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Abstract

Biosurfactants are microbial metabolites with possible applications in various industrial

sectors that are considered ecofriendly molecules. In recent years, some studies identi-

fied these compounds as alternatives for the elimination of vectors of tropical diseases,

such as Aedes aegypti. The major bottlenecks of biosurfactant industrial production have

been the use of conventional raw materials that increase production costs as well as

opportunistic or pathogenic bacteria, which restrict the application of these biomolecules.

The present study shows the potential of hemicellulosic sugarcane bagasse hydrolysate

as a raw material for the production of a crystalline glycolipidic BS by Scheffersomyces

stipitis NRRL Y-7124, which resulted in an emulsifying index (EI24) of 70 ± 3.4% and a

superficial tension of 52 ± 2.9 mN.m-1. Additionally, a possible new application of these

compounds as biolarvicides, mainly against A. aegypti, was evaluated. At a concentration

of 800 mg.L-1, the produced biosurfactant caused destruction to the larval exoskeletons

12 h after application and presented an letal concentration (LC50) of 660 mg.L-1. Thus, a

new alternative for biosurfactant production using vegetal biomass as raw material within

the concept of biorefineries was proposed, and the potential of the crystalline glycolipidic

biosurfactant in larvicidal formulations against neglected tropical disease vectors was

demonstrated.
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Introduction

Biosurfactants (BS) are microbial metabolites with amphiphilic structures that exhibit ten-

sioactive, emulsifying, antimicrobial and antitumoral properties and are considered to be

biodegradable and non-toxic, making them ecofriendly products compared to the synthetic

surfactants widely used by modern societies [1, 2]. These bioproducts are commonly produced

by bacteria, such as Pseudomonas and Bacillus, that are opportunistic species or pathogenic

to various organisms. Recently, yeasts have been frequently used as fermenting agents of BS

because many of them have GRAS (Generally Recognized as Safe) status, which eliminates the

risks associated with toxicity and pathogenicity and allows applications in the food and phar-

maceutical industries without restrictions [3, 1]. In addition, the production of BS using indus-

trial by-products in bioprocesses is considered advantageous over synthetic routes given the

current required sustainability demands and reductions in production costs. Due to their

advantages and physicochemical and biological properties, BS are considered versatile mole-

cules that can be applied in the chemical, petroleum, food, pharmaceutical, cosmetic and agri-

cultural industries [4, 5].

In recent years, agriculture has used BS as emulsifiers in various herbicidal and insecticidal

formulations. In addition, studies have reported that some glycolipids (sucrose esters) decrease

survivorship and oviposition in the mite Calacarus heveae Feres—Acari: Eriophyidae, causing

death [6]. Recently, the insecticidal effect of BS has also been explored against vectors of tropi-

cal diseases, such as Aedes (Stegomyia) aegypti (Diptera: Culicidae) (Linnaeus, 1762), and this

application is of extreme interest for public health programs aimed at controlling such urban

pests [7, 8].

Aedes aegypti has been disseminated across the planet since the XVIIth Century and has

been reported on every continent, particularly in countries with tropical and subtropical cli-

mates. This Culicidae mosquito is responsible for the transmission of tropical arboviruses,

such as dengue, yellow fever, Zika and chikungunya, which have been causing worldwide con-

cern in recent years. In Brazil, in 2016, 1.5 million probable cases of dengue, 263,598 cases of

chikungunya and 211,770 cases of Zika were reported. Zika is also associated with 1,750 con-

firmed cases of microcephaly in newly born children as well as the intensification of some

degenerative ailments such as Guillain-Barré syndrome [9–11]. Several synthetic insecticides,

such as organochlorines, organophosphates, carbamates and pyrethroids, are used for the con-

trol of A. aegypti, but the toxicity of these compounds and the acquired resistance that mosqui-

toes present over time necessitates the replacement of these insecticides [12].

