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A tool for developing an automatic 
insect identification system based 
on wing outlines
He-Ping Yang1, Chun-Sen Ma2, Hui Wen1, Qing-Bin Zhan3 & Xin-Li Wang1

For some insect groups, wing outline is an important character for species identification. We have 
constructed a program as the integral part of an automated system to identify insects based on 
wing outlines (DAIIS). This program includes two main functions: (1) outline digitization and Elliptic 
Fourier transformation and (2) classifier model training by pattern recognition of support vector 
machines and model validation. To demonstrate the utility of this program, a sample of 120 owlflies 
(Neuroptera: Ascalaphidae) was split into training and validation sets. After training, the sample 
was sorted into seven species using this tool. In five repeated experiments, the mean accuracy for 
identification of each species ranged from 90% to 98%. The accuracy increased to 99% when the 
samples were first divided into two groups based on features of their compound eyes. DAIIS can 
therefore be a useful tool for developing a system of automated insect identification.

Correct insect identification is critically important in entomological research, pest control, and 
insect-resource utilization. However, to identify an unknown species using traditional methods is very 
time consuming due to the vast number of insect species that must be identified and limited taxonomist 
resources1,2. This problem has been recognized since the end of the last century, and computer-based rec-
ognition systems have been developed to identify insect species automatically3. For example, the “Digital 
Automated Identification System (DAISY)”4–6 was developed to automatically identify ichneumonid 
wasps on the basis of their wing features3, and this program was also used to identify biting midges and 
moths6. The “Species Identified Automatically (SPIDA)” system was originally designed to distinguish 
between 121 species of Australian spiders7 and has been successfully tested for identifying wasps and 
bees using their wing characteristics5. In addition, the “Automatic Bee Identification System (ABIS)” was 
developed to identify bees by analyzing images of wing veins8.

All of these automatic identification systems involve two key processes: extracting and digitizing the 
taxonomic features and constructing a classifier model for identification.

First, a recognition feature must be selected. The feature must be not only stable and distinguishable 
but also extractable and quantifiable by computer. The feature “color” was successfully used to identify 
moths and butterflies9, but its accuracy was limited by specimens fading with time or color shifts under 
different illumination. By contrast, the outlines of body parts, such as wings, are stable and diverse but 
have not been frequently used in conventional taxonomy due to difficulties with lexical descriptions. 
Therefore, wing outlines represent a potential new characteristic for computer-based insect identification.

In recent decades, software has been developed to digitize morphological characteristics and con-
duct consequent statistical analysis, such as principal component analysis and canonical correlation 
analysis, to establish the phylogenic relations of species. Examples of this software include TPSDig10, 
DrawWing11–13 and SHAPE14,15, which are based on modern digitalizing methods, such as ‘Landmark’, 
‘Semilandmark’10,11 and Elliptic Fourier Descriptors (EFDs)16–20. In particular, for the extraction and 
digitization of outline characters, the Elliptic Fourier algorithm has the advantages of being able to 
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reconstruct outlines, eliminate errors in orientation caused by interference, size images and trace the 
starting point of an original image21–23. However, no classifier models or automatic identification func-
tions were included in these software packages.

The support-vector-machines algorithm (SVMs) was invented by Vapnik24 and has since become 
a popular method for pattern recognition25,26. SVMs have also been used for insect identification9,27. 
Comparative studies in which SVMs and other 4 methods (Bayes, instance-based learning, decision 
trees and random forests) were used to identify 35 species of moths suggested that the SVMs algorithm 
produced the most accurate results27.

Although progress has been made in automatic identification systems for insects, two inadequacies 
remain. First, some systems, such as ABIS8, obtain high accuracy of identification for limited insect spe-
cies but have very narrow functionality. When these types of system are tested with new morphological 
insect data, the source code for these computer programs must be rewritten, or the outputs must be 
interpreted in a complex manner, restricting widespread application for most insect taxonomic users 
and limiting further improvements. Second, some systems, such as DAISY4 and SPIDA7, can be used to 
identify different taxonomic groups of insects, but the accuracy is not sufficient due to high variations 
during processes of digitizing morphological features and insufficient powerful classifiers which only 
can search local optimizing solutions rather than the global optimizing solutions during computation.

