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Abstract
Cancer is a global burden due to high incidence and mortality rates and is ranked the sec-

ond most diagnosed disease amongst non-communicable diseases in South Africa. A high

expression level of the 37kDa/67kDa laminin receptor (LRP/LR) is one characteristic of can-

cer cells. This receptor is implicated in the pathogenesis of cancer cells by supporting tumor

angiogenesis, metastasis and especially for this study, the evasion of apoptosis. In the cur-

rent study, the role of LRP/LR on cellular viability of breast MCF-7, MDA-MB 231 and

WHCO1 oesophageal cancer cells was investigated. Western blot analysis revealed that

total LRP expression levels of MCF-7, MDA-MB 231 andWHCO1 were significantly down-

regulated by targeting LRPmRNA using siRNA-LAMR1. This knockdown of LRP/LR

resulted in a significant decrease of viability in the breast and oesophageal cancer cells as

determined by an MTT assay. Transfection of MDA-MB 231 cells with esiRNA-RPSA

directed against a different region of the LRPmRNA had similar effects on LRP/LR expres-

sion and cell viability compared to siRNA-LAMR1, excluding an off-target effect of siRNA-

LAMR1. This reduction in cellular viability is as a consequence of apoptosis induction as

indicated by the exposure of the phosphatidylserine protein on the surface of breast MCF-7,

MDA-MB 231 and oesophageal WHCO1 cancer cells, respectively, detected by an

Annexin-V/FITC assay as well as nuclear morphological changes observed post-staining

with Hoechst. These observations indicate that LRP/LR is crucial for the maintenance of

cellular viability of breast and oesophageal cancer cells and recommend siRNA technology

targeting LRP expression as a possible novel alternative technique for breast and oesopha-

geal cancer treatment.

Introduction
14.1 million cancer cases were diagnosed and 8.2 million deaths were attributed to cancer in the
year 2012, with a majority of deaths occurring in developing countries such as South Africa
(World Health Organization (GLOBOCAN 2012). In South Africa and worldwide, breast can-
cer is the most common cancer in woman and oesophageal cancer the 8th most common cancer
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in both sexes worldwide [1]. Cancer is initiated by the accumulation of multiple mutations that
result in the dysregulation of cellular homeostasis due to uncontrolled proliferation and lack of
apoptosis of these genomically unstable/toxic cells[2]. Transformation to a cancerous cell is not
an effortless transition but is a multistep process that may be due to alterations in the million
processes that occur in a cell daily and the most fundamental alterations have been termed as
the hallmarks of cancer by Hanahan andWeinberg[2]. These include tissue invasion and metas-
tasis, insensitivity to growth inhibitors, self-sufficiency in growth signals, limitless replicative
potential, sustained angiogenesis and the evasion of apoptosis[2]. Another prominent feature of
tumors is the altered expression of oncogenes, tumor suppressor genes or receptors for sustained
growth and progression; and one outstanding characteristic, is the overexpression of the
37-kDa/67-kDa laminin receptor precursor/ laminin receptor (LRP/LR)[2–4].

The 37-kDa/67-kDa laminin receptor (LRP/LR) is a non-integrin cell surface glycoprotein
that interacts with numerous extracellular matrix proteins and more importantly its’ primary
ligand, laminin-1[5]. Since its discovery in 1983 numerous subcellular localizations and multi-
ple functions have been described, both physiological and pathological [4, 6–9]. LRP/LR also
localises in the nucleus and the cytosol, is involved in the maintenance of nuclear structures
and translational processes, respectively [10–15]. In addition to laminin-1, LRP/LR has several
functions by acting as a receptor for other molecules at the cell membrane, acting as a receptor
for carbohydrates, elastin[16] and also poses morbid effects to the cells by facilitating the inter-
nalization of viruses[17–19], infectious and non-infectious prion proteins[10, 16, 20] as well as
the cytotoxic necrotizing factor type [21]. Moreover, in association with laminin-1, LRP/LR is
involved in crucial cellular processes such as cell adhesion, migration, proliferation and differ-
entiation[22]. However, since this receptor is overexpressed in cancer cells these processes are
augmented and contribute to cellular transformation, which describes the role of LRP/LR in
tumor invasion and metastasis. A direct correlation between high levels of LRP/LR expression
and tumor aggressiveness has been noted in numerous cancers, including, fibrosarcoma[23],
breast[24], cervical[25], colon[26], lung[27], prostate[28], oesophageal[29], liver[30], gastric
[31] and ovarian[32] cancer. However, incubation of the above mentioned metastatic cancers
with anti-LRP/LR specific antibody IgG1-iS18 resulted in significant impediment of adhesion
and invasion, the two key steps of metastasis [29, 30, 33]. Furthermore, our laboratory recently
illustrated that LRP/LR plays a role in another eminent hallmark of cancer, angiogenesis, as
treatment of blood vessels formed in vitro with an anti-LRP/LR specific antibody W3 signifi-
cantly hampered blood vessel formation [34].

