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Abstract

Sexually dimorphic anatomy of brain areas is thought to be causally linked to sex differences in behaviour and cognitive
functions. The sex with the regional size advantage (male or female) differs between brain areas and species. Among adult
songbirds, males have larger brain areas such as the HVC (proper name) and RA (robust nucleus of the arcopallium) that
control the production of learned songs. Forest weavers (Ploceus bicolor) mated pairs sing a unison duet in which male and
female mates learn to produce identical songs. We show with histological techniques that the volume and neuron numbers
of HVC and RA were $1.5 times larger in males than in females despite their identical songs. In contrast, using in-situ
hybridizations, females have much higher (30–70%) expression levels of mRNA of a number of synapse-related proteins in
HVC and/or RA than their male counterparts. Male-typical and female-typical sexual differentiation appears to act on
different aspects of the phenotypes within the same brain areas, leading females and males to produce the same behaviour
using different cellular mechanisms.
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Introduction

Sex differences in behaviour, in particular in the realm of

reproduction, are common in all vertebrates. In correlation with

these behavioural differences, there are many reports of sexual

dimorphisms at various organizational levels of the central nervous

system of vertebrates including humans [1–6]. In particular, the

size of brain areas and their neuron numbers have frequently been

correlated with functional sex differences [2–6]. In songbirds, a

chain of forebrain areas including HVC and RA (robust nucleus of

the arcopallium) is required for the production of learned vocal

pattern [7–9]. Activity patterns of the HVC and RA appear to be

uniquely associated with song syllable and song element identity,

respectively [8–9]. These areas seem to differ between males and

females in size and neuron numbers in those songbird species in

which males and females differ in their vocal behaviour [10–12].

There are, however, some reports of the song system and other

neurobehavioural models [3,13–15] that do not easily fit this

structure-function rule in which more ‘‘hardware’’ is correlated

with improved behavioural performance. For example, the

African bush shrike (Lanarius funebris) has sexually dimorphic sizes

and neuron numbers of the song control nuclei HVC and RA as

well as sexually dimorphic neuron sizes within HVC, but song

complexity is similar in females and males [13]. Such examples

suffer, however, from the possibility that there might be subtle sex-

differences in the behaviour that are difficult to recognize, which

would be in register with their sexually-dimorphic neural

phenotype. Indeed, in the bush shrike, although males and

females utter similarly-complex songs with similar numbers of

syllables, the syllable types are different between mates [13].

However, these small behavioural sex differences are usually

thought to relate to small neural sex differences [11], not to large

ones as they are found in the bush shrike [13]. Alternatively, this

mismatch in the extent of the ‘‘neuroanatomy-behaviour’’

correlation could be due to correlating the wrong entities, since

there might be other aspects of the neural phenotype that

functionally compensate for the anatomical size difference. For

example, the sex with smaller neuron numbers might have more

complex network properties, as suggested for the human cortex

[3]. To this end we report here on a dueting songbird species, the

forest weaver (Ploceus bicolor), in which male and female mates sing

in unison; they learn to sing an identical song during pair

formation [16,17]. We compared the neuroanatomy of vocal

control areas in terms of area size and neuron numbers between

male and female mates that were observed to defend their territory

with dueting in their natural habitat. Secondly, we compared the

expression of a number of genes, in particular sex hormone

receptors and synapse related genes, in vocal control areas of these

pair mates. Sex differences in gene expression of birds are not

reported to be regulated by gene dosage compensation [18] and

thus should be higher in males since female birds are the

heterogametic sex.

Results

The forest weaver is widespread through Africa south of the

Equator in coastal forest [19]. Sexes are indistinguishable in the

field, either by eye or ear. Although there are local song dialects

that differ in the number of song syllables [20], pair members in all

areas studied have an identical song, which is mostly uttered in

unison [16,17]. The species-specific song performance starts with a

few flute-like introductory notes, followed by a harsh call-like
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syllable of rasping quality, which is then followed by a series of

clear flute-like melodic syllables (Fig. 1). While the introductory

syllables are given only at the beginning of the performance, the

song will then go on as a continuous alternation between the harsh

syllable and the melodic syllables, sometimes up to more than half

a minute without interruption [16,17]. The repertoire of each pair

included in this study was composed of 6 syllables, in agreement

with previous investigations of our study population [17]. Due to

their unison singing, the singing frequency, repertoire sizes and

repertoire composition, i.e. all features of the learned song were

similar between males and females as described previously [16,17]

(Fig. 1).