To address these issues, we aimed to build an ideal user-friendly tool for developing an automatic 
insect identification system based on wing outlines. This program only requires a user to load a mini-
mum set of images of the wing spread perfectly on a horizontal plane into the DAIIS program (Tool for 
Developing an Automatic Insect Identification System). The system can automatically extract the wing 
outline as a diagnostic feature. The outline will then be transformed into EFDs, i.e., a set of coefficient 
data. Some of the data will be used as training dataset to construct the recognition model, i.e., classify 
automatically with an SVM algorithm in our system. The remaining data will be used as candidate sam-
ples for identification. We have designed the system to give the user an accuracy measure, which is partly 
reliant on the quality and quantity of the input data. In addition, DAIIS can be modified and extended 
easily by broad taxonomic users who do not have extensive computer programing experience.

Most adult insects have wings that are frequently used in taxonomy. However, the detailed charac-
teristics of veins and spots on wings require recognition and measurement by well-trained experts; thus, 
these features are difficult for general users to use. Wing outlines are stable and diverse, making this 
factor useful for insect identification28. Owlflies (Insecta: Neuroptera: Ascalaphidae) are similar to drag-
onflies, and the wing outlines of this family are diverse and provide ideal identification for some genera 
and species. In this study, we used the DAIIS and 120 owlfly specimens belonging to seven species to 
train an owlfly classifier and assess its accuracy.

Results
Character extraction and description of wing outlines. According to the descriptor formula (5), 
as the harmonic content number increases, the variation of the Elliptic Fourier descriptor (CE)29 (i.e., 
value of CE calculated with the present harmonic content number minus the value of CE computed with 
the previous harmonic content number) becomes smaller and eventually negligible. The ith harmonic 
is generally used to represent the maximum harmonic content number needed in the Elliptic Fourier 
transformation. Our results indicate that the variation in the CE decreased as harmonic content num-
bers increased and became nearly zero after the 15th harmonic (Fig.  1B). Based on observations and 
comparisons of hundreds of owlfly specimens, we found that the projecting axillary angle was highly 
diversified in some owlfly species. Thus, the detailed shape around the base of the owlfly wing was treated 
as a key recognizable characteristic for different species. Accordingly, the reconstructed outline around 
the base of the wing should be carefully considered in determining the final harmonic content numbers. 
We reconstructed wing outlines with a loop from the 10th to the 50th harmonic with a step size of five 
and found clear outlines around the wing base up to the 30th harmonic (Fig.  1C). Thus, the first 30 
harmonics were considered appropriate for approximating the outlines of owlfly wings. We obtained 120 
EF coefficients (four coefficients per harmonic) for each wing outline. All coefficients were normalized; 
117 coefficients were recognition features, and the remaining 3 were constants (a1 =  1, b1 =  0, and c1 =  0).

The actual error of the reconstructed outlines compared with the original, εn, decreased rapidly as 
the harmonic content number increased (Fig. 2). Our results indicate that the coefficients of the first 30 
harmonics can accurately approximate the original outline.