Due to their sustainable appeal and the advent of microbial biotechnology and green chem-

istry, the prospecting of natural substances and methods for the elimination of A. aegypti has

been increasing as shown by the adoption of toxins from entomopathogenic bacteria, insect

growth regulators (IGRs) and plant extracts [13–15]. In addition, these agents are applied as

larvicides, which is one of the most used means of controlling the mosquito population [16].

Based on the environmentally friendly features of BS in addition to their larvicidal and mos-

quitocidal properties, this study aimed to evaluate the larvicidal potential of BS produced by

yeasts using sugarcane bagasse hemicellulosic hydrolysate as the carbon and energy source

against A. aegypti.
This work will contribute to the introduction of these products as green and efficient alter-

natives for combatting neglected tropical diseases that ravage people in several parts of the

world. Sugarcane bagasse was chosen as the raw material due to its availability in certain coun-

tries, such as Brazil and India [17]. The use of the hemicellulosic fraction to obtain the BS was

emphasized in the present work because the integral exploitation of lignocellulosic biomass is

needed to consolidate biorefineries [18].
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Materials and methods

Raw material and chemicals

Sugarcane bagasse (SB) was obtained from Usina Costa Pinto/COSAN (Piracicaba, SP, Brazil).

Commercial 98% sulfuric acid purchased from Fluka/Sigma Aldrich (St. Louis, Missouri,

USA) was used for hydrolysis of the SB. The granular activated charcoal used in the detoxifica-

tion step was obtained from Alfa LU 10X30 (Brasilac, Brazil). Yeast extract, malt extract and

bacteriological peptone were purchased from Sigma-Aldrich (St. Louis, Missouri, USA). Com-

mercial kerosene was purchased at a local market. All other chemicals were of analytical grade.

Obtaining the sugarcane bagasse hemicellulosic hydrolyzate by acid

hydrolysis

Hemicellulosic hydrolyzate was obtained using a 30-L stainless steel reactor loaded with SB

and sulfuric acid (100 mg acid/g of SB) added in a solid/liquid proportion of 1:10 and oper-

ated at 121˚C for 15 min [19]. After the hydrolysis step, the hemicellulosic hydrolyzate was

concentrated in a 30-L vacuum evaporator at 70˚C until the xylose content reached 70 g.L-1.

The concentrated hydrolyzate was detoxified using an overliming technique combined with

addition of 1% activated charcoal (detoxified hydrolyzate—DH) [20]. The sugar (xylose,

arabinose and glucose) (g.L-1) and furan (furfural and 5-hydroximethyl-furfural) (mg.L-1)

contents in the DH were quantified using High Performance Liquid Chromatography

(HPLC), and the total phenolic compounds (g.L-1) were measured by a spectrophotometric

method at 725 nm [21]. The DH was stored at -20˚C to prevent the possible degradation of

sugars as well as contamination.

Maintenance of the yeast strain and BS production

The strain Scheffersomyces (Pichia) stipitis NRRL Y-7124 was obtained from the Collection of

the Northern Regional Research Laboratory (Peoria, Illinois, United States of America). Petri

dishes with Yeast Malt Agar medium (YMA) (g.L-1: glucose, 10; yeast extract, 3; malt extract,

3; and bacteriological peptone, 5) were used to maintain the strain, and after 48 h of static

growth in a bacteriological incubator at 30.0 ± 2.0˚C, the cultures were transferred to a refrig-

erator at 4˚C.

For inoculum preparation and fermentation a mineral medium (g.L-1: potassium dihydro-

genphosphate, 2.0; yeast extract, 10.0; ammonium nitrate, 11.0; magnesium sulfate heptahy-

drate, 2.0; and carbon source, 40.0) supplemented with pure xylose (SX medium) or detoxified

hemicellulosic hydrolyzate (DH medium) as a carbon source was used. The pH of the media

was adjusted to 5.0–5.5 [22].

For inoculum preparation, one loopful (3 mm) of the yeast strain was transferred to a

50.0-mL Erlenmeyer flask containing 10.0-mL of the SX medium. The flask was incubated at

30˚C with stirring at 200 rpm for 48 h in a rotary shaker. After incubation, the cells were iso-

lated by centrifugation (12000 x g, 10 min) and resuspended in 0.9% (w/v) sterile saline solu-

tion. Approximately 1 mL of cell suspension was inoculated into the fermentation flasks to

obtain an initial absorbance of 1.0 at 600 nm, corresponding to 1.0 x 107 total cells.mL-1.

