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Abstract

Full-length mitochondrial cytochrome c oxidase I (COI) sequence information from lobster

phyllosoma larvae can be difficult to obtain when DNA is degraded or fragmented. Primers

that amplify smaller fragments are also more useful in metabarcoding studies. In this study, we

developed and tested a method to design a taxon-specific mini-barcode primer set for marine

lobsters. The shortest, most informative portion of the COI gene region was identified in silico,

and a DNA barcode gap analysis was performed to assess its reliability as species diagnostic

marker. Primers were designed, and cross-species amplification success was tested on DNA

extracted from a taxonomic range of spiny-, clawed-, slipper- and blind lobsters. The mini-bar-

code primers successfully amplified both adult and phyllosoma COI fragments, and were able

to successfully delimit all species analyzed. Previously published universal primer sets were

also tested and sometimes failed to amplify COI from phyllosoma samples. The newly

designed taxon-specific mini-barcode primers will increase the success rate of species identifi-

cation in bulk environmental samples and add to the growing DNA metabarcoding toolkit.

Introduction

Holthuis (1991) provided a detailed systematic catalogue of nearly all the marine lobsters

known up to the early 1990s, based solely on the morphology of adult specimens. The tradi-

tional classification system used in the catalogue recognized the superfamilies; Nephropoidea

(clawed lobsters), Palinuroidea (spiny and slipper lobsters), Eryonoidea (blind lobsters) and

the living fossil Glypheoidea within the decapod suborder Macrura Reptantia [1]. More

recently, Chan (2010) updated the list of valid species by adding several newly described taxa,

and organizing all living marine lobsters into four infraorders: Astacidea, Glypheidea, Achelata

and Polychelida. The new (2010) checklist recognized six families, 55 genera and 248 species

(with four subspecies) of marine lobsters [2].

Marine lobsters have cryptic early life-history stages. Larvae (called phyllosomas) hatch

from eggs carried ventrally on the abdomen of the female and are then dispersed as mero-

plankton by water movements [3]. Phyllosomas are dorso-ventrally flattened, leaf-like and

transparent, and moult through a series of developmental stages of increasing size and mor-

phological complexity [4]. The final phyllosoma stage undergoes a metamorphic molt into a
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post-larva (or puerulus), which settles on the substrate to begin a benthic existence. Early ben-

thic juveniles are morphologically similar to adult lobsters, and can readily be identified to spe-

cies level [4]. In contrast, phyllosomas are difficult to distinguish, because they are

morphologically cryptic, and have not yet been fully described for all extant taxa [5, 6].

DNA barcoding is now well established as a technique for species identification and discov-

ery [7]. It relies on short, standardized nucleotide sequences (DNA barcodes) as internal spe-

cies tags and searchable online sequence repositories, such as the Barcode of Life Data Systems

(BOLD, www.barcodeoflife.org) and International Nucleotide Sequence Database Collabora-

tion (www.insdc.org). DNA barcoding augments traditional taxonomy methods [8] and is par-

ticularly useful for distinguishing cryptic or polymorphic species, such as marine lobsters, and

for associating life history stages of unknown identities, such as eggs or larvae, with identifiable

adult stages [9].

The DNA barcode used in most animal groups is a 658-base pair (bp) protein-coding

region of the mitochondrial cytochrome c oxidase 1 (COI) gene [7]. This region has been suc-

cessfully used to identify adult lobsters and phyllosomas [10, 11], but amplification success of

phyllosomas is often low [12], possibly because of rapid post-capture DNA degradation and

fragmentation [13, 14]. Fragmented DNA shorter than the spanning length of the COI primer

would hinder amplification [15]. Several studies have consequently relied on 16S rRNA or 18S

rRNA gene regions to obtain higher amplification success rates [16–19]. A higher COI amplifi-

cation success rate can potentially be obtained by designing a shorter informative section of

the gene region, as a mini-barcode.