Morphometric features of vocal control areas (volume, neuron

numbers) are frequently thought to correlate sex differences in

vocal pattern [10–12], although there are exceptions to this

hypothesis [13], for review: [21]. In the case of the forest weaver,

this dominating notion predicts similar neuroanatomy of male and

female mates due to their unison singing. There was no sex

difference in the weight of the forebrain, which contains HVC, RA

and the entopallium (a visual control region), so we did not correct

the anatomical measurements for brain size. The volume of the

Nissl-defined HVC and RA was 1.58–1.69 times larger in male

compared to female forest weavers (t = 26.577, p,0.0001 for

HVC, t = 27.858, p,0.0001 for RA) (Fig. 2 & 3). The volumes

(mean (SD)) were 0.53 (0.07) mm3 for male HVC, 0.37 (0.08) mm3

for female HVC, 0.38 (0.05) mm3 for male RA, and 0.23 (0.08)

mm3 for female RA. Similarly, the size of the HVC defined by

AR-mRNA distribution of the males was 1.73 times larger

compared to that of the females. Since neuron densities were

similar in males and females (p.0.5 for both HVC and RA), males

had 1.47 and 1.52 times more HVC- and RA-neurons,

respectively (t = 24.461, p = 0.0012 for HVC; t = 25.287,

p = 0.0014 for RA). We did not find a sex difference in volume

or neuron numbers (p.0.5 for both) of the entopallium (male

volumes: 4.87 (0.48) mm3; females volumes 4.69 (0.61) mm3), a

visual forebrain area. Similar data were obtained for the five

captive animals included in the study. Both, volumes and neuron

numbers were in the same range as those of the wild-caught

animals [see Supplementary Results S1]. The data from the

captive animals suggest that large sex differences in volumes of

song control areas remain in aged animals well beyond their song-

learning period since they were at least 3 years old at the time of

sacrifice. The ages of the wild-caught birds in this study were not

known, but all males and females were observed to duet prior to

capturing. The fact that the same neuroanatomical differences

were found in both wild-caught and captive animals (who were

putatively older) suggests that the smaller vocal control regions of

females are not simply a sign of delayed maturation of the female

song system.

Messenger RNA (mRNA) of the androgen receptor (AR),

estrogen receptor (ER), brain derived nerve growth factor (BDNF),

ATPsynthase, GABAA receptor alpha1 subunit, and the synapse

related proteins SNAP-25, Munc-18-1, Synaptoporin, and Synel-

fin was localized in brain sections with radioactive cRNA probes

by means of in-situ hybridization. These gene expression studies

showed that the number of labeled cells per area was similar, but

Figure 1. The unison duet of the forest weaver. We show a
sonogram of a field recording of a breeding pair of forest weavers from
Fannie’s Island. To better illustrate the fact that 2 animals are
participating with the same syllable repertoire, we selected a duet in
which bird 2 sings with a delay of about 90 msec. ‘‘1’’ and ‘‘2’’ indicate
the onset of syllables produced by either bird. In many cases the
animals duet with an offset of less than 10 msec.
doi:10.1371/journal.pone.0003073.g001

Figure 2. The volume of HVC of all males was larger compared with all females. Photomicrographs of the Nissl-stained HVC (A, B) and RA
(C, D) of a male (A, C) and his female (B, D) mate (parasagittal sections). Arrows indicate the borders of HVC and RA. Scale bar is 100 mm.
doi:10.1371/journal.pone.0003073.g002
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that the expression level of particular genes was much higher in

the HVC and RA of females than in males while the expression of

other genes did not differ between mates. In HVC, SNAP-25

(t = 6.804, p,0.0001), Munc-18-1 (t = 3.725, p = 0.0039), BDNF

(t = 4.108, p = 0.0021), and ATPsynthase (t = 4.521, p = 0.011)