Results of automatic owlflies identification. We obtained high accuracy with five cross-validations30 
(a method for training the model) and an independent validation (predicted with the test dataset and 
model) of the identification model for owlflies (Table 1). The mean accuracy of the cross-validation (CV) 
and independent validation was as high as 97.7% and 94.5%, respectively. When a real identification 
was conducted by using our model and the independent dataset (not used in training), the lowest iden-
tification accuracy of 87% was observed for the species Protidricerus elwesii, and the highest accuracy 
of 100% was observed for three species, Ascalohybris subjacens, Libelloides sibiricus, and Protidricerus 
japonicus (Table 2).
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Misidentification and improvement. The detailed misidentification rates for seven species of 
Ascalaphidae are shown in Table 3. P. elwesii had the greatest likelihood (8.33%) of being confused with 
Maezous umbrosus. Ascalaphus placidus was also relatively easily confused with L. sibiricus (misidenti-
fication rate =  6.67%). To illustrate the landscape of misidentification among all 7 species in this study, 
we conducted a principal component analysis (PCA) and used the first two principal components to 
construct a scattered graph (Fig.  3). The wing outlines are overlapped among 4 species, i.e., Acheron 
trux, M. umbrosus, P. elwesii, and A. placidus, but are clearly separated from those of A. subjacens and 
P. japonicus. Thus, improving the identification accuracy of these three owlflies species is difficult when 
using only wing outlines.

However, owlflies (Ascalaphidae) are divided into two subfamilies, Ascalaphinae and Haplogleniinae, 
based on significant features of their compound eyes, which can be distinguished with the human eye. 
Each compound eye of Ascalaphinae contains a visible furrow that divides the complete eye into two 

Figure 1. Relationship between the descriptive precision of a reconstructed wing outline and the 
harmonic content number. (A) A histogram demonstrates that the values of the Elliptic Fourier descriptor 
(CE) change with increasing harmonic content numbers. (B) A wave line demonstrates that the variation in 
CE declines with increasing harmonic content numbers. (C) Wing outlines reconstructed from the first 10, 
15, 20, 25, and 30 harmonics and the original outline.

Figure 2. Actual error versus harmonic content number .
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parts, whereas the eye of Haplogleniinae is a complete compound eye without such a division mark 
(Fig. 4). Of the seven species, P. elwesii and P. Protidricerus belong to Haplogleniinae, and the other five 
species belong to Ascalaphinae. Thus, compound eyes enable the seven species to be separated into two 
groups, and all species can be identified correctly with wing outlines using two separate classification 
models trained for each subfamily. Using this approach, the identification accuracy of A. placidus was 
over 96%, and the accuracies of the other six species were 100%. The mean identification accuracy of all 
specimens was 99% (Tables 4 and 5).

Discussion
We developed DAIIS as a simple tool to help broad users who do not have extensive knowledge of algo-
rithms and programing to develop their own automatic identification systems based on outlines of body 
parts. Users must simply download our software package and copy their outline images to the “doTrain” 
and “doPre” folders to train the identification model and subsequently perform the actual identification, 
respectively. Users can therefore focus on their own area of expertise rather than designing the algorithm 
and programing. To our knowledge, this is the first tool for developing automatic identification systems 
for any species using SVMs and EF coefficients of body part outlines.

Run CV* (%) Accuracy* (%)

1 98.4 89.655

2 96.8 94.828

3 98.4 94.828

4 96.8 98.276

5 98.387 94.828

mean 97.742 94.486

Table 1.  Accuracy of the trained identification model derived from the five cross-validations (CV) and 
the independent validation. CV* is the optimal accuracy with the cross-validation training for each run. 
Accuracy* is the actual accuracy of independent validation with test data in each run.

Species Accuracy (%)

Acheron trux 91.4

Ascalohybris subjacens 100

Libelloides sibiricus 100

Maezous umbrosus 95.6

Protidricerus elwesi 86.7

Protidricerus japonicus 100

Ascalaphus placidus 90.0

Table 2.  Actual identification accuracy for each owlflies species.

Actual species
Improperly identified 

species
Identification 
error rate(%)

Acheron trux Maezous umbrosus 2.86

Acheron trux Protidricerus elwesi 2.86

Acheron trux Ascalohybris subjacens 2.86

Maezous umbrosus Protidricerus elwesi 4.44

Protidricerus elwesii Maezous umbrosus 8.33

Ascalaphus placidus Acheron trux 3.33

Ascalaphus placidus Ascalohybris subjacens 3.33

Ascalaphus placidus Libelloides sibiricus 6.67

Ascalaphus placidus Maezous umbrosus 3.33

Table 3.  The misidentification rates of the model for each owlflies species. Note: the misidentification 
rates for other species not listed in the table are zero.
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Figure 3. The results of the principal component analysis illustrate the landscape of misidentification 
between all 7 owlflies species using wing outlines. PC1 and PC2 are the first and second principal 
components, respectively.