Mini-barcodes need to be sufficiently informative and preferentially target hypervariable

DNA regions to accurately delimit species [20, 21]. The reliability of mini-barcodes relies on

the presence of a ‘barcode gap’, or the difference between inter- and intraspecific genetic dis-

tances within a group of organisms [22, 23]. Several studies have successfully designed and

tested mini-barcodes in species from a wide taxonomic range, for example, moths [24], Aus-

tralian mammals [25] and Indian snakes [26]. Meusnier et al. (2008) developed a ‘universal’

mini-barcode from the standard COI gene region to successfully identify a range of mammals,

fishes, birds, and insects from archival samples. Nevertheless, a limitation of universal primers

is that the most informative portion of the COI region is not the same for all taxa [27]. Hence,

taxon-specific primers tend to have higher PCR amplification and sequencing success rates

and offer higher discriminating power than universal primers [15].

Advances in next-generation sequencing and metabarcoding encourages the development

of primers for taxon-specific mini-barcodes, which will, in turn, improve the efficiency and

accuracy of taxon discovery and identification [21], especially in bulk samples such as mixed

zooplankton collected from tow-nets. The taxonomic coverage of the primer sets can then be

used in a tree-of-life approach in ecosystem biomonitoring [24, 28]. In this study we used an

in silico method to identify the shortest, most informative portion of the COI gene region in

marine lobsters, and used it to design a taxon-specific mini-barcode. The reliability of the

mini-barcode as identification tool was tested using DNA barcode gap analysis. The cross-spe-

cies amplification of the mini-barcode primers was tested on the tissue of a broad range of lob-

ster taxa, including species of spiny- (Palinuridae), clawed- (Nephropidae), slipper-

(Scyllaridae) and blind lobsters (Polychelidae). The amplification success of the mini-barcode

primers on phyllosomas was compared with that of primers already available in the literature.

Materials and methods

A total of 350 lobster COI sequences were downloaded from GenBank and BOLD (www.ncbi.

nlm.nih.gov/genbank, date accessed: 02-05-2017http://www.boldsystems.org/, date accessed:
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02-05-2017) (S1 Spreadsheet). Where available, individuals from different geographical

regions were included in the dataset to accommodate potential phylogeographic structure

within recognized species. The final dataset included 175 species belonging to 42 genera and 4

families, covering some 71% of known marine lobster species, 76% of the genera and 67% of

the families listed by Chan (2010). The sequences were aligned using Clustal X2.1 [29], and

optimized manually to ensure homology, using Bioedit 7.2.5 [30]. The numbers of variable-

(V) and parsimony informative characters (Pi), and the average nucleotide composition were

estimated for the data (full-length and mini-barcode alignments) using MEGA 6.0 [31].

Mini-barcode fragments were estimated using sliding window analysis (SWAN) [32] in the

Species Identity and Evolution (SPIDER) [33] package in R (http://www.r-project.org). The sli-

deAnalyses function was used to generate windows varying in size from 100 to 230 base pairs

(bp). Windows were shifted along the length of the COI alignment using 10 bp intervals. The

top two mini-barcode fragments for each window length were selected for further analyses

based on: (1) high mean Kimura 2-parameter (K2P) distance; (2) few zero pairwise non-conspe-

cific distances; and (3) high proportion of clades shared between the neighbor-joining tree from

the full-length DNA sequence alignment and the tree constructed using only data from selected

windows. From this analysis, a total of 28 potential mini-barcode alignments were created.

Maximum likelihood analysis was conducted on the 29 datasets (1 full-length reference dataset

and 28 SWAN mini-barcodes) using Garli 0.951 [34]. In all analyses, the K2P model of sequence

evolution [35] was implemented as this is the model implemented on BOLD. The 28 mini-bar-

code maximum likelihood trees were then compared to the full-length reference tree using Ktree-

dist 1.0 [36]. The Ktreedist calculated K-scores (topology and branch length differences) and

Robinson-Fouls symmetric difference (topological differences). For both methods, lower values

indicated a high degree of similarity between the reference tree and the mini-barcode tree.

A DNA barcode gap analysis was conducted on the top-scoring mini-barcode dataset.