Fermentation assays were performed in triplicate in 1.0-L Erlenmeyer flasks containing

200 mL of DH medium and were incubated at 30˚C with stirring at 200 rpm for 68 h in a

rotary shaker. After fermentation, the cultures were centrifuged at 12000 x g for 10 min to

remove the cells. BS containing supernatant was used for the isolation and characterization

procedures.
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BS isolation and partial characterization

For BS precipitation and isolation, cell-free culture broth was acidified with 6 M HCl to pH 2.0

and refrigerated for 12 h at 4˚C. Then, precipitated BS was extracted with an equal volume of

ethyl acetate (1:1, v/v); this procedure was repeated 3 times. The organic extract was dried at

37˚C for 72 h until the residual solvent evaporation, and the BS was resuspended in 0.01 mol.

L-1 phosphate buffer and kept under refrigeration (4˚C) [23].

Spectrophotometric tests for total and reducing sugars at 490 nm [24, 25], total lipids at 530

nm [26] and total protein at 595 nm [27] were performed for crystallized BS characterization.

Glycolipids test. To identify the BS produced by S. stipitis NRRL Y-7124 in the DH

medium, a test for glycolipid confirmation was performed that involved acid precipitation in

chloroform followed by reaction with methylene blue [28].

Thin layer chromatography (TLC). TLC of the organic extract was performed on silica

gel 60 F254 aluminum-coated sheets (Merck, Darmstadt, Germany) using as the eluent a mix-

ture of chloroform: methanol: distilled water (65:15:1 v/v). The spots were observed under visi-

ble light after treatment with a “Seebach staining solution” [29].

Fourier transform infrared spectroscopy (FTIR). FTIR analysis of the purified BS was

carried out using a spectrometer (DX Perkin Elmer, Waltham, Massachusetts, USA) with

potassium bromide (10 mg of sample and 90 mg of potassium bromide) as support in a wave-

number range of 4000–400 cm-1.

X-ray diffraction of the BS crystals. X-ray diffraction measurements were carried out

with an Empyrean diffractometer (PANalytical, Almelo, The Netherlands) equipped with a

X’Celerator X’Pert detector. A Cu anode was used as the X-ray source (K radiation: 40 kV and

40 mA), and a 1/4˚ divergence slit was used to collect the data in the 2θ range of 10–80˚.

Emulsifying and tensioactive properties. The emulsifying index (EI24) was determined

by the addition of 2 mL of kerosene to the same volume of cell-free culture broth supernatant

in glass tubes. The tubes were mixed by vortexing at 9000 rpm for 1 min and were incubated at

room temperature for 24 h. The stability of the emulsion was determined after 24 h, and the

EI24 was calculated as described previously [30]. Surface tension (ST) measurements were per-

formed using a tensiometer (Kruss FM40 Easy drop, Hamburg, Germany) with the DropShape

Analysis software using the Pendant Drop method.

Acid hydrolysis of crystalized BS. Acid hydrolysis of crystalized BS was performed by

reacting 10 mg of BS with 1 mL of a 5% HCl-methanol solution for 12 h at room temperature.

Then, the reaction was quenched by adding 1 mL of water. The methylated lipids present in

the mixture were removed by liquid-liquid extraction using hexane. The water-soluble fraction

was then neutralized using a 0.001 mol/L NaOH solution to pH 6.0–7.0, followed by HPLC

analysis [31].

HPLC analysis. The glucose, xylose, arabinose and acetic acid concentrations were deter-

mined by high-performance liquid chromatography (HPLC) (Agilent Technologies 1200

Series, Santa Clara, USA) using a Bio-Rad AMINEX HPX-87H (300 x 7.8 mm) column at

45˚C with a refraction index detector (RID6A). Sulfuric acid (0.01 N) was used as the eluent

with a flow rate of 0.6 mL/min, and the injection volume was 20 μL.