Cancerous cells strive to circumvent cell death and the elevated levels of LRP/LR also assist
cancer cells in this regard by associating with the Midkine protein and connect the nuclear
envelope and chromatin during interphase in order to retain chromosomal stability and in
turn maintaining cell viability[35]. Our laboratory exemplified that LRP/LR indeed plays a role
in maintenance of cellular viability as downregulation of LRP/LR with specific siRNAs resulted
in a significant reduction in survival of cervical and lung cancer cells as a consequence of apo-
ptosis induction[36].

This affiliation between LRP/LR expression and tumor aggressiveness proposes LRP/LR as a
promising tool for cancer treatment and since the targeting of LRP/LR on cancerous cells has
proven successful with regards to reduction of tumor metastasis[29, 30, 33, 37] and hampering
of angiogenesis induction[34], exploring the role of LRP/LR on the viability of cancerous cells
has gained huge interest. Therefore, this study was aimed at elucidating the effect of siRNA-
mediated knockdown of LRP/LR on the cellular viability of breast and oesophageal cancers
which are ranked the second and eighth most commonly diagnosed cancers worldwide (GLO-
BOCAN 2012). These high rankings indicate the importance of finding alternative therapeutic
options and although a similar study has been carried out in our laboratory on lung and

Anti-Apoptotic Role of LRP/LR in Cancer Cells

PLOS ONE | DOI:10.1371/journal.pone.0139584 October 1, 2015 2 / 16

Competing Interests: S.F.T.W. is currently a PLOS
ONE Editorial Board Member. The patent,
EP1670826, co-owned by the University of the
Witwatersrand and Affimed Therapeutics AG covers
LRP/LR specific antibodies used in this study as tools
for diagnosis and therapy of cancer. This granted
European patent was validated in the United
Kingdom, France, Germany, Switzerland and Austria.
Further, a South African Provisional Patent
Application 2014/08860, owned by the University of
the Witwatersrand covers the inhibition of the
development of cancer cells by the modification of the
levels of LRP/LR. This does not alter the authors’
adherence to all the PLOS ONE policies on sharing
data and materials.

Abbreviations: β, beta; DMEM, Dulbecco’s Modified
Eagle Medium; EDTA, ethylenediaminetertraacetic
acid; FCS, fetal calf serum; FITC, fluorescein
isothiocynate; IgG, immunoglobulin; kDa, kilodalton;
LRP/LR, laminin receptor precursor/ laminin receptor;
PFA, paraformaldehyde; PBS, phosphate based
saline; SDS, sodium dodecyl sulphate; PVDF,
polyvinylidine fluoride; HRP, horse radish peroxidise;
DMSO, dimethyl sulfoxide.



cervical cancer cells it is noteworthy to comprehend that not all types of cancers will be respon-
sive to siRNA treatment. Therefore it is imperative that similar studies are carried out on other
cancer types in order to elucidate whether or not targeting of LRP/LR with siRNAs may be
used as an alternative broad spectrum therapeutic tool for the treatment of cancer.

This study has illustrated significant reduction in viability of breast MCF-7, MDA-MB 231
and oesophageal WHCO1 cancer cells after significant downregulation of LRP/LR. Further-
more, the observed cell death is due to the induction of apoptosis, indicated by phosphatidyl-
serine exposure and prominent nuclear morphological changes observed in the above
mentioned breast and oesophageal cancer cells.