Intra- and interspecific genetic distances were calculated using the K2P nucleotide substitution

model in MEGA 6.0 and plotted. The maximum intraspecific distance was subtracted from the

minimum interspecific distance to determine the barcoding gap [37] and the Jeffries-Matusita

distance (J-M) statistic was used to test whether the intra- and interspecific genetic distance

classes were separable. The J-M statistic takes into consideration the distance between the

means of the intra- and interspecific genetic distances, and the distribution of values from the

mean [38]. The J-M distance is asymptotic to 1.414 and as such, a value of 1.414 or greater sug-

gests that intra- and interspecific genetic distances are statistically separable [39].

Primers were designed flanking the top-scoring mini-barcode region (LobsterMinibarF:5’-
GGWGATGAYCAAATTTAYAAGT–3’ and LobsterMinibarR: 5’-CCWACTCCTCTTTCTACTA
TTCC –3’). Amplification and sequencing success were tested on both adult and phyllosoma

samples of different lobster species. The adult samples included: two from the family Nephropi-

dae (Metanephrops mozambicus, Nephropsis stewarti), two from Scyllaridae (Scyllarides elisa-
bethae, Scyllarides squammosus), six from Palinuridae, comprising of three genera, namely;

Panulirus (P. homarus, P. versicolor), Palinurus (P. gilchristi, P. delagoae) and Jasus (J. lalandii, J.
paulensis) and one from the family Polychelidae (Polycheles typhlops). The phyllosoma samples

included three specimens from the family Palinuridae (Panulirus ornatus, P. homarus, and P.

homarus rubellus) and five from the family Scyllaridae (Scyllarus arctus, Petrarctus rugosus,
Acantharctus ornatus, Scyllarus sp., and Petractus sp.). These samples provided 67% coverage

across the different families within the lobster taxonomy.

DNA from 17 species (adults and larvae combined = 19 samples) was extracted from pereio-

pod tissue using the Zymo Quick-DNA Universal Kit (Zymo Research), as per the manufactur-

er’s protocol which was modified to include an initial incubation step at 55˚C overnight. PCR

reactions were 25 μl in volume and contained 30 ng genomic DNA, 12.5 μl OneTaq Quick-
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Load Master Mix (1X, BioLabs, New England), 0.50 μl forward and reverse mini-barcode

primer (10 μM each), 6.5 μl sterile nuclease-free water, 2 μl additional MgCl2 (25 μM) and 2 μl

Bovine Serum Albumin (BSA) (1 mg.m-1) was added. All PCR reactions were run with a nega-

tive control. The thermal cycling program included initial denaturation at 94˚C for 2 minutes,

followed by 35 cycles of denaturation at 94˚C for 30 seconds, annealing at 46˚C for 30 seconds,

and extension at 68˚ C for 1 minute. The final extension step was carried out at 68˚C for 5 min-

utes. PCR clean-up and sequencing reactions were performed at the Central Analytical Facilities

(CAF) at the University of Stellenbosch (South Africa). All sequences were checked for their

species specificity using the nucleotide BLAST tool (BLASTn) on NCBI GenBank. Percentage

identification between 92–100% was used to confirm the exact species match.

The amplification success of the lobster-specific mini-barcode primer set was compared to

that of the standard COI primer set (expected size = 658 bp) [40], a universal mini-barcode

primer (expected size = 130 bp) [24], and internal COI mini-barcode primers (expected

size = 313–319 bp) [21] (see S1 Table). A graphical representation with the relative annealing

sites and the orientation of each primer set on the COI barcode region can be seen in S1 Fig.

The internal mini-barcode primers designed by Leray et al. (2013) works in conjuncture with

the Folmer et al. (1994) COI primers. PCR reactions were the same as above. Thermal cycling

conditions can be found in S2 Table. The PCR products were visualized on a 1.2% (w/v) TBE

agarose gel containing 0.02% Ethidium Bromide (EtBr). A 100 bp molecular weight marker

(Solis Biodyne) was used to estimate the size of PCR products. PCR clean-up and sequencing

were carried out on successful amplifications.

Results

Smaller window sizes (100–160 bp from SWAN) had higher mean K2P distances and lower

zero non-conspecific values in the K2P distance matrix. Larger window sizes (170–230 bp)

showed better congruence of neighbor-joining trees (S3 Table). Larger mini-barcode frag-

ments generated lower K- and R-F scores when compared with the reference tree (S4 Table).

