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ABSTRACT

Motivation: Mapping billions of reads from next generation
sequencing experiments to reference genomes is a crucial task,
which can require hundreds of hours of running time on a single CPU
even for the fastest known implementations. Traditional approaches
have difficulties dealing with matches of large edit distance,
particularly in the presence of frequent or large insertions and
deletions (indels). This is a serious obstacle both in determining
the spectrum and abundance of genetic variations and in personal
genomics.
Results: For the first time, we adopt the approximate string matching
paradigm of geometric embedding to read mapping, thus rephrasing
it to nearest neighbor queries in a q-gram frequency vector space.
Using the L1 distance between frequency vectors has the benefit of
providing lower bounds for an edit distance with affine gap costs.
Using a cache-oblivious kd-tree, we realize running times, which
match the state-of-the-art. Additionally, running time and memory
requirements are about constant for read lengths between 100
and 1000 bp. We provide a first proof-of-concept that geometric
embedding is a promising paradigm for read mapping and that L1

distance might serve to detect structural variations. TreQ, our initial
implementation of that concept, performs more accurate than many
popular read mappers over a wide range of structural variants.
Availability and implementation: TreQ will be released under the
GNU Public License (GPL), and precomputed genome indices will
be provided for download at http://treq.sf.net.
Contact: pavelm@cs.rutgers.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
The possibility to re-sequence genomes rapidly and cost-efficiently
using next generation sequencing (NGS) technologies has provided
fascinating insights into the breadth and prevalence of human
genetic variation (The 1000 Genomes Project Consortium, 2010;
The International HapMap Consortium, 2005), in particular the
abundance of structural variants—we will jointly refer to them as
insertion and deletions (indels) and not distinguish, for example
between novel sequence insertions and duplications. Unfortunately,
these structural variants, more exactly short indels, are complicating
the first step in the analysis, mapping DNA sequencing reads to
reference genomes.

This is surprising, as approximate string matching, the theoretical
problem underlying read mapping, is arguably one of the most
fundamental problem in bioinformatics and a very well-studied
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area in data mining; for surveys see Boytsov (2011b); Navarro
(2001). Mapping reads from DNA sequencing experiments requires
solving approximate string matching problems for billions of short
DNA sequences of length 20–500 bp against entire genomes. There
have been a multitude of methods proposed—see for example the
benchmarks performed by Hach et al. (2010)—and the results and
optimal choice of method depend strongly on the read length and
the maximal edit distance allowed.

Out of the variety of different approaches [see Boytsov (2011a)
for a detailed taxonomy] proposed for approximate string matching,
current read mappers rely on only three different paradigms (Li
and Homer, 2010): seed-and-extend (encompassing hash tables
and q-gram filtering), prefix/suffix tries (using the Burrows–
Wheeler transform) and one approach based on merge sort
(Malhis and Jones, 2010). Their computational efficiency depends
on the existence of exact matches between the read and the
genome.

Intuitively, there cannot be an approximate match of small edit
distance between a read and the genome if not one or several
exact matches of length q exist. The relationship between the
presence of such matching q-grams (sequence of length q) and
the edit distance was revealed in a seminal paper by Ukkonen
(1992): a lower bound for the edit distance between two strings
is given by the L1 distance between their count vectors of q-
grams (for q=3 these are the trinucleotide frequency vectors).
This provides the basis for a seed-extend strategy of using efficient
algorithms for finding one initial exact q-gram match, exploring
whether additional exact q-gram matches support the existence of
an approximate match, Figure 1 (left), and then use an efficient
alignment algorithm, such as Myers’ bit-vector algorithm (Myers,
1999), to verify and assess the quality of the match. Existing methods
either implement this idea of q-gram filtering (Navarro et al., 2005)
directly (Weese et al., 2009), or implicitly rely on it (Li and Durbin,
2009).

The running times depend on the maximal edit distance permitted:
smaller maximal edit distance allows to chose larger q, thus there will
be fewer exact q-gram matches and putative approximate matches
to explore; indeed their probability decreases exponentially. If we
think of patterns being derived from a match in the text through
edit operations of technical nature (sequencing errors), or biological
nature (genetic variants), the probability of hitting all q-grams and
thus rendering q-gram filtering useless increases with the number of
edits (Sutinen and Szpankowski, 1998). Gapped q-grams (Burkhardt
and Kärkkäinen, 2002), requiring exact matches in a fixed pattern
of q out of q′ >q positions, are one way of addressing this. Most
popular approaches, however, strictly limit the maximal edit distance
and use heuristics to keep running time in check at the potential cost
of missing best matches.
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Fig. 1. Most approaches to approximate string matching using Ukkonen’s q-gram lemma rely on the existence of reasonably large q-grams which are exact
matches between pattern and text. These can be found efficiently with a number of techniques and yield putative hits, which are then evaluated using an
alignment algorithm. For each pattern and each putative hit, the number of shared q-grams is evaluated de novo (left). We map both reads and genome locations
to vectors of 2-gram frequencies and identify approximate matches finding nearest neighbors (right). This is accelerated by the use of a spatial index structure,
e.g. a kd -tree, which is created by recursively partitioning the input space around the median value of a dimension.