Materials and Methods

Cells and cell culture conditions
Human breast adenocarcinoma MCF-7 cells were cultured in Dulbecco modified eagle’s
medium (DMEM) high glucose (4.5 g/l) (Invitrogen Gibco). Breast cancer cells MDA-MB 231
andWHCO1 oesophageal cancer cells were cultured in DMEM/ Ham’s-F12 (1:1). All media
was supplemented with 10% fetal calf serum (FCS) and 1% penicillin/streptomycin and cell
lines were grown in humidified incubator at 37°C and 5% CO2.

MCF-7 and MDA-MB 231 breast cancer cells were commercially obtained from the Ameri-
can Tissue Culture Collection (ATCC) with catalogue numbers ATCC

1

HTB22™ and
ATCC

1

HTB26™, respectively.
The WHCO1 oesophageal cancer cell line is not commercially available; it was propagated

in vitro from an epithelial cell line of tumor biopsy material of a patient with this type of oeso-
phageal carcinoma [29, 38].

siRNA-mediated downregulation of LRP
All cell lines were seeded in 6-well plates and, after 24 h incubation, transfected for LRP
knockdown with siRNA-LAMR1 and siRNA-scr was used as a control. MDA-MB 231 cells
were also transfected with esiRNA-RPSA (Sigma) for knockdown of LRP and esiRNA-RLUC
(Sigma) was used as a control. The siRNA sequences as well as transfection reagents used are
provided in Table 1. Post72 h incubation (24 h, 48 h and 72 h for MDA-MB 231 cells) in a
humidified incubator set at 37°C and 5% CO2, cells were lysed and lysates were analysed by
western blotting.

SDS-PAGE andWestern blotting
Total LRP levels were analysed by western blotting. Approximately 10 μg of total protein was
separated on a 12% gel using the sodium dodecyl sulphate polyacrylamide gel electrophoresis
(SDS-PAGE) system and the resulting protein pattern was transferred onto a polyvinylidine
fluoride (PVDF) membrane using a 1 x transfer buffer at 450 mV for 45 minutes. Resulting
protein membrane was blocked with 3% BSA in 0.1% PBS Tween to prevent non-specific
binding of the primary antibody IgG1-iS18 (1:10 0000) for the detection of LRP. After 1 h
incubation with the primary antibody, the membrane was rinsed three times with PBS Tween
and incubated for 1 h with goat anti-human peroxidise labelled secondary antibody (1:5 000).
The membrane was washed again with PBS Tween, an enhanced chemillumniscent substrate
(Thermoscientific) was used for detection of the HRP and the resulting chemilluminescence
was developed and fixed onto an X-ray film in the dark or detected with the Chemidoc system
(Biorad).
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MTT assay
MCF-7, MDA-MB 231 and WHCO1 cancer cells were seeded in a 24-well plate transfected
when a confluency of 80% was reached and allowed to incubate in the incubator at 37°C with
95% air and 5% CO2 for 72 h (or 24 h, 48 h and 72 h after transfection of MDA-MB 231 cells).
Cells treated with 8 mM PCA (protocatechuic acid) was used as a positive control. MTT (3-(4,
5-dimethylthiazol-2-yl)-2-5-diphenyltetazolium bromide) is a yellow tetrazolium salt that is
converted into purple formazan crystals by the mitochondrial succinate dehydrogenase
enzyme active in mitochondria of viable cells thus providing an estimation of cellular viability.
A 1 mg/ml solution of MTT dissolved in PBS was added in each well and allowed to incubate
for 2 h. Media was discarded, the resulting formazan crystals were dissolved in 500 μl of
DMSO and absorbance of each well was measured at 570 nm using an ELISA reader.