were expressed at higher levels in females than in males (Fig. 3). In

RA, only GABAA receptor was expressed more highly in females

than in males (t = 4.872, p = 0.0012). The p-values for all other

genes of both, the HVC and RA, were not significantly different

(p.0.2). We did not find a sex difference in gene-expression in the

entopallium for any of the genes. Since SNAP-25 and Munc-18-1

are expressed in basically every HVC neuron and since the

expression is homogenous throughout HVC [22]; this study, it is

unlikely that the above sex differences are due to particular

neuronal subpopulations. Clearly, these sex differences in gene-

expression might only be a subset of all such differences and do not

exclude the possibility that there are genes with higher expression

levels in males than in females. Nevertheless, the subset of genes

studied here, which were chosen based on previous knowledge

about their expression in vocal areas [22–27], runs counter the

usual positive correlation between sex, gene expression, and

neuron numbers of HVC and RA. In the chicken genome, the

ATPsynthase gene is located on a sex chromosome (Z), while all

others are located on autosomes; while we don’t know the

chromosomal locations of the studied genes in the forest weaver,

we think it likely that the composition of avian sex chromosomes is

conservative. Under normal circumstances, gene expression

should be higher in male than in female forest weavers since

male birds are the homogametic sex [18]. In contrast with this

expectation, the ATPsynthase is more highly expressed in the

female forest weaver HVC. It is thus unlikely that the higher

patterns of gene expression in female song areas are due to the

simple genetics of sex chromosome allocation.

Discussion

Despite the lack of sex differences in the learned song of forest

weaver mates, there is a male-biased (male.female) sexual

dimorphism in the anatomy and a female-biased (female.male)

sexual dimorphism in gene expression within the vocal control

areas HVC and RA that is not seen in a visual control area. This

intra-specific dissociation suggests that, (1.) there is no obligate

relation between neural morphology and behavioural phenotypes,

and (2.) neural sexual dimorphisms indicate sex-specific adapta-

tions to behavioural control rather than sex differences in

behaviour. Because the spectral and temporal song features of

forest weavers are learned during pair formation [16,17] these

conclusions concern both, mechanisms of song production and of

learning in which HVC and RA are involved for review: [28].

Intra-specific dissociations might explain some of the conflicting

data in which brain area morphology (volumes, neuron numbers)

correlate with the behaviour in certain species but not in others as

published for singing and food storing for reviews: [13–15, 21, 28].

Such dissociations might also explain why many cognitive

functions of men and women are similar, although cortical regions

of men appear to contain more neurons while those of females

may contain more neuronal processes [3]. Alternatively, none of

the above sexual dimorphisms of the song system anatomy and

transcription might be related to singing. However, acute

injections of BDNF into the RA of adult zebra finches affect the

song pattern transiently [29]; under normal circumstances the

likely source of BDNF supply to RA is the HVC [25].

Figure 3. Bi-directional dimorphisms of gross-morphological features (area volume, neuron number) and gene expression of vocal
control areas. Data are calculated as male percentages of their female mate (blotted: mean6SD of all pairs (n = 10)). Clearly, the anatomical features
(HVC and RA volume and neuron numbers) are much larger in the male, while the expression level of some genes (SNAP-25, Munc-18-1, ATPsynthase,
BDNF) is much higher in the female than in the male HVC. * = p-values,0.01 (see text for details).
doi:10.1371/journal.pone.0003073.g003
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The differentiation of song control areas HVC and RA depends

both on genetically endowed mechanisms and epigenetic factors

such as sex steroid hormones that integrate environmental

information [30–33]. It is fair to assume that the song control areas

of the forest weaver are hormone-sensitive given their songbird-

typical expression pattern of androgen and estrogen receptors in

HVC and RA (this study). Since singing by female songbirds occurs

in several songbird taxa [34], female singing has either been lost or

invented independently several times during the songbird radiation.

Thus, any evolutionary explanation for the observed bi-directional

neural sex difference needs to consider the hormone-dependence of

song area development and either a monomorphic or conventional

(male more elaborated) dimorphic song phenotype of the ancestors

of the forest weaver. In the following scenarios (see below paragraph)

we assume for simplicity of the discussion that the genes that are

more highly expressed in females are related to synapse density. This

assumption is motivated by the large data sets identifying SNAP-25

and Munc-18-1 as core molecules of the synaptic secretory

machinery [35] and BDNF as a key player that modulates dendritic

branching and synaptic connectivity [36,37]. The relation of

endogenous local expression levels of these genes to synapse

numbers and function is widely unknown. Mice heterozygous for a

SNAP-25 null mutation have no phenotype [38], while those

heterozygous for Munc-18-1 have a smaller pool of readily releasable

vesicles [39] and those heterozygous for BDNF null mutation have a

reduced stimulus-induced synapse formation [40]. The differences in

the gene expression level of such heterozygous and wild-type mice

might be in the range of the differences seen in the song control areas

of male and female forest weaver.

