feeding, it acts as endocrine hormones and takes part 
in the regulation of glucose and lipid metabolism [13]. 
After entering the portal venous circulation, FGF15/19 
represses bile acid synthesis and gluconeogenesis, pro-
motes glycogen synthesis [14], and stimulates gallblad-
der filling [15]. Unlike other members in the FGF family, 
FGF21 is a newly discovered factor for metabolism [5], 
it lacks heparin-binding domain, and has no effect on 
promoting mitosis and proliferative activity [16, 17]. 
In response to fasting, FGF21 expression is induced in 
the liver [18, 19]. Secreted FGF21 acts as an endocrine 
hormone to induce ketogenesis and gluconeogenesis. 
In response to feeding, FGF21 expression is induced in 
WAT and liver [20–23]. In WAT, FGF21 acts through 
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an autocrine mechanism to stimulate PPARγ activity 
and glucose uptake, and via an endocrine mechanism 
to repress lipolysis in liver [14, 18, 24]. Therefore, we 
reviewed the regulatory effects of FGF15/19 and FGF21 
on nutrient metabolism in the fast and fed states in the 
present work.

Receptors of FGF15/19 and FGF21
FGFs exert their function by binding to their tyrosine 
kinase receptors, FGF receptors (FGFRs). FGF receptors 
consist of three extracellular immunoglogulin (Ig)-like 
domains and a single transmembrane domain [25]. Four 
FGF receptors, FGFR-1 through FGFR-4, have been iden-
tified so far [26]. There are many types of FGFs, which 
require the diversity of FGFR. However, by alternated 
splicing, the same FGFR genes could generate a variety 
of different isoforms [27]. The most variant parts are the 
extracellular Ig domains. FGFR may lack one Ig domain 
or use different exon for the same Ig-like domains. There 
are three types of third Ig domains (IIIa, IIIb, and IIIc). 
The binding of FGF to its receptor requires proteogly-
cans, namely heparin or heparin sulfate [28], which pro-
tects FGF from degradation and creates a local reservoir 
of FGF.

In addition to FGFRs, the FGF19 subfamily members 
need Klotho (KL) or βKlotho (KLB) protein as a co-
receptor to activate their signaling pathway [3] (Fig.  1). 
KL is a single-pass trans-membrane protein, which has 
two homologous domains in the extracellular domain 
and a short intracellular tail [29]. KLB is expressed in 
liver, adipose tissue, pancreas and muscle, whereas KL is 
expressed in kidney and intestine [30]. KL was first iden-
tified in mice as an age suppressor gene. A defect in KL 
resulted in multiple ageing-like phenotypes, and KL over-
expression extends life span in mice [31]. The study with 
global KLB-knockout mice showed that KLB is essential 
for most of the physiological functions of FGF15/19 and 
FGF21 [30].

FGF19 has low affinity for heparin. KLB is essential for 
FGF15/19 interaction with FGFRs 1c, 2c, 3c and 4c [30, 
32]. KLB appears to stabilize the interaction of this ligand 

with its receptor, perhaps acting as a surrogate for hepa-
rin [33]. FGF15/19 is also able to interact directly with 
FGFR4 in the absence of KLB in a heparin-dependent 
manner [32, 34]. Therefore, FGF19 can activate FGFR4 in 
a KLB-dependent or heparin-dependent manner [33]. A 
recent study noted that FGF15/19 binds both FGFR1 and 
FGFR4 in the presence of KLB with comparable affinity, 
but not to FGFR1 alone although there is 10  % binding 
to FGFR4 alone. Like FGF15/19, FGF21 binds to KLB in 
complex with FGFR1c, 2c, or 3c. FGF21 has much higher 
affinity to FGFR1 than FGFR4 in the presence of KLB 
[29].

It has been believed that FGF21 forms complexes with 
FGFR and KLB to activate downstream signaling path-
ways [35–37]. However, in  vitro experiments show that 
KLB is indispensable for FGF21 [35, 36]. What causes 
these controversial results is still unclear. Possible expla-
nations proposed by researches were the specific charac-
teristics of cultured cells and an artificial abundance of 
KLB or FGF21 by adding them into the medium [38].

Typically, FGF binding to FGFR requires heparin sul-
fate cofactor that limits the diffusion of FGFs from their 
site of release, so FGF acts as a paracrine or autocrine 
factor [39]. However, FGF19 subfamily members have 
low affinity to heparin sulfate, which allow them to enter 
the circulation and function as hormones [16]. They have 
several effects that are similar to those of insulin, includ-
ing stimulation of glycogen synthesis and suppression of 
gluconeogenesis [13].