Based on these results, Fragment 230_b (position 109–339 of the full alignment) was selected

as the best candidate for a mini-barcode.

The DNA barcode gap analysis was carried out on 350 DNA barcodes (S1 Spreadsheet)

which included two representative individuals per species. To test the impact of sample size

per species, the analysis was also carried out on a larger dataset with 2–5 individuals per species

(S2 Fig). Increasing the sample size did not significantly impact the DNA barcode gap analysis.

The intra-specific K2P pairwise distances in the Fragment 230_b alignment ranged from 0.00

to 0.01, while the inter-specific distances ranged from 0.02 to 0.36 (Fig 1). The position of the

DNA barcode gap is between 0.01 and 0.02. The Jeffries-Matusita distance of 1.998 exceeds the

significance thresholds and confirms that the intra- and interspecific distance classes are statis-

tically separable.

The mini-barcode region was successfully amplified using the designed primers (Lobster-

MinibarF and LobsterMinibarR) across all 17 different species in both adult and phyllosoma

samples (S3 Fig). BLAST search results confirmed that 16 mini-barcode sequences were a

match (percentage identification between 92–100% was used to confirm the exact species

match) to the morphologically identified adult and phyllosoma lobster voucher specimens. In

three cases (N. stewarti, Scyllarus sp. and Petrarctus sp.) no direct match could be found,

because no sequences were available on GenBank for these species. GenBank accession num-

bers are provided in S2 Spreadsheet.

PCR amplification was successful for all published primer pairs when tested on DNA

extracted from adult P. homarus samples (Fig 2), but for phyllosomas, only the Folmer et al.
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(1994) primer set (LCOI490, HCO2198) produced a PCR product, for one of two specimens.

In contrast, the lobster mini-barcode primers consistently amplified the DNA extracted from

phyllosoma samples. BLAST searches performed on successfully amplified PCR products con-

firmed that all sequences were P. homarus, with a match of 92–99% (S5 Table). Given that our

mini-barcode primer set was selected to amplify the most variable portion of the COI gene,

the< 100% sequence match with data on GenBank is probably due to a combination of

genetic diversity within species and limited COI data for these species currently uploaded. As

more data from more species and populations are uploaded to GenBank or BOLD species

identification will become more accurate.

Discussion

The lobster specific mini-barcode primer pair designed in this study was tested on a taxonomi-

cally diverse set of marine lobsters from seven different genera. It consistently amplified COI

from both adults and phyllosomas across all taxa and outperformed published primers. Confir-

mation of a barcode gap highlights its value as a diagnostic tool that can be used to match phyl-

losomas to species [37]. The sliding window analysis method [32] accurately identified the

shortest, most informative portion of the COI gene of marine lobsters.

The taxon-specific mini-barcode primers were designed in response to the repeated low

amplification success rate of the standard COI gene region in DNA extracted from lobster

phyllosomas. Given our broader objective, to design primers that can account for the presence

of marine lobsters using metabarcoding on unsorted zooplankton samples, a high

Fig 1. Frequency distributions of intra- and interspecific pairwise K2P distances calculated using the selected mini-barcode region (Fragment 230_b). The barcode

gap (insert) lies between the genetic distances of 0.01 and 0.02.

https://doi.org/10.1371/journal.pone.0210492.g001

Design of lobster mini-barcode

PLOS ONE | https://doi.org/10.1371/journal.pone.0210492 January 24, 2019 5 / 11

https://doi.org/10.1371/journal.pone.0210492.g001
https://doi.org/10.1371/journal.pone.0210492


amplification success for lobster larvae was considered to be crucial. The phyllosoma samples

tested in this study were obtained from plankton tows at sea and stored in absolute ethanol.