Larvicidal activity tests

Egg acquisition. The eggs of A. aegypti mosquito specimens were provided by Merieux

NutriSciences (Charqueada–SP, Brazil). The eggs were placed in 40 mL of mineral water to

hatch. After hatching, the larvae were fed, and when they reached the third instar of develop-

ment, they were transferred to flasks for the larvicidal experiments [8].
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Larvicidal evaluation. A total of 40 mL of either BS or the control solution (mineral

water) were added to 60-mL flasks with 10 A. aegypti larvae in the third instar of development.

The flasks had small holes in the caps to allow gas exchange. The tests were performed using

solutions containing 50, 100, 200, 400, 800 or 1000 mg/L BS in addition to the control. Larvi-

cidal activity was quantified based on the time of permanence at the surface, the number of

attempts to stay on the surface and the number of dead larvae. The quantifications were done

in real time; the larvae were considered dead when they did not show any signs of activity or

movement. The experiments were carried out in triplicate.

Microscopy analysis

Images of the BS crystals and mosquito larvae were acquired using an optical microscope

(DMLB, Heidelberg, Germany) with a digital camera (Leica DC100) at 100 - 400X magnification.

Statistical analysis

All of the fermentations and quantitative tests were performed in triplicate. The results are

expressed as the mean with the arithmetic standard deviation calculated. The Reed-Muench

(Behrens) and intersection curve methods were used for the DL50 calculations [31, 32]. Graph-
Pad Prism 5.0 was used for the calculations.

Results and discussion

Characterization of hemicellulosic sugarcane bagasse hydrolyzate and

BS production

The detoxified hemicellulosic sugarcane bagasse hydrolysate (DH) used in this study had the

following composition: 58.764 ± 1.076 g.L-1 xylose, 4.300 ± 0.053 g.L-1 arabinose, 3.677 ± 0.076

g.L-1 glucose, 0.047 ± 0.009 mg.L-1 total phenolics and 0.123 ± 0.000 mg.L-1 furans (furfural

and HMF). After the addition of nutrients to the DH, the medium for BS production had the

following composition: 40 ± 2.69 g.L-1 xylose, 2.7 ± 0.029 g.L-1 arabinose and 1.34 ± 0.019 g.L-1

of glucose. Consequently, the compounds considered toxic to cellular metabolism, furans and

phenolics, were diluted to 0.028 ± 0.006 and 0.91 ± 0.003 mg.L-1, respectively. In the literature,

there are no reports of furans and phenolic compounds influencing BS production by yeasts,

but some papers have explored their effects on the production of other metabolites. A study

on ethanol production showed that concentrations of up to 0.30 g.L-1 of furans (furfural and

HMF) did not inhibit cell growth nor ethanol production by S. stipitis NRRL Y-7124 [33]. In

studies with Candida guilliermondii for xylitol production, analyses of the effects of phenolic

compounds of low molar mass (vanillin and syringaldehyde) were performed individually and

in combination. According to the authors, 2.0 g.L-1 vanillin inhibited microbial growth by

23%; however, xylitol productivity (0.62 g.L-1.h-1) was not affected. A concentration of 2.0 g.

L-1 syringaldehyde inhibited cell growth by 75%, yielding 0.14 g.L-1.h-1. Moreover, the combi-

nation of vanillin and syringaldehyde, both at concentrations of 1.0 g.L-1, showed a 50% reduc-

tion in xylitol productivity (0.3 g.L-1.h-1) [34].

After 68 h of cultivation, S. stipitis NRRL Y-7124 consumed approximately 60% of the

xylose and 100% of the glucose present in the DH medium, but the concentration of arabinose

did not vary until the end of the fermentation. The BS quantification tests showed a produc-

tion of 0.70 ± 0.030 g.L-1. Analysis of the furans and phenolic compounds showed that the

furans were completely consumed, and approximately 10% of the phenolics remained in the

medium. The metabolism of phenolic compounds by P. stipitis is due to the presence of the

cytochrome P450 enzyme complex, which is contains redox enzymes such as oxygenases that
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oxidize xenobiotic compounds (furans, phenolics, hydrocarbons and others) [35]. These

results are similar to a recent study that reported the production of BS by Candida bombicola
in a medium with acid cellulosic/hemicellulosic corn fiber hydrolysate, obtaining 1.000 g.L-1 of

sophorolipid after 192 h of fermentation [36]. The authors also observed the consumption of

furans and other compounds, with HMF totally metabolized after fermentation.