Role of FGF15/19 and FGF21 in metabolism
Regulation of FGF15/19 on metabolism
FGF15/19 is expressed in small intestine under the reg-
ulation of bile acid (BA) nuclear receptor farnesoid X 
receptor (FXR) [40, 41], and is a negative feedback regu-
lator of BA synthesis and gallbladder filling (Fig. 2).

In response to fasting, BAs are stored in the gallblad-
der until they are needed for digestion normally [15]. 
In fed state, BAs are released from the gallbladder into 
the intestine, bind to and activate FXR, thereby induce 
expression of FGF19 [42]. In humans, serum FGF19 lev-
els exhibited a rhythm with peaks occurring 90–120 min 
after the postprandial rise in serum BAs, and the FGF19 
peaks in turn preceded the declining phase of BA synthe-
sis [43].

In small intestine, BA induces FGF15/19 expression 
by activating FXR. FXR induces the expression of small 
heterodimer partner (SHP) in liver [44, 45]. However, 
unlike most nuclear receptors, SHP lacks a DNA-binding 
domain and binds indirectly to the CYP7A1 promoter 
[44–46]. Knockout studies in FXR-KO and SHP-KO mice 
has been demonstrated the significance of the FXR–SHP 

Table 1  FGFs super family

Fibroblast growth factors (FGFs) are a group of proteins. Currently, the FGF 
family consists of 22 members that can be classified into three groups and can 
also be divided into 7 subfamilies

FGFs

Intracellular subfamily FGF11, FGF12, FGF13, FGF14

Endocrine subfamily FGF15/19, FGF21, FGF23

Canonical subfamily FGF1/2/5, FGF3/4/6, FGF7/10/22, FGF8/17/18, 
FGF9/16/20
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pathway in bile acid homeostasis, both of which increase 
CYP7A1 expression [47–49], the rate-limiting enzyme 
in the classical BA biosynthetic pathway [14]. FGF15/19 
represses CYP7A1 by binding to the FGFR4/KLB recep-
tor complex to activate downstream signaling cascade 
[43, 50]. A more recent study showed that an uncharac-
terized gene, Diet1, transcriptionally and post-transcrip-
tionally influences FGF15/19 level as well as CYP7A1 
level, and it co-localize with FGF19 in cultured intes-
tinal cells [51]. This suggests that Diet1 plays a role in 
FGF15/19 intestine-liver axis involved in the BA synthe-
sis. FGF15/19, a hormone made by the distal small intes-
tine in  response to BAs, also promotes relaxation and 
refilling of the gallbladder after a meal. Cholecystokinin 
(CCK) is a hormone secreted by duodenum causing gall-
bladder contraction to release bile, which facilitates lipid 
digestion. Bile acids travel to ileum, where they induce 
FGF15 synthesis. FGF15 in turn stimulates gallbladder 
filling by relaxing smooth muscle in gallbladder [15].

After a meal, besides regulation of BA synthesis and 
gallbladder filling, FGF15/19 has an effect on glycogen 
synthesis. FGF15/19 acts on FGFR/KLB receptor com-
plexes to represses cholesterol 7a-hydroxylase (CYP7A1) 
through small heteromer partner [41, 52], and then 
increase hepatic glycogen synthase (GS) activity and gly-
cogen synthesis in an insulin-independent manner by 
inducing the phosphorylation and inactivation of GSK3s 
[53]. Serum FGF19 levels peak approximately 3 h after a 
meal [43] and increase glycogen synthesis by activation 
of the Ras/ERK pathway; in contrast, serum insulin levels 
peak within 1 h after a meal and stimulate glycogen syn-
thesis by the phosphoinositide 3-kinase (Akt) pathway 
[42].

In addition to glycogen synthesis, FGF15/19 also has an 
effect on gluconeogenesis. To date, gluconeogenesis inhi-
bition is also differently mediated by FGF19 and insulin 
by dephosphorylation and inactivation of cAMP response 
element-binding protein (CREB) and Akt-dependent 