Figure 4. Compound eye of two subfamilies of owlflies, Ascalaphinae and Haplogleniinae.

Run CV* (%) Accuracy* (%)

1 97.67 100

2 100 100

3 100 95

4 100 100

5 97.67 100

mean 99.07 99

Table 4.  The improved accuracy of the trained identification model derived from the five cross-
validations (CV) and independent validation after dividing all species into two groups based on the 
compound eyes feature. CV* is the optimal accuracy with the cross-validation training for each run. 
Accuracy* is the actual accuracy of independent validation with test data in each run.
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To reduce operational error when capturing and processing wing images, we developed a set of guide-
lines (cutting the wing image from a specimen) or apparatus (white background under fixed lights) for 
image capture and processing. To reconstruct a very accurate outline with Elliptic Fourier transfor-
mation, we determined the first 30 harmonics to produce 120 coefficients. To minimize the impact of 
variance on image size, rotating direction and starting point to trace an outline, we conducted standard 
transformations of these coefficients, which contributed to our high identification accuracy.

The algorithms used here contributed to successful identification based on the outlines. The number 
of samples used in model training was limited, but the number of features for each sample was as high 
as 117. The SVM was shown to be a useful algorithm for situations with small sample sizes but high 
dimensional space. Furthermore, we used the genetic algorithm to optimize the parameters in the radial 
basis kernel function (RBF) of the SVM, which searched the global optimal solution in large search 
spaces more efficiently than other competing algorithms, such as the grid algorithm31.

Although we have not explicitly tested DAIIS on data other than owlflies wings, we see no reason why 
this system could not be extended to adapt for other insect groups with rich diversity in wing outlines, 
other body parts and even wing spots. Furthermore, DAIIS can be extended to automatically identify 
insects, other groups of organisms or even any other physical objects based on more recognizable char-
acteristics, such as size, color, veins of wings etc., by developing corresponding digitalized algorithms 
for these features.

In the present study, we developed a package in MATLAB and made it available for download as a 
standalone executable application (.exe). However, our package can also be delivered into an application 
programing interface (API) as a library file (.dll), enabling its use in other programs developed in Java, 
C+ + , Visual Basic, etc. Therefore, our package is highly flexible and expandable for further secondary 
development. The program and test image data can be downloaded from http://www.au2id.cn/package.
rar and should be run in Windows XP in a Matlab environment.

Materials and Methods
Insect materials. We collected 120 specimens belonging to seven species of owlflies from the Insects 
Collections of China Agricultural University (ICCAU), Beijing, China. The list of species and species IDs 
is shown in Table 6. Only right forewings were used as a demonstration for this study.

System procedure. The system primarily includes two subsystems (Fig. 5). The first subsystem is the 
identification model generator, which builds the identification model with SVMs and a training dataset. 
The second subsystem is the model validator, which calculates the identification accuracy by comparing 
the model output with test data. The training and test samples were identified by a taxonomist. All data 

Species Accuracy (%)

Acheron trux 100

Ascalohybris subjacens 100

Libelloides sibiricus 100

Maezous umbrosus 100

Protidricerus elwesii 100

Protidricerus japonicus 100

Ascalaphus placidus 96.67

Table 5.  The improved identification accuracy for each owlfly species after dividing all species into two 
groups based on the compound eyes feature.