BS characterization

In this study, the BS produced by S. stipitis NRRL Y-7124 after 68 h of cultivation was charac-

terized by spectroscopic methods (UV-Vis and FTIR), TLC and X-ray diffraction and was

evaluated for its emulsifying and tensioactive properties as well as its composition of monosac-

charides in the glycidic fraction.

The EI24 and ST measurements of the free cell supernatant in kerosene were 70 ± 3.4% and

52 ± 2.9 mN.m-1, respectively. The results showed that the BS produced in the DH medium

had a better emulsifying property than tensioactive characteristic, probably due to the BS mol-

ecule size and type [37]. The EI24 results obtained are similar to or greater than others studies

of BS produced by yeasts with different carbon sources, which reported EI24 measurements

ranging from 40–76% [38; 39]. The emulsifying property of the BS produced in the present

work in hydrophobic compounds shows its potential for future applications in bioremediation

processes as well as cosmetic, agricultural, and food formulations [40].

After extraction, an oily yellow/brownish crude BS (Fig 1A) was obtained and resuspended

in phosphate buffer. After standing for crystallization, the crystals that formed (Fig 1B) were

qualitatively characterized for the presence of total and reducing sugars, proteins and lipids.

The analyses showed a non-reducing sugar composition of 32% and a lipid content of 64%,

indicating the probable production of a BS glycolipid by S. stipitis NRRL Y-7124.

The reaction of BS with blue methylene in an organic medium resulted in an absorbance of

0.425 (738 nm), evidencing the presence of glycolipidic BS. The blue color obtained in the

Fig 1. (A) Photography of the BS produced by S. stipitis NRRL Y-7124 in the HD medium after extraction and evaporation of the solvent. (B)

Optical micrograph of the crystallized BS produced by S. stipitis NRRL Y-7124 in the HD medium (magnification of 1000X).

https://doi.org/10.1371/journal.pone.0187125.g001
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reaction is due to the complexation between the carboxyl groups of the glycolipids and the

methylene blue dye. This test has been used in experiments on rhamnolipids produced by

Pseudomonas and Bacillus [28].

TLC analysis of the BS produced in the HD medium showed spots with retention factors

(Rf) of 0.76, 0.78 and 0.85, indicative of glycolipid production (Fig 2). In studies of BS secreted

by Cyberlindnera samutprakarnensis JP52 various sophorolipids with different Rf values, which

ranged from 0.6 to 0.9 due to size of the carbonic chain in their apolar regions, were reported

[41].

FTIR analysis (Fig 3A and 3B) shows stretching bands for hydroxyl (R-OH) groups between

3200–3400 cm-1, with the typical pattern for carboxylic acids and axial deformation peaks for

C-H bonds. Asymmetrical stretching of methylene (Vas CH2) and methyne (Vas CH) occurred

at 2919–2953 cm-1. Near 1600 and 1200 cm-1, the presence of stretching peaks for carbonyl

groups (R-C = O) and absorption bands from acetyl esters were observed (Fig 3A). The peaks

in the region near 1450 cm-1 probably correspond to the C-O-H in the plane binding of car-

boxylic acid (R-COOH) (Fig 3B). The bands present between 617 and 1460 cm-1 (fingerprint

region) represented vibrational deformations of R-C-H, R-C-O-H and R-O-H linkages typical

of carbohydrates (Fig 3B) [42]. The bands and peaks reported in this study are commonly

found in glycolipids produced by yeasts and bacteria [43, 44, 45].