COI often failed to amplify completely using published primers, or the sequences obtained

were messy and terminated abruptly. The effects of suboptimal field sampling conditions (tem-

perature and pH fluctuations and contamination) [13], post-survey sorting of plankton

Fig 2. Amplification of four different cytochrome oxidase (COI) primer pairs tested in this study. Lanes 2, 3, 8, 9, 14,

15, 21, 22, 27 and 28 are PCR products recovered from DNA extracted from adult Panulirus homarus. Lane 4, 5, 10, 11,

16, 17, 23, 24, 30 and 31 are PCR products recovered from DNA extracted from phyllosoma samples. Lane 6, 12, 18, 25

and 31 are PCR negative controls. Lane 1, 19, 20 and 32 are 100 bp molecular weight marker (Solis Biodyne). Lane 7, 13

and 26 had no samples loaded.

https://doi.org/10.1371/journal.pone.0210492.g002
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samples, or inadequate preservation of biological material (whole phyllosomas) prior to DNA

extraction may have contributed to the degradation or fragmentation of DNA [14, 41].

Other studies have had similar difficulties with the amplification of COI from larval mate-

rial using different organisms. A study based on larval Antarctic marine invertebrates which

were alcohol-preserved encountered a low amplification success of 22%, despite using 18S

RNA, COI and 16S RNA primer sets [42]. The authors suggested using a taxon-specific primer

to increase PCR amplification success rate. Baird et al. (2011) created a COI reference library

for freshwater benthic macroinvertebrate specimens ranging in preservation time between<1

and 23 years old, but this yielded only 2.9% full-length usable barcodes [43]. Adding a univer-

sal mini-barcode primer increased the yield to 17.5%, and it was concluded that the DNA was

likely degraded, because samples were collected and fixed in formalin in the field and thereaf-

ter transferred to 70% ethanol for long-term storage.

Hajibabaei et al. (2006) used both in silico and in vitro tests to examine the accuracy of

mini-barcodes in species identification of century-old museum samples. Mini-barcodes of

varying lengths were tested in silico on Australian fish and lepidoptera sequences and found to

be as accurate as full-length barcodes. In vitro tests were subsequently carried out on museum

specimens with varied age, preservation methods and taxonomic scope. Primers designed for

the mini-barcodes had a success rate of> 90% after sequencing, compared to 50% in full-

length primers. Hence mini-barcode primers which amplify a smaller region of COI can

improve barcoding success where DNA is degraded.

The lobster mini-barcode designed in this study returned a higher amplification success for

lobster phyllosomas than the universal mini-barcode [24]. Internal mini-barcodes (Leray et al.
2013) designed to work in conjunction with the commonly used COI primer set [40] were also

tested in addition to degenerate versions of the universal COI primer set [44, 45]. The forward

internal primer used in combination with the reverse COI primer and its degenerate versions

had the highest amplification success. Nevertheless, when tested on lobster phyllosomas in the

present study, these internal primers failed to amplify COI.

The emergence of metabarcoding techniques in combination with high throughput next-

generation sequencing provides a powerful new tool for biodiversity assessments from envi-

ronmental samples [46]. DNA metabarcoding can increase the speed, accuracy and resolution

of species identification while allowing for cost-effective biodiversity monitoring. For example,

zooplankton in the marine environment (including phyllosomas of various lobster species) are

model organisms for monitoring trends in ecosystem health and biodiversity in the face of cli-

mate change and habitat degradation, because they exhibit rapid response to environmental

change [47]. Within this context, taxa that are important to fisheries (i.e. decapods such as

marine lobsters, crabs and prawns, or fish species important to fisheries) can be selected as

indicator species when analysing mixed zooplankton samples.

The efficiency and accuracy of metabarcoding for taxonomic detection and identifications

rely on specifically targeted barcodes which are taxonomically informative [48], and on suit-

able primer sets for amplifying hypervariable DNA regions from target organisms [21]. The

method used to develop mini-barcodes for lobsters in our study can easily be applied to other

taxa–for example crabs, shrimps or fish. Identifying the shortest, most variable portions of the

genome are particularly relevant in applications involving next-generating sequencing tech-

nologies, such as Illumina, with limited read length.

To conclude, studies have highlighted the need for multiple metabarcoding assays to cata-

logue biodiversity, including universal and multiple taxon-specific assays [28]. From this per-

spective, the use of taxon-specific mini-barcodes is encouraged, because, in combination, they

can maximize richness estimates and increase the possibility of recovering amplicons from

degraded DNA [24, 28].
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(PDF)
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