Species ID Species Sample size Collection location

1 Acheron trux 14 Zhejiang, Fujian, Henan

2 Ascalohybris subjacens 23 Zhejiang, Fujian, Anhui, Jiangsu, Henan

3 Libelloides sibiricus 15 Beijing, Henan, Gansu, Shanxi, Liaoning

4 Maezous umbrosus 19 Guangxi, Yunnan, Henan, Hubei

5 Protidricerus elwesii 25 Zhejiang, Fujian, Guangxi, Tibet

6 Protidricerus japonicus 12 Beijing, Hebei, Henan, Gansu

7 Ascalaphus placidus 12 Zhejiang, Fujian, Anhui, Jiangsu

Table 6.  Species and specimens of owlflies used for modeling and validation. Notes: All specimens 
examined are deposited in the Insect Collections of China Agricultural University (ICCAU), Beijing, China.

http://www.au2id.cn/package.rar
http://www.au2id.cn/package.rar
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were randomly divided into the training and test datasets at a 1:1 ratio. After a valid identification model 
is established, users can apply our system to identify an unknown specimen. In this paper, we describe 
the procedures to implement those functions step by step.

Capturing the wing image. Owlfly images were captured with a digital camera (Canon 60D, 60 mm 
lens) fixed to a copy board that had fill lights on both sides (250 W each) and a white foam sheet at the 
base. To eliminate the shadow of the specimen due to the fill lights (for easier image capture), a transpar-
ent 2-mm-diameter, 100-mm-long plastic stick was fixed to the foam and held at the far end of a needle 
that was inserted into the specimen (Fig. 6A). The wings of the specimen were set to be as horizontal as 
possible prior to image capture, and the photographs were saved as. jpg files.

A standard method was used to obtain the wing shapes from the above images. The background of 
the image was easily removed using Photoshop (version 12.0.4). To ensure that a perfect wing shape 
was obtained, especially for the base part of the wing, the first inflection point from the lower edge of 
the base of the wing was fixed as the starting point for cutting the wing image. Then, the wing was cut 
perpendicularly to the upper edge of the wing (Costa, C) (Fig. 6C). Finally, the image of the wing was 
copied and saved to a new. bmp image file. The wing was adjusted to a unified direction by turning the 
base of the wing to the left and rotating the lower edge of the wing (Costa, C) horizontally.

For individual specimens in which the wing edge was slightly cracked, the wing outline image was 
repaired manually by drawing a connecting line in Photoshop with the Digitizing Tablet (type Wacom 
Bamboo CTL-470).

Obtaining wing outline. We developed a function module with MATLAB to automatically trans-
form the above wing image into a pure white-black wing outline image. By running this module, the. 
bmp wing image can be transformed into an eight-bit grayscale image (256 levels of gray) and then 
converted into a binary image. Finally, the outline was obtained after noise reduction, erosion, dilation, 
and hole filling (Fig. 7).

Digitalizing wing outline. To approximate a wing outline with an irregular shape, we used a 
piecewise-linear number sequence generated by a chain encode32 that supplies either a 4-directional 
chain code or 8-directional chain code. We selected the 8-directional chain code, which consists of eight 
standardized line segments33 for more accurate approximation. In this sequence, the angle π /4 (as meas-
ured counterclockwise from the x axis of an x-y coordinate system) was multiplied by a number between 

Figure 5. Flowchart of the automated identification system. 
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0 and 7 to determine the orientation. If we assume that the length between adjacent points (i −  1) and 
i is ∆ ( , )t 1 2i , then the length tp from the starting point to point p can be calculated by equation (1), 
and the x and y coordinates of point p can be calculated by equation (2).
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With this method, the wing outline was traced and converted to continuous x and y coordinates.
We used EF to transform these coordinates into Elliptic Fourier coefficients. The series expansions 

of the Elliptic Fourier transform for the x and y coordinates of the complete outline are shown in equa-
tions (3) and (4), where an, bn, cn and dn are the Elliptic Fourier coefficients for the nth harmonic.
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Figure 6. Capturing images of owlflies specimens and their wings. (A) Schematic of apparatus used to 
photograph owlflies specimens. (B) Complete image of an owlflies specimen. (C) Position where the wing is 
cut from the specimen image.