X-ray diffraction of the BS crystals (Fig 4) showed an organized crystalline structure, as evi-

denced by the intense peaks in the 10–55˚ region. Similar results were found for poly-sophoro-

lipids synthesized chemically, whose diffraction showed intense peaks in the region between

3.6–33˚ [46]. This crystal structure was also observed for rhamnolipidic BS with a rhomboidal

aspect that was produced by Pseudomonas [47].

The crystallized BS was hydrolyzed, and the products present in the ethyl acetate extract

were analyzed by HPLC. The presence of a single peak with a retention time (tr) of 9.50 min

corresponding to glucose indicated that the glycidic fraction of the glycolipid could be cellobi-

ose or sophorose (Fig 5). Actually, cellobiose lipids or sophorolipids are glycolipidic BS com-

monly secreted by yeasts [47–49].

Application of BS as larvicide against A. aegypti

The BS glycolipid produced by the yeast was tested as a larvicide against A. aegypti, a vector of

many neglected tropical diseases that have caused various problems to humans in recent years

[11].

The produced and purified BS was tested at different concentrations against A. aegypti lar-

vae standardized in the third stage of development, a larval period in which there is intense

metabolic activity and greater larvicidal resistance. As shown in Table 1, 12 h after the applica-

tion of the BS at concentrations of 800 and 1000 mg.L-1, 100% of the larvae died. In the tests

with a BS concentration of 400 mg.L-1, only 20% of the larvae died after 24 h, whereas for con-

centrations less than 400 mg.L-1, death was not observed; however, motility decreased, and the

larvae remained submerged for longer periods of time. Subsequently, the LC50 of the BS was

calculated to be 660 mg.L-1.

Beginning 3 h after the application of BS at concentrations of 800 and 1000 mg.L-1, the lar-

vae exhibited an unusual behavior of intense agitation and did not maintain their usual posi-

tions near the water surface, which is where they carry out the gas exchange. Studies with A.

aegypti larvae have reported that the respiratory siphon has an internal region that is naturally

highly hydrophobic, guaranteeing humidity control due to its chemical composition, which is

rich in waxy lipids. BS application favors the interaction of the apolar region of the molecule

with the respiratory siphon, which exposes the polar portion of the BS, and consequently, the
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Fig 2. TLC analysis of the BS produced by S. stipitis in the DH medium.

https://doi.org/10.1371/journal.pone.0187125.g002
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Fig 3. FTIR of the crystallized BS produced by S. stipitis NRRL Y-7124 in the DH medium. (A) FTIR spectrum

with wavenumbers between 402–4000 cm-1, and (B) FTIR spectrum with wavenumbers in the fingerprint region

between 402–1716 cm-1.

https://doi.org/10.1371/journal.pone.0187125.g003
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siphon internal surface becomes polar. Thus, water flows through the spiracular cavity of the

larvae, killing them by drowning. In addition, tracheal air sacs, which present a specific gravity

very close to that of water and facilitate ascent to the surface for respiration, are influenced by

the presence of BS, altering and disturbing the hydrostatic equilibrium of the larvae, leading to

an exacerbated energy expenditure and exhaustion, which assist in death by drowning [50].

Fig 4. X-ray diffractogram of the crystallized BS produced by S. stipitis NRRL Y-7124 in the DH medium.

https://doi.org/10.1371/journal.pone.0187125.g004

Fig 5. HPLC chromatogram of the monosaccharides in the crystallized BS produced by S. stipitis in the DH medium.

https://doi.org/10.1371/journal.pone.0187125.g005
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In the literature, there are reports of microbial BS that have been tested as larvicidal and

pupicidal agents. The efficacy of these compounds as agents for the control of vectors of

neglected tropical diseases, usually expressed as LC50 values, varies according to the type

(chemical structure) of BS, the time of application (contact between larvae or pupae) and some

physical properties (temperature and pH of the medium). In some reports, the LC50 values

were lower than that observed in our work. Some studies reported that cyclic lipopeptides pro-

duced by Bacillus subtilis showed LC50 values ranging from 5.57 to 10.6 mg.L-1 against Anophe-
les stephensi larvae, and surfactin produced by Bacillus sphaericus exhibited LC50 values of 2.2

mg.L-1 at neutral pH and 3.0 mg.L-1 at pH 11 (Manonmani et al., 2011; Geetha et al., 2010). In

a more recent study, a rhamnolipid produced by Stenotrophomonas maltophilia showed an