Annexin V-FITC /7-AAD assay
MCF-7, MDA-MB 231 and WHCO1 cancer cells were seeded in 24-well plates, transfected at
80% confluency and incubated for 72 h as described above. Cells treated with 8 mM PCA
served as a positive control. Cells were harvested using Trypsin/EDTA and resulting cell sus-
pensions were washed with ice-cold PBS and centrifuged for 5 minutes at 4°C at 500 x g.
According to the manufacturers’ instructions (Beckman Coulter, Immunotech, Marseille,
France), supernatants were discarded and pellets were resuspended in 100 μl of Binding buffer
whilst working on ice. Annexin V-FITC solution and 7-AAD viability dye at 10 μl and 20 μl
respectively was added to the 100 μl cell suspensions. Cell suspensions were incubated on ice in
the dark for 15 minutes and 200 μl of ice-cold Binding buffer was added. Cell populations were

Table 1. Sequence of control siRNA-RLUC as well as siRNA used for downregulation of LRP/LR.

siRNA Sequence Transfection
reagent

siRNA-LAMR1 UAUCAUAAAUCUCAAGAGG Transfection
reagent 1
(Dharmacon)

siRNA-scr ON-TARGETplus Non-targeting Control siRNAs #4, D-001810-04-
05 (Dharmacon)

Transfection
reagent 1
(Dharmacon)

esiRNA-RPSA CCTCTCACGGAGGCATCTTATGTTAACCTACCTACCATTGCGC
TGTGTAACACAGATTCTCCTCTGCGCTATGTGGACATTGCCAT
CCCATGCAACAACAAGGGAGCTCACTCAGTGGGTTTGATGTGG
TGGATGCTGGCTCGGGAAGTTCTGCGCATGCGTGGCACCATTT
CCCGTGAACACCCATGGGAGGTCATGCCTGATCTGTACTTCTA
CAGAGATCCTGAAGAGATTGAAAAAGAAGAGCAGGCTGCTGCT
GAGAAGGCAGTGACCAAGGAGGAATTTCAGGGTGAATGGACT
GCTCCCGCTCCTGAGTTCACTGCTACTCAGCCTGAGGTTGCAG
ACTGGTCTGAAGGTGTACAGGTGCCCTCTGTGCCTATTCAGCA
ATTCCCTACTGAAGACTGGAGCG

Lipofectamine 3000

esiRNA-RLUC GATAACTGGTCCGCAGTGGTGGGCCAGATGTAAACAAATGAAT
GTTCTTGATTCATTTATTAATTATTATGATTCAGAAAAACATGC
AGAAAATGCTGTTATTTTTTTACATGGTAACGCGGCCTCTTCT
TATTTATGGCGACATGTTGTGCCACATATTGAGCCAGTAGCGC
GGTGTATTATACCAGACCTTATTGGTATGGGCAAATCAGGCAA
ATCTGGTAATGGTTCTTATAGGTTACTTGATCATTACAAATAT
CTTACTGCATGGTTTGAACTTCTTAATTTACCAAAGAAGATCAT
TTTTGTCGGCCATGATTGGGGTGCTTGTTTGGCATTTCATTAT
AGCTATGAGCATCAAGATAAGATCAAAGCAATAGTTCACGCTG
AAAGTGTAGTAGATGTGATTGAATCATGGGATGAATGG

Lipofectamine 3000

doi:10.1371/journal.pone.0139584.t001
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analyzed using the BD Accuri flow cytometer and Annexin V-FITC was measured at an excita-
tion wavelength of 495 nm, emission of 519 nm and 7-AAD at excitation of 488 nm and emis-
sion at 640 nm. BD Accuri C6 software was used for data analysis. A total of 104 events were
recorded for each sample and untreated control cells were used to set gates.

Immunofluorescence microscopy
This technique was employed in order to analyse the nuclear morphological alterations that
occur in the cell upon cell death induction.

MCF-7, MDA-MB 231 andWHCO1 cancer cells were seeded onto coverslips in wells of a
6-well plate and allowed to reach 80% confluency in a 5% CO2 humidified incubator set at
37°C. Cells were transfected as described above and cells treated with 8 mM PCA served as an
apoptosis control. Post 72 h incubation media was aspirated from wells and cells were fixed in
4% paraformaldehyde (PFA) followed by several washes with PBS. Hoescht 33324 stain diluted
in PBS (137 mMNaCl, 12 mM Phosphate, 2.7 mM KCl, pH 7.4) was administered for 5–10
minutes to allow for staining of the nucleus and cells were then mounted onto a clean slide
using GelMount (Sigma-Aldrich) for 1 h in the dark.

Statistical evaluations
Densitometry analysis for LRP/LR was performed by normalising to the loading control and is
reported as a percentage compared to the untreated control (n = 3).

Nuclear morphological changes were quantified with ImageJ software and are represented
as the average nuclear area.