Fig. 1  The mechanism of FGF15/19 and FGF21 receptor activation. a FGFR and KLB that are constitutively associated on the plasma membrane 
comprise the FGF15/19 and FGF21 receptor, but the receptor is silent without FGF15/19 and FGF21. b Once FGF15/19 and FGF21 come into the 
vicinity of the receptor, it associates with its receptor. FGF15/19 and FGF21 through its C-terminus bind to KLB, and via its N-terminal part to contact 
FGFR. Binding of FGF15/19 and FGF21 to FGFR and KLB triggers the receptor phosphorylation, followed by downstream signal transduction and 
cellular functional responses
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phosphorylation and FoxO1 degradation, respectively 
[54]. Unlike insulin, FGF15/19 represses gluconeogen-
esis gene expressions by promoting protein kinase B(Akt) 
dependent FOXO1 phosphorylation and dephospho-
rylation, FGF15/19 cannot activate the PI3K/Akt path-
way [42]. The mechanism by which FGF15/19 blocks the 
expression of gluconeogenesis genes involves dephospho-
rylation and inactivation of the transcription factor CREB 
[13]. This in turn down-regulates peroxisome prolifera-
tor-activated receptor-1α (PGC1α) transcription, which 
subsequently decreases its binding to glucose-6-phos-
phatase catalytic subunit gene and phosphoenolpyruvate 
carborykinase gene promoters [13]. Therefore, FGF15/19 
inhibits gluconeogenesis via regulating the expression of 
genes involved in gluconeogenesis.

In fasted status, FGF19 increased the phosphorylation 
of ERK1 and ERK2 in liver. FGF19 induced phospho-
rylation of both glycogen synthase kinase (GSK) 3α and 
GSK3β in animals fasted overnight, which correlated 
with decreased phosphorylation of Ser641 and Ser645 on 
glycogen synthase and increased glycogen synthase activ-
ity [53]. However, the effects of FGF15/19 and insulin 
on metabolism in fasted status are noticeable. Although 

both of them can stimulate glycogen and repress gluco-
neogenesis, there still are important differences as insulin 
acts through the insulin receptor-PI3K-Akt pathway, and 
FGF15/19 mediates its effects through the FGFR/KLB-
ERK pathway. In addition, there are significant temporal 
differences. In humans, insulin is released minutes after a 
meal, and in rodent experiments, serum insulin concen-
trations and its downstream Akt phosphorylation in liver 
peak approximately 15 min after a high-carbohydrate or 
high-fat diet. In contrast, FGF15 mRNA levels in ileum 
and downstream hepatic ERK1/2 phosphorylation peak 
about 1 h after feeding [13]. Likewise, FGF19 serum lev-
els peak near 2 h after a meal [43], and accordingly, circu-
lating FGF19 levels in humans negatively correlate with 
fasting glucose levels and metabolic syndrome [55–57]. 
Thus, FGF15/19 acts after insulin in the transition from 
the fed to the fasted state.

Regulation of FGF21 on metabolism
FGF21 is an important regulator of metabolism. A larger 
number of recent reports have expanded that FGF21 
expression is induced in various tissues in response to 
fasting and feeding. The physiological function of FGF21 
in the maintenance of nutritional homeostasis has been 
suggested (Fig. 3).

Emerging evidences have shown that fasting increases 
hepatic FGF21 mRNA expression and plasma FGF21 
level in mice. Fasting mediated induction of FGF21 
requires the peroxisome proliferator-activated receptor 
a (PPARα) [18, 58, 59]. PPARα can bind directly to the 
FGF21 gene promoter to induce its transcription [18]. 
It has been shown that fasting-induced FGF21 in liver 
increases gluconeogenesis, but does not increase gly-
cogenolysis [60]. Gluconeogenesis is controlled by sev-
eral key enzymes including fructose-1,6-bisphosphatase, 
glucose-6-phosphatase and phosphoenopyruvate car-
boxykinase. An acute FGF21 treatment leads to the gene 
expressions of hepatic glucose-6-phosphatase and phos-
phoenopyruvate carborykinase [61]. PGC-lα as a tran-
scriptional coactivator regulating gluconeogenic gene is 
increased after FGF21 treatment [62]. PGC-1α knock-
out mice fail to induce glucose-6-phosphatase catalytic 
subunit and phosphoenopyruvate carboxykinase mRNA 
expression after FGF21 injection [60]. Taking together, 
PGC-1α may play an important role in FGF21 promot-
ing hepatic gluconeogenesis. In contract to those find-
ings, a study using mice with liver-specific deletion of 
PGC-1α reveals that liver PGC-1α is unnecessary in the 
effects of FGF21 on the gluconeogenesis [61]. The differ-
ence results from those two studies can be explained by 
the mouse models. One is a whole-body PGC-1α knock-
out and the other is a liver-specific knockout. It suggests 
that PGC-1α expressed in tissues other than liver affects 

Fig. 2  Endocrine actions of FGF15/19. In fed state, BAs stored in the 
gallbladder release into the intestine. FGF15/19 expression is induced 
in the ileum. Secreted FGF15/19 acts on FGFR/KLB receptor com-
plexes via repress CYP7A1 decrease bile acid synthesis, to stimulate 
glycogen synthase (GS) activity and glycogen synthesis through 
inactivation of GSK3, and to repress gluconeogenesis by blocking the 
phosphorylation and activation of CREB
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FGF21 regulatory effects on the gluconeogenesis. For 
example, a study has shown that FGF21 induces PGC-1α 
via an indirect mechanism of central nervous system 
[63]. So the importance of PGC-1α induction for FGF21 
action remains in question [60, 61].