In the case of a monomorphic (males and females sing) ancestral

background, male and female ancestors would have had rather

similar song systems, but could have lacked unison dueting.

Although females of some other weaver species sing, their song is

less complex than that of breeding males or not unison [16,41].

The sexually size-dimorphic neural phenotype of the forest weaver

song system might have evolved due to sex differences in hormonal

mechanisms that can be recruited for extending the life-span of

vocal learning (unison duets), or for extending the yearly dueting

period (facilitating long-term pair maintenance and territoriality).

Prolonged periods of elevated sex hormones that facilitate song

learning or production might be costly [42,43], and sex hormone

profiles need to differ between mates to avoid negative pleiotropic

effects on other hormone-sensitive sexually-dimorphic entities such

as the immune system function and egg-laying [21,42,43]. In

consequence, sex-limited patterns of hormone production would

be reflected differently in the differentiation of different phenotypic

components (neuron numbers versus synapse density) of the vocal

areas, if these phenotypic components differ in their hormone-

sensitivity. Indeed, within the HVC, volume and ATPsynthase

expression are androgen-sensitive in canaries, while BDNF and

synaptoporin expression are estrogen-sensitive in canaries and/or

zebra finches [22,25–27]. The present sex differences do not

segregate according to this pattern of hormone-sensitivities seen in

other species but species differences in hormonal regulation of

genes are likely in light of multiple regulatory sites and and/or

local abundance of transcription factors.

In case of a dimorphic (females don’t sing) ancestral background, it

would be reasonable to assume an ancestral sex differences in neuron

numbers of song areas, a common feature among current songbirds

including the weaver family [12,13,41,44]. Such neuron numbers are

brain-intrinsically and hormonally determined [30–33]. From other

species with sexually dimorphic HVC and RA volumes and neuron

numbers, such as the canary, we know that hormone exposure fails to

create a monomorphic phenotype [27,45]. We further know that

neuron numbers within HVC are androgen sensitive [27], Hartog

and Gahr, unpublished. Extended periods of elevated testosterone

level, which might drive neuron recruitment into HVC and HVC-

size to an upper limit [26,27,45], appear to curtail vocal learning,

since such canaries develop abnormal small syllable repertoires

[27,46]. Thus, instead of using an androgen-dependent mechanism

to increase neuron numbers, neural capacity in females might be

increased by up-regulating the general number of synapses or the

numbers of certain types of synapses under the control of estrogens.

Interestingly, inter-specific comparison of song system synapse density

suggests that the synapse density of female songbirds may be a

particularly labile trait [47]. The present study suggests that females

and males might solve (in evolutionary terms) the same behavioural

problem differently, as proposed for humans [3].

Methods

Animals
During the breeding season, we (DS and MG) observed pairs in

their territories in Eastern South Africa and recorded the songs of

10 such pairs to assure that both mates were singing and to analyze

the syllable repertoires. Males and females of the pairs were

subsequently caught and processed for anatomical studies within

30 minutes of recording. The measurements of their body

features, gonadal status, breeding and territorial behaviour

identified all wild-caught animals as adults. Another 3 males and

2 females, who had been maintained in captivity for up to 12 years

at Seewiesen, were also analyzed. The song-learning history of

these latter animals was known.

Song analysis
Vocalizations were recorded with an UHER 4200 stereo tape

recorder and an AKG D900C directional microphone. Songs

were analyzed with the AVISOFT- SONAGRAPH Pro for

WINDOWS.

Histology
Birds were caught in accordance with permits issued by the local

authorities (Chief Professional Officer for Research at the Natal

Parks, Game and Fish Preservation Board, P. O. B. 662,

Pietermaritzburg 3200). All animals were killed with an overdose

of equithesin and perfused transcardially with 0.9% saline followed

by 4% phosphate-buffered formaldehyde (PBF). After fixation, we

collected morphometric data and removed the brain, gonads and

syrinx for post-fixation in PBF for 2 weeks. Brains were then

freeze-protected with 10% phosphate-buffered sucrose (1 day)

followed by 30% sucrose (1 day) under RNAse free conditions.