Data was statistically analyzed using the Student’s t-test with a confidence interval of 95%
with p-values of less than 0.05 considered significant.

Results

Knockdown of LRP expression in breast and oesophageal cancer cells
High expression of LRP/LR tends to augment the aggressive behaviour of cancer cells by medi-
ating metastasis, tumor angiogenesis and the ability to evade cell death [29, 30, 33, 34, 36]. The
MDA-MB 231 breast and WHCO1 oesophageal cancer cells lines were no exception as Khu-
malo et al. illustrated enhanced metastatic ability accompanied by high expression levels of
LRP/LR[29]. The results of this study paved way for the investigation of how the knockdown of
the expression of LRP/LR would impact on the cellular viability of these cell lines as well as the
non-metastatic MCF-7 breast cancer cell line. We used siRNA LAMR1 as well as esiRNA
RPSA (MDA-MB 231 cells) to downregulate LRP by targeting the messenger RNA of LRP
(siRNA-scr and esiRNA RLUC acted as negative controls). Densitometry analysis of the west-
ern blots revealed that no decrease in LRP was observed 24 h or 48 h after transfection of
MDA-MB 231 cells with siRNA LAMR1 (Fig 1). However there was a significant decrease in
LRP levels 72 h after transfection of WHCO1, MDA-MB 231 and MCF-7 cells (Fig 2). A 78%,
34% and 100% decrease in LRP expression was observed for the respective cell lines when com-
pared to non-transfected negative controls set to a 100%. Western blot analysis of MDA-MB-
231 cells transfected with esiRNA-RPSA showed a 26% downregulation of LRP (Fig 2).

siRNA-mediated downregulation of LRP causes significant decrease in
viability of breast and oesophageal cancer cells
In this study the MTT results suggest that LRP/LR plays a role in the viability of cancer cells.
No significant decrease in viability of MDA-MB-231 was observed 24 h or 48 h after

Anti-Apoptotic Role of LRP/LR in Cancer Cells

PLOS ONE | DOI:10.1371/journal.pone.0139584 October 1, 2015 5 / 16



transfection (Fig 3), however the cell viability of the MCF-7, MDA-MB 231 and WHCO1 can-
cer cells was significantly decreased by 52%, 45% and 72%, respectively (Fig 4) 72 h following
the downregulation of LRP/LR expression. 8mM PCA (a known apoptosis-inducer) was used
as a positive control and cells transfected with the non-targeting siRNA-scr (or esiRNA-RLUC)
posed as a negative control. A significant decrease in cellular viability was also noted in the
8mM PCA treated cells and the non-targeting siRNAs had no effect (Fig 4).

Knockdown of LRP induces apoptosis of breast and oesophageal
cancer cells
To elucidate a possible mechanism for the decrease in cellular viability upon knockdown of
LRP in MCF-7, MDA-MB 231 and WHCO1 cancer cells, changes in the integrity of cell mem-
brane and nuclear morphology were evaluated. Cells that were transfected with siRNA--
LAMR1, siRNA-scr (negative control) and 8mM PCA (positive control) as previously
described were labelled with Annexin V-FITC and 7-AAD. During apoptosis induction, cell
integrity is lost and phospholipids such as phosphatidylserine (PS) become exposed at the cell
surface. Annexin-V binds to PS with very high affinity thus labelling cells undergoing apoptosis
when membrane blebbing occurs. 7-AAD distinguishes between early and late apoptotic cells.
Indeed, the reduced cellular viability of breast MCF-7 and oesophageal WHCO1 cancer cells
was due to the induction of apoptosis as depicted by the shift of cells from the bottom left quad-
rant (live cells) to the bottom right and top right quadrants (representing early and late apopto-
tic cells, respectively) (Fig 5). The MDA-MB 231 cells were observed to be undergoing late
apoptosis as well as necrosis (Fig 5) after the knockdown of LRP expression.