Ketone bodies are produced in the liver and delivered 
to the brain as the major source of energy during fasting 
period. FGF21 is a molecule regulating lipid metabolism 
in response to fasting [18, 19]. Increased FGF21 promotes 
adipose lipolysis in white adipose tissue in an endocrine 
manner, and increases the fatty acids transport to the 
liver where they are directly oxidized for energy produc-
tion or utilized as a source for ketone body formation [18]. 
FGF21 transgenic mice have higher serum concentrations 
of β-hydroxybutyrate even in the fed state [18]. PPARα is 
responsible for coordinating lipid oxidation and ketogene-
sis in the liver during starvation. Although FGF21 is one of 
PPARα target genes, FGF21 induces ketone body produc-
tion through a mechanism distinct from that previously 
described for PPARα. As we mentioned above, FGF21 
induces ketogenesis by stimulating lipolysis, thereby 
increasing the supply of free fatty acids to the liver [18, 
24]. Both carnitine palmitoyl transferase-1a (CPT-1a) and 
hydroxymethyl glutaryl-CoA synthase-2 (HMGCS2) are 
rate-limiting enzymes in ketogenesis [64]. Their genes are 
directly changed by PPARα [65]. However, FGF21 cannot 
regulate their gene expressions, but increases their protein 
levels through a posttranscriptional mechanism [18].

Mice fed a high-fat, low-carbohydrate ketogenic diet 
exhibit marked increases in FGF21 expression in the liver 
[20, 58, 66] and in white adipose tissue (WAT) by fasting–
refeeding regimens [67, 68]. These responses in the liver 
and WAT are likely mediated by carbohydrate response 

element-binding protein and PPARγ, respectively [20–23]. 
Notably, unlike the fasting response that elicits FGF21 
release from the liver into circulation, feeding induction 
of FGF21 in WAT do not cause a corresponding increase 
in circulating levels of FGF21, so FGF21 secreted by adi-
pose tissue promotes fatty acid synthesis in adipose tissue 
in a paracrine or autocrine manner [68], and liver gener-
ated FGF21 promotes adipose lipolysis in white adipose 
tissue in an endocrine manner [18]. So FGF21 regulates 
lipogenesis and lipolysis by distinct modes. Recent stud-
ies found that FGF21 acts as a negative feedback signal 
to terminate GH-stimulated lipolysis in adipocytes and 
hepatocytes. In the liver, GH stimulates transcription of 
the FGF21 through the signal transducer and activator of 
transcription 5 (STAT 5) signaling pathway [69, 70].

Conclusions and implications
FGF15/19 and FGF21 acting on the heels of metabolic 
regulation factors to regulate metabolism in response to 
nutritional status. FGF15/19 is secreted in response to 
feeding. FGF21 is induced in response to diverse nutri-
tion stressors, especially fasting. Therefore, they can be 
considered “late-acting’’ fed- and fasted-state hormones 
respectively. So we conclude that FGF15/19 and FGF21 
play significant roles in coordinating nutrition homeosta-
sis under a variety of physiological conditions.

Both FGF15/19 and FGF21 have distinct physiological 
effects on nutrient metabolism, though they belong to the 
same subfamily. FGF15/19 mainly regulates gallbladder 
filling, bile acid synthesis, and inhibits hepatic gluconeo-
genesis and lipogenesis in fed state, whereas FGF21 regu-
lates glucose uptake, glycogen synthesis, and ketogenesis 
in the fed/fast state. Interestingly, it has been shown that 

Fig. 3  Physiology actions of FGF21. In response to fasting, FGF21 expression is induced in the liver by the PPARα. Secreted FGF21 acts as an 
endocrine hormone to induce ketogenesis and gluconeogenesis. In response to feeding, FGF21 expression is induced by the PPARγ in WAT and the 
ChREBP in liver, where FGF21 acts through an autocrine mechanism to stimulate PPARγ activity and glucose uptake and to repress lipolysis in liver 
via an endocrine mechanism
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FGF15/19 and FGF21 have potential roles in metabolic 
diseases, such as nonalcoholic fatty liver disease, bile 
acid diarrhea, cardiovascular disease and diabetes. Given 
the high variability in inter-individuals and interspecies, 
further studies are urgently needed to evaluate the legiti-
mate therapeutic roles of FGF15/19 and FGF21 in malnu-
trition associated diseases.
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