Figure 7. Image processing steps to obtain a wing outline image from a. bmp wing image. (A) Original. 
bmp image. (B) Eight-bit grayscale image. (C) Binary image after noise reduction, erosion, dilation, and hole 
filling. (D) Image of the wing outline.
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The Elliptic Fourier coefficients were used to reconstruct outlines. The variation between the recon-
structed and original outline depends on the number of harmonics used. More harmonics would lead to 
a better-reconstructed outline. However, Elliptic Fourier analysis becomes more complicated and time 
consuming as the harmonic content number increases. Thus, appropriate numbers of harmonic con-
tent should be determined to compromise between computation speed and clarity of the reconstructed 
characteristics.

Here, we define the invariant descriptors of the Elliptic Fourier (CE) as a flow expression given by 
Granlund29:
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where ai, bi, ci and di are the Elliptic Fourier coefficients for harmonic i.
Here, we set 30 as the default harmonic content number in DAIIS. If a more accurate reconstructed 

outline is needed, the harmonic content number can be modified in the file “config.txt”.
Then, we calculated the x and y coordinates of points on the reconstructed outline based on the 

cumulative contributions of the first 30 harmonics. Next, the reconstruction error was calculated accord-
ing to formula (6).
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where εn is the error between the reconstruction and original outlines based on the first n harmonics, K 
is the number of the points on the original outline, (xk, yk) are the coordinates for point k on the original 
outline, and (xnt, ynt) are the coordinates for point t of the reconstruction.

To minimize the impacts of image size, rotation, and starting point of the outline trace, the EF coef-
ficients were normalized using the method of Kuhl and Giardina33. After normalization, the first three 
coefficients of the first harmonic are constants for a1 =  1, b1 =  0, and c1 =  0.

With this procedure, the black-white image of wing outline can be automatically transformed into 
the EF coefficients.

Training and testing the identification model. All of the EF coefficients of wing outlines from 
each of the seven owlflies species were divided into a training dataset and test dataset at a 1:1 ratio. The 
C-Support Vector Classification (C-SVC) with a radial basis kernel function (RBF), which is one of the 
most common types of SVMs, was used for building the identification model34. The kernel function was 
used to search for the optimal resolution in a nonlinear higher-dimensional space, in which the genetic 
algorithm (GA)35 was applied to optimize the parameters of the kernel based on the analogous theories of 
Darwinian natural selection and genetics in biological systems. With this procedure, a primary optimal 
identification model was ready for validation.

To validate our model for owlflies more efficiently with limited samples, we conducted 5 randomized 
runs of model training and validation. For each run, all datasets of wing outlines were divided randomly 
and equally into a training dataset and a test dataset. To obtain the optimal identification model, we 
adopted a cross-validation (CV) approach to calculate the CV values for optimizing the model parame-
ters. To demonstrate the accuracy of the identification model, we input the test dataset into the model, 
predicted the species, and then calculated the proportion of prediction successes based on our experience 
of owlfly taxonomy. After 5 randomized runs, we calculated the misidentification rates using formula (7):

∑= /( × )
( )=

P E S5
7e

i 1

5

where Pe is the rate of species A being misidentified as species B in 5 randomized runs, E is the number 
of species A misidentified as species B for each randomized run, and S is the entire sample size.

To demonstrate the landscape of misidentification between all 120 specimens belonging to 7 species 
in this study, we conducted a principal component analysis and drew a scatter graph using the first two 
principal components, which contributed 88% in all variations.

All of the model training and identification with complex and professional programing source codes 
was packaged into an executable file named “dotrain.exe”.
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Using the automatic identification system. To use our system to generate a user’s own identifi-
cation model and conduct further identification work, a user must copy images of wing outlines on a 
white background to the folder “doTrain” and then double-click the file named “doTrain.exe” in the same 
folder. The accuracy of the model is shown in a command prompt. To identify an unknown specimen, a 
user must move the image of the specimen into the folder “doPre” and then double-click the file “doPre.
exe” in the folder to obtain the identification results in the command prompt.
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