In addition to the observation of this fundamental hallmark of apoptosis, MCF-7,
MDA-MB 231 and WHCO1 cells, transfected with siRNA-LAMR1 and stained with the

Fig 1. Western blot analysis of LRP expression in MDA-MB 231 cells 24 h and 48 h post-transfection with siRNA-LAMR1. No significant decrease in
expression of the 37-kDa LRP was observed 24 h and 48 h after transfection when compared to non-transfected cells. The standard deviation is represented
by error bars (n = 3).

doi:10.1371/journal.pone.0139584.g001
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fluorescent nuclear dye Hoechst 33324 exhibited nuclei constriction, loss of nuclear morphol-
ogy and integrity when compared to siRNA-scr-transfected cells as indicated by the white
arrows (Fig 6). A loss of nuclear morphology was exhibited by the crescent-shaped nuclei that
are due to the collapse of chromatin as clearly observed in the 8mM PCA and siRNA-LAMR1
treated cell micrographs of MDA-MB 231 cells. siRNA-LAMR1 treated MCF-7 cells exhibited
shrinked nuclei that form small balls that form apoptotic bodies whereas a majority of siRNA--
LAMR1 treated WHCO1 cells underwent gradual chromatin condensation (Fig 6). The
changes in nuclear morphology were quantified by measuring the nuclear area of the cells.
Treatment of MCF-7, MDA-MB 231 andWHCO1 cells with 8 mm PCA as well as siRNA--
LAMR1 furthermore caused a significant decrease in nuclear area as shown in Fig 7.

Fig 2. LRP expression in WHCO1, MDA-MB 231 and MCF-7 cells 72 h post-transfection.WHCO1 and MCF-7 cells were transfected with siRNA-LAMR1
and MDA-MB 231 cells with siRNA-LAMR1 and esiRNA RPSA. Densitometric analysis of the western blot signals revealed significant (p < 0.05, n = 3)
differences in LRP expression inWHCO1, MDA-MB 231 and MCF-7 cells, respectively (compared to non-transfected cells). Error bars represent standard
deviation.

doi:10.1371/journal.pone.0139584.g002

Anti-Apoptotic Role of LRP/LR in Cancer Cells

PLOS ONE | DOI:10.1371/journal.pone.0139584 October 1, 2015 7 / 16



Discussion
The role of LRP/LR in cancer progression has been profoundly studied, with numerous studies
suggesting that the laminin receptor plays a prominent role in mediating some cancer hall-
marks. The role of this receptor in these processes is anticipated because of its numerous cellu-
lar localisations i.e. the cell surface, nucleus, perinuclear compartment and cytosol thus
mediating crucial physiological processes. However the high levels of LRP expression in cancer
cells allow these cells to override these processes for survival purposes[3].

Metastatic breast MDA-MB231 and oesophageal WHCO1 cancer cells, the main focus of
this study express high levels of LRP/LR on the cell surface and in the cell as determined in a
previous study[29]. The non-metastatic MCF-7 breast cancer cell line was observed to express
low LRP/LR levels on the cell surface [30] and was included in this study to investigate the dif-
ference between metastatic and non-metastatic cells regarding the effect of knocking down
LRP/LR. In order to investigate the role of LRP/LR in cell viability, and apoptosis, we knocked
down LRP expression by RNA interference. Indeed, LRP downregulation was obtained 72 h
after transfection with siRNA-LAMR1 in all cell lines and additionally with esiRNA-RPSA in

Fig 3. Cell viability of MDA-MB 231 cells 24 h and 48 h after downregulation of LRP.MDA-MB 231 cells were transfected with siRNA-LAMR1 and cell
viability was determined with the MTT assay. PCA (8 mM) and siRNA-scr were used as positive and negative controls, respectively. The viability was
compared to the untreated control set at 100%. Error bars indicate standard deviation (n = 3).

doi:10.1371/journal.pone.0139584.g003
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Fig 4. The effect of siRNA-mediated downregulation of LRP expression on the cellular viability of WHCO1, MCF-7 and MDA-MB 231 cells. The
viability of WHCO1, MCF-7 and MDA-MB 231 cells was analysed 72 h post-transfection using an MTT assay. siRNA-LAMR1 treatedWHCO1, MCF-7 and
MDA-MB 231 as well as esiRNA-RPSA treated MDA-MB 231 cells revealed a significant reduction in cellular viability compared to untreated cells set to
100%. 8mM PCA and siRNA-scr were used as positive and negative controls, respectively. The error bars represent the standard deviation (n = 3) and a
significant difference (* p < 0.05, ** p < 0.01, *** p <0.001) between the untreated control and the treated samples is indicated by an asterisk.

doi:10.1371/journal.pone.0139584.g004
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MDA-MB 231 cells as confirmed by western blotting and densitometry analysis. No significant
reduction in expression of LRP was observed 24 h and 48 h after transfection of MDA-MB 231
cells (Fig 3). The expression levels of LRP were reduced by 34% in MDA-MB 231 (26% with
esiRNA-RPSA), 78% in WHCO1 and 100% in MCF-7 cancer cells (Fig 2).