LC50 of 100 mg.L-1 after 2 h of application when tested against Culex quinquefasciatus larvae,

and this value decreased to 30 mg.L-1 when the application time was increased to 24 h (Deepali

et al., 2014). Conversely, in other recent work, the observed LC50 values were similar to or

higher than those obtained in our study. In that study of a rhamnolipid produced by Pseudo-
monas aeruginosa, solutions containing 800–1000 mg.L-1 of BS killed all of the A. aegypti larvae

after 18 h of application, while solutions containing 400 and 600 mg.L-1 exhibited the same

effect only after 48 h of application [8].

Another interesting fact that should be highlighted is the probable effect of the BS on the

larva cuticle (Fig 6). After 12 h of BS application (800 mg.L-1), decomposition of the larvae

bodies was observed, likely due to the emulsification and removal of hydrocarbons and other

apolar compounds found on the cuticle (octadecane, n-heneicosane, docosane, nonacosane,

long chain carboxylic acids, aldehydes and esters) by the BS [51] (Fig 6B and 6C). Others

authors have reported that BS may affect the cells and cuticles of insects that are considered to

be agricultural pests or vectors of neglected tropical diseases, causing their death [52, 53, 8].

The continued larval decomposition that occurred with the application of the BS resulted in an

inability to observe the larval bodies after 24 h, likely due to the solubilization of chitin, a struc-

tural polysaccharide present in the larval exoskeleton.

Conclusion

The present study reports the use of a BS produced by S. stipitis NRRL Y-7124 in a medium

based on hemicellulosic sugarcane bagasse hydrolysates as a biolarvicide against A. aegypti, a

vector of neglected tropical diseases. Characterization tests showed that the BS produced is a

glycolipid, and biological tests revealed the larvicidal potential of this molecule. Another fun-

damental observation was the quick and efficient mechanism by which the BS eliminated the

larvae–through the decomposition of the exoskeleton–which is an unprecedented finding at

present in the literature. Based on the results obtained, the present work suggests that BS is a

sustainable product for future lignocellulosic biorefineries. In addition, a new application of

BS was shown that can help address a public health problem of extreme urgency, reducing and

Table 1. Number of live A. aegypti larvae 96 h after the application of different glycolipidic BS concentrations produced by S. stipitis NRRL Y-7124

in the HD medium: control, 400, 800, and 100 mg.L-1.

Glycolipidic BS concentration (mg.L-1) Initial number of larvae Average number of live larvae Standard deviation % Elimination

Control 20 20 0 0

400 20 15 0,707 80

800 20 0 0 100

1000 20 0 0 100

https://doi.org/10.1371/journal.pone.0187125.t001
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preventing tropical diseases such as Zika, which are caused by A. aegypti and result in fetal

deformation and neurological problems such as microcephaly. This work will contribute to

the production of this microbial metabolite at a large scale as it illustrates a way to convert

alcohol industry residues into a bioproduct of great aggregated value and shows an interesting

application of this safe BS.

Fig 6. Optical micrographs of A. aegypti larvae (A) without BS application (control; 400X

magnification), (B) 12 h after the application of 800 mg.L-1 of the BS produced by S. stipitis NRRL Y-

7124 (400X magnification) and (C) 12 h after the application of 800 mg.L-1 of the BS produced by S.

stipitis NRRL Y-7124 (1000X magnification).

https://doi.org/10.1371/journal.pone.0187125.g006
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Supervision: Cláudio José Von Zuben, Jonas Contiero, Silvio Silvério da Silva.
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12. Braga IA, Valle D. Aedes aegypti: vigilância, monitoramento da resistência e alternativas de controle no

Brasil. Epidemiologia e Serviços de Saúde. 2007, 16: 295–302.
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