In particular, the detection of indels suffers from the limits
on edit distance of matches. As our results show, many of the
existing methods have problems in mapping 100 bp reads with
indels to the reference genome; longer reads improve the situation
for some approaches. Consequently, the state-of-the-art in the
detection of structural variants is the use of paired-end read libraries
and advanced methods for performing downstream analysis after
mapping the paired-end read libraries to reference genomes (Chen
et al., 2009; Hormozdiari et al., 2009, 2010; Korbel et al., 2009;
Lee et al., 2009). Nevertheless, Alkan et al. (2011) noted that
in particular detection of small, 5–50 bp indels, is a largely open
problem, although our analysis reveals that one recent approach,
Stampy (Lunter and Goodson, 2011), provides excellent sensitivity.
In the detection of such short indels, the deviations from mean insert
length are measured, and thus, the sequencing coverage required to
arrive at statistical significance is inversely proportional to the indel
length. Our results will show that the detection of 1–16 bp indels
from single reads is possible using L1 distance.

We pursue a different strategy from current read mappers,
following ideas first proposed for protein sequences (Bugnion et al.,
1995) and generally referred to as vector space frequency distance
methods (Boytsov, 2011b), embedding strings as q-gram frequency
vectors. These geometric embeddings have not yet made their
way into read mapping, unlike other areas of bioinformatics, for
example in the estimation of bacterial species phylogeny through
oligonucleotide frequency distances (Takahashi et al., 2009), under
the name of k-spectra in classifying protein sequences using support
vector machines (Leslie et al., 2002) or in alignment-free sequence
comparisons (Goke et al., 2012; Liu et al., 2011; Reinert et al., 2009;
Wan et al., 2010).

We choose q=3 and consider vectors of all trinucleotide
frequencies, by embedding reads of length between 100 and 1000 bp
as vectors in R

64. The problem of finding a minimal edit distance
approximate match now becomes the problem of finding a nearest
neighbor in a data set of vectors derived from a genome by sliding a
window over the genome and mapping the sequence to a frequency
vector, Figure 1 (right). Finding (approximate) nearest neighbors,
however, has been well studied and a large range of spatial index
data structures have been proposed (Berchtold et al., 1996; Bern,
1993; Katayama and Satoh, 1998; Sellis et al., 1987) generally
leading to O(nlogn) complexity for construction of the spatial
index and O(logn) complexity for nearest neighbor queries, where n
denotes the number of points in the index. Empirical running times,
however, vary widely based on the detailed structure of the problem

instance, and thus, algorithm engineering is important for achieving
competitive running times.

The vector space frequency distance method introduced in
Bugnion et al. (1995) was not further pursued except in a small scale
study focusing on different ways to map strings to vectors (Ozturk
and Ferhatosmanoglu, 2003, 2005). In recent years, researchers
in databases, both multi-media and text, investigated indices in
high-dimensional spaces (Böhm et al., 2001; Bustos and Navarro,
2009; Houle and Sakuma, 2005; Navarro and Chávez, 2006; Yao
et al., 2010), but the small alphabet size of DNA that leads to non-
sparse frequency vectors preclude their use here. Boytsov (2011b)
implemented and evaluated a range of different approaches in
approximate string matching also on DNA datasets which are of
small bacterial genome size (3.2 megabasepair). We found that his
findings do not translate when the genome size increases by a factor
of 1000. For instance the effects of cache or page misses, which
motivate cache-oblivious data structures that guarantee minimum
number of cache misses irrespective of cache size and memory
hierarchy, are simply not observable on small data sets. During the
development of the method, we used state-of-the-art kd-tree libraries
(Mount and Arya, 2010; Muja and Lowe, 2009) but found them to
be lacking in performance once the index contained more than a
few million points. Indeed, on genome-size problems, the ability to
effectively implement data structures in a cache-oblivious manner
is more important than computational complexity.