The evasion of apoptosis is a fundamental hallmark of cancer cells hence the effect of knock-
down of LRP on the viability of the above mentioned breast and oesophageal cancer cell lines
was investigated. No decrease in expression of LRP or decrease in viability of MDA-MB 231
cells was observed 24 h and 48 h after transfection (Figs 1 and 3). However, although a 100%
knockdown of LRP was observed in MCF-7 breast cancer cells 72 h after transfection, only a
52% reduction in cellular viability was noted whereas the decrease in viability of the WHCO1
and MDA-MB 231 cells correlated to the reduction in LRP expression (Figs 2 and 4). This may
suggest that the anti-apoptotic role of LRP/LR varies with respect to cell line. It is hypothesized

Fig 5. The effect of siRNA-mediated downregulation of LRP expression on cell membrane integrity. 72 h post-transfection, MCF-7, MDA-MB 231 and
WHCO1 cells were stained with Annexin-V FITC and 7-AAD then analysed by flow cytometry. siRNA-LAMR1 treated MCF-7, MDA-MB 231 andWHCO1
cells revealed high FITC and 7-AAD signals indicative of cells undergoing early and late apoptosis, compared to untreated and siRNA-scr treated cells (8mM
PCA was used as a positive control).

doi:10.1371/journal.pone.0139584.g005
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that LRP/LR associates with the nuclear envelope and chromatin during interphase, connecting
the latter to the former thus retaining chromosomal stability and in turn maintaining cellular
viability. LRP/LR accomplishes this by binding to the growth factor Midkine, which is known
to promote cell migration, proliferation and survival by inducing nuclear localization [35].
Knockdown of LRP results in cell death of breast MCF-7, MDA-MB 231 and oesophageal
WHCO1 cancer cells, which could be due to autophagy, apoptosis or necrosis. Sustanad and
Smith illustrated that silencing of LRP/LR induces apoptosis in Hep3B cells; therefore we
employed apoptotic assays to elucidate whether apoptosis is indeed the mode of cell death
impeded by LRP/LR in these breast and oesophageal cancer cell lines[37]. We focused on the
prominent hallmarks of apoptosis; changes in the cell membrane integrity as well as alterations
in the nuclear morphology of the cells [39, 40]. Post-transfection with siRNA-LAMR1 and
treatment with 8mM PCA, breast MCF-7, MDA-MB 231 and oesophageal WHCO1 cancer
cells labelled with Annexin V-FITC/7-AAD resulted in a shift of the majority of cells to the

Fig 6. The effect of siRNA-mediated downregulation of LRP expression on nuclear morphology. 72 h post-transfection, MCF-7, MDA-MB 231 and
WHCO1 cells were stained with Hoescht 33324 and viewed by immunofluorescence microscopy. siRNA-LAMR1 treated MCF-7, MDA-MB 231 andWHCO1
cells displayed condensed nuclei and decreased nuclear integrity (indicated by white arrows), compared to untreated and siRNA-scr treated cells (8mM PCA
was used as a positive control).

doi:10.1371/journal.pone.0139584.g006
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quadrants displaying late apoptotic and necrotic cells (Fig 5). The untreated and siRNA-scr
(negative control) populations of these cell lines displayed low FITC and 7-AAD signals in the
bottom left quadrant (viable cells) (Fig 5).