The left and right halves of each brain were cut with a freezing

microtome alternating in five 15 and one 25 mm parasagittal

sections per hemisphere under RNAse-free conditions. Sections

were collected in RNAse-free phosphate-buffered saline and

mounted onto Fisher Superfrost Plus Slides. Each series of 15-

and the 25-mm sections was mounted onto different slides so that

we obtained six series of adjacent sections. The 15-mm-series were

used for in-situ hybridizations, the 25-mm series of the left

hemisphere was Nissl-stained with Thionin, and that of the right

was NeuN and Nissl-stained. Anatomical measurements (histology,

in-situ hybridization) were performed in the forebrain vocal areas

HVC and RA and in a forebrain visual area, the entopallium.

In-situ hybridization
mRNA expressing cells were localized in brain sections with

cRNA probes of the zebra finch by means of in-situ hybridization

following published protocols [24]. We studied the expression of

Same Song, Different Brain
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the estrogen receptor alpha (ER [24]; chicken chromosome (CC)

3), the androgen receptor (AR [24]; CC 4 and micro-chromosome

of zebra finches), the neurotrophin BDNF (brain derived nerve

growth factor; GenBank DQ086496; CC 5), ATPsynthase alpha

subunit (GenBank AF314256; CC Z), GABAA-receptor a1-subunit

(GenBank DQ086494; CC 4), and the synapse related proteins

SNAP-25 (synaptosomal-associated protein 25 kDa; GenBank

AY531112; CC 3), Munc-18-1 (GenBank DQ086495; CC 17),

Synaptoporin (Synaptophysin II; GenBank AY531113; CC 12)

and Synelfin (a-synuclein; GenBank DQ086497; CC 4). AR was

applied to sections of both hemispheres. ER, BDNF, ATPsynthase

and GABAA were applied to sections of the right hemisphere.

SNAP-25, Munc-18-1, Synaptophysin, and Synelfin were used

with sections of the left hemisphere. For each animal, we used the

homologous series of brain sections with a particular gene.

Although the above gene fragments were isolated from the zebra

finch, they appear to be highly conserved in birds (similarity with

the chicken sequences is $86% for all probes). The antisense

probes all gave positive results in those parts of the forest weaver

brain that we expected to be labeled from previous studies of male

zebra finches. The sense probes served as controls in preliminary

studies, in which we used brains of captive forest weavers. No

specific labeling was seen in any of the sense controls.

Antisense or sense RNA probes labeled with 35S-CTP (NEN)

were generated by transcription of the linearized plasmids

containing the appropriate gene sequences (ca 250–800 Bp) using

the riboprobe system (Promega) according to the manufacturer’s

instructions.

Immunocytochemistry
For the identification of neurons, we stained one series of

sections of the right HVC for NeuN, a neuron specific protein,

before counterstaining these sections with Thionin. The NeuN

protocol was as described [48].

Morphometric analysis
As there was no sex difference in the weight of the forebrain,

which contains HVC, RA and the entopallium, we did not correct

the anatomical measurements for brain size. For the estimation of

the volumes of brain areas (HVC, RA, entopallium) with an image

analysis system (SPOT) we used cytoarchitectural criteria in Nissl-

stained brain sections and the distribution of AR-mRNA (Fig. 2).

The volume of each brain nucleus was the sum of these

measurements (Nissl and AR-mRNA, respectively) multiplied by

the section thickness multiplied by the inter-section distance. Since

there was no left-right asymmetry of AR-mRNA defined HVC

and RA, neuron numbers were only analyzed for the right HVC.

Neurons were counted in NeuN-immunostained sections under

high power (10006) with the SPOT-system in ten 2,500 mm2-

counting frames of each animal and brain area. The total number

of neurons was derived from these cell densities and the HVC and

RA volume, respectively. Quantification of the in-situ hybridiza-

tions was as described [25]. Briefly, we analyzed the percentage of

labeled cells in ten 2,500 mm2-counting frames per brain area and

animal using the 99% Poisson criteria; of the labeled cells, we

calculated the average number of silver grains. For statistics we

used the paired t-test (n = 10) throughout except the entopallium

(n = 9). All data sets were normally distributed. Significant data

remained significant after sequential Bonferroni correction for the

t-tests (p = 0.01 for HVC and RA volume and neuron numbers,

SNAP-25 mRNA of HVC, ATP mRNA of HVC, GABAA of RA;

p = 0.05 for BDNF mRNA and Munc-18-1 mRNA of HVC).

Supporting Information

Results S1

Found at: doi:10.1371/journal.pone.0003073.s001 (0.02 MB

DOC)
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