In the following sections, we will show how L1 distance serves
as a lower bound for affine gap costs, introduces our methodology
and implementation details and provides detailed analysis on both
real and simulated data to show the advantages and drawbacks of
geometric embeddings.

2 METHODS
We use the usual notation, following (Gusfield, 1997): A finite set of
characters �={a,b,c,...} we will call an alphabet and a sequence s of
characters from � a string. We denote by |s| its length, by si its i-th character,
i>0, and by s[i,j] the continuous sub-string starting at position i and ending
in position j.

We associate strings with vectors by computing the frequencies of all
q-grams,

cq(s) :=(|{i∈{1,...,|s|−q+1} :s[i,i+q−1]=w}|)w∈�q (1)

which define a map from �� →R
|�|q through s �→cq(s). We assume that the

q-words are in lexicographic order.
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Definition 1. The edit distance ED(s,t) between two strings s and t
is determined by the minimal number of edit operations—substitutions,
insertions and deletions—necessary to transform one into another. We can
notate the edit operations as rewriting rules, a→ε is a deletion, ε→a
an insertion and a→b a substitution. Here, a,b∈�, a �=b and ε is the
empty string. What is usually referred to as the edit distance is indeed the
Levenshtein distance which assigns unit costs to the three possible operation.
This of course generalizes to arbitrary costs cs, ci and cd for substitutions,
insertions and deletions, respectively.

Similarly we obtain a distance from the q-spectrum by considering the L1

distance of the count vectors in R
|�|q , L1(s,t) := ∣∣cq(s)−cq(t)

∣∣.
Theorem 1 (Ukkonnen (Ukkonen, 1992)). For s,t ∈�q

L1(s,t)≤2qED(s,t). (2)

Note that the bound can become arbitrarily bad, for example when t is a
rotation or transposition of s, see Ukkonen (1992).

2.1 The q-gram lemma revisited
Ukkonen’s lemma states that L1 ≤2qED, but this bound is dominated by the
mismatches. It is worthwhile to consider the effects of mismatches and indels
separately. Consider two strings S1 and S2, where S2 is derived by a single
deletion of size d from S1 or by insertion vice versa. Then the L1 distance
comprised two components. First, the number of q-grams spanning the gap
in S2 is q−1. Second, for S1, the first character in the deletion accounts for
q deletions of q-grams; however, every consecutive character only accounts
for one, as the other q−1 are already accounted for by deleting the left
neighbor. Hence, the L1 distance is bounded by L1 ≤2q+d −2. As a single
mismatch can affect at most 2q number of different q-grams, it follows that
for m mismatches and g gaps of size di , 1≤ i≤g,

L1 ≤
g∑

i=1

(2q+di −2)+2qm. (3)

As
∑g

i=1 di +m=ED, we obtain

L1 ≤ED+(2q−2)g+(2q−1)m (4)

This shows that the number g of contiguous gaps (not the total number of
gapped positions), provides a sharper bound than the number of mismatched
positions. For example, if ED=4 and q=3, then L1 ≤8 for a single indel
of size 4, but L1 ≤24 for four mismatches. Any algorithms based on nearest
neighbors under L1 distance is thus very well suited for mapping reads with
large indels.

Apreference for large indels in alignments is biologically more meaningful
than alignments with many small indels and generally addressed by using
affine gap costs. The above formula naturally implies a scoring scheme for
an affine edit distance AED(s,t). As

L1 ≤ (2q−1)g+
( g∑

i=1

di −g

)
+2qm (5)

we obtain

L1 ≤AED :=cog+ce

( g∑
i=1

di −g

)
+csm (6)

for gap opening cost co :=2q−1, gap extension cost ce :=1 and substitution
cost cs :=2q.

For edit operations that affect positions q letters apart, it is easy to show
that the inequality is sharp, that is L1 gives the edit distance with affine gap
costs. Consequently, finding matches of minimal L1 prefers matches with
fewer indels over matches with frequent substitutions. However, the lower
bound can be still arbitrarily bad (see previous section), but the probability of
catastrophic failure is small (see the Analysis in Supplementary Materials).

Indeed the probability of L1 distance being zero in the presence of one
deletion of length k is

P(L1(s,t)=0|ED(s,t)=k, one deletion)≤ (k −1)!(
k−1

4 !
)4

(P∗
2 )k−1, (7)

where P∗
2 is the maximal transition probability in the Markov chain assumed

to have generated reads and genome. See Supplementary Material for details.