The high FITC and 7-AAD signals observed in siRNA-LAMR1-treated breast and oesopha-
geal cancer cell lines indicate the loss of cell membrane integrity and asymmetry of the mem-
brane phospholipids. Annexin V binds to the phospholipid, phosphatidylserine (PS) that
localises on the inner cell membrane, however, during apoptosis induction, PS becomes
exposed at the cell surface hence the high Annexin-V FITC signal [41, 42]. This exposure of PS
is crucial as it is a signal required for the recognition and removal of apoptotic cells by lyso-
zymes or neighbouring phagocytic cells, thus not posing harmful consequences to other cells
and the cellular environment[43]. Moreover, 7-AAD binds the DNA guanine-cytosine base
pair allowing for distinction between early or late apoptotic and necrotic cells; thus the high
7-AAD signal was indicative of late apoptotic and necrotic cells in the populations of breast
MCF-7, MDA-MB 231 and oesophageal WHCO1 cancer cells (Fig 5). It was observed that a
majority of MCF-7 and WHCO1 cells were at a late stage of apoptosis whereas a majority of

Fig 7. Changes in nuclear area after siRNA-mediated downregulation of LRP. 72 h post-transfection, MCF-7, MDA-MB 231 andWHCO1 cells were
stained with Hoescht 33324 and viewed by immunofluorescence microscopy. The change in nuclear morphology was quantified with ImageJ software and is
represented as the average nuclear area. The error bars indicate the standard deviation and a significant difference (* p < 0.05, ** p < 0.01, *** p <0.001)
between the untreated control and the treated samples is shown by an asterisk.

doi:10.1371/journal.pone.0139584.g007

Anti-Apoptotic Role of LRP/LR in Cancer Cells

PLOS ONE | DOI:10.1371/journal.pone.0139584 October 1, 2015 12 / 16



MDA-MB 231 cells experienced necrosis after downregulation of LRP/LR. It is important to
note that the Annexin V-FITC/7-AAD experiments were carried out 72 h post transfection
with siRNA-LAMR1 and analysis after shorter incubation times could yield different results.

As mentioned before, the role of LRP in the maintenance of cellular viability has been
reported in previous studies [35–37] and this study confirmed that LRP does indeed play a cru-
cial role in maintaining cell viability and upon knockdown of this protein apoptosis was
induced. LRP also localises in the perinuclear compartment and nucleus [12, 13], therefore we
investigated whether knockdown of this receptor affected the integrity of the nucleus. Indeed,
post transfection with siRNA-LAMR1 morphological changes were observed in MCF-7,
MDA-MB 231 and WHCO1 cancer cells (compared to untreated and siRNA-scr-treated cells);
the nuclei appeared constricted and a decrease in nuclear area was observed (Figs 6 and 7).
Both the loss of membrane integrity and change in nuclear morphology observed in these cell
lines are indicative of apoptosis occurrence[40], thus suggesting that LRP maintains cellular
viability by impeding apoptosis.

The pathological potential of LRP/LR in cancer has been targeted using numerous anti-
LRP/LR tools including anti-LRP/LR specific antibodies in order to impede cancer propagating
processes including, increased invasion[3], cellular proliferation[44], metastasis[29, 33] and
evasion of apoptosis[36]. Therefore, targeting of LRP/LR poses as a promising alternative ther-
apeutic approach for the treatment of cancer by hampering the occurrence of the above men-
tioned cancer promoting processes. The fact that downregulation of LRP in cervical and lung
cancer cells resulted in induction of apoptosis [36] does not implicate that LRP knockdown has
the same effect in other cancer types. Therefore, we investigate the effect of LRP knockdown in
breast and oesophageal cancer cells, major deleterious cancer types worldwide, in this study.
We proved that LRP knockdown in these cancer cell lines also promotes cell death by predomi-
nantly late apoptosis induction, although the knockdown in metastatic MDA-MB 231 breast
cancer cells also induces necrosis. However, it must be stressed that the laminin receptor is
imperative for physiological processes in normal cells such as cell attachment, differentiation,
motility, thus its inhibition may cause detrimental effects that can compromise the health of
the individual, although knockdown of LRP in the brain by antisense RNA technology did not
result in any physiological side effects in mice[45]. Consequently, studies concentrating on
potentially appropriate gene delivery systems such as lentiviral or adeno-associated viral sys-
tems for siRNA targeting LRP/LR are crucial and with successful animal trials employing appli-
cation of siRNAs targeting LRP could be deemed as a potential therapeutic approach for the
treatment of breast and oesophageal cancers.
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