2.2 Read mapping with cache-oblivious kd -trees
Efficient searches for exact or inexact nearest neighbors in high dimensions
generally involve creating a tree-like index structure that recursively
partitions the space. Their efficiency depends on the quality of the index
and the geometric distributions of points. A comparative study (Kibriya and
Frank, 2007) showed that in a wide range of practical instances kd-trees
outperform more advanced methods (Berchtold et al., 1996; Bern, 1993;
Katayama and Satoh, 1998; Sellis et al., 1987).

In the index generation, for each sub-tree of the kd-tree, a dimension—
usually the one with the highest variance—is chosen, and then the set
of points under the sub-tree is partitioned using the median value of the
chosen dimension as pivot. This process continues recursively and eventually
completes in O(dnlogn) time for n d -dimensional points. During the search,
a query point’s coordinates are compared with the pivot, and a decision to
search the left or right sub-tree is made. If there is no exact match to be
found, the search procedure backtracks.

As the index size gets larger, the effect of cache misses becomes very
prominent and the running time increases substantially. As a result, over
the last decade, many important data structures including kd-trees were
made cache-oblivious (Agarwal et al., 2003; Frigo et al., 1999). Our cache-
oblivious kd-tree implementation stores the tree in sequential memory using
the van Emde Boas layout (van Emde Boas, 1975; van Emde Boas et al.,
1976), which guarantees an optimal number of cache misses.

We have implemented the following modification to the usual kd-tree
construction. During index generation, we use pre-selected dimensions based
on the entropy of the dimensions over the full data set, which makes the
index building step O(nlogn) instead of finding the dimension with highest
variance. The minimal axis-parallel hyper-rectangle containing all the points
in the subtree defines a bounding box per subtree. These bounding boxes
help to reduce the search space at the cost of increasing the index generation
to O(dnlogn). In the search step, we compute lower bounds for the L1

distance between the query point and all the points inside the bounding
box of the left and right sub-tree in O(d ) time at every subtree. We proceed
with the sub-tree giving the best lower bound and store the other sub-tree for
future consideration. If no exact match is found the search process becomes
expensive. We bound the number of alternate paths searched per query with
the parameter β, which bounds the running time per query to O(βd logn).

In the bottom levels, the running time overhead to find lower bounds using
the bounding boxes is comparable with directly computing the L1 distances.
Thus, for the last τ levels, we do not create bounding boxes, and in the
search step, we simply compute the L1 distances between the query point
and the points in the sub-tree (we use fast hardware accelerated L1 distance
computation). This also decreases memory requirement to store the tree by
2τ times.

2.2.1 Verification by Myers’ Bitvector algorithm Using Myers’ bit-vector
algorithm (Myers, 1999), we compute the edit distance and the exact location
for each read based on putative locations identified as nearest neighbors,
adding a slack of 14 bp on each boundary. The best position is reported,
breaking ties arbitrarily.

2.2.2 Parameter choices Parameter β, the maximum number of different
paths explored in the search, controls the running time and sensitivity of
TreQ. However, this does not restrict the maximal edit distance of matches
in contrast to trie-based methods which avoid exponential blow-up with
such restrictions. A second parameter, τ influences the memory footprint
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Fig. 2. Comparison of popular read mappers with TreQ. Accuracy is defined as the percentage of single best reads that are mapped to the exact genomic
location they were drawn from in the simulation. Notice that TreQ outperforms most popular read mappers and is mostly on par with LAST

and running times, as the lowest τ levels of the cache-oblivious kd -tree
are not stored and rather direct L1 distance computations are performed. To
further reduce memory requirements, the genomic window is shifted by g
base pairs to create d -dimensional (d =4q) frequency vectors (final match
positions are based on Myers’ alignment). A third parameter α, determines
number of vectors for which we only store the changes from a nearby point
as they can be constructed with minimal overhead from their differences
in few dimensions from the (2α+1)-th point which is actually stored (see
Supplementary Material for a detailed explanation). In our experiments we
have found g =3, α=2, β =3000 and τ =3 to be a good choice for the
human genome, and unless otherwise stated these are the default parameter
values for TreQ. Note that for a wide range of parameter choices TreQ’s
accuracy remains effectively the same (cf. Supplementary Figure S2). In
contrast, most popular read mappers have large number of parameters, which
are specifically tuned for typical datasets and often very difficult to optimize.

3 DISCUSSION
To evaluate TreQ and compare its performance, we ran a number of read
mappers–Bowtie (Langmead et al., 2009), BWA (Li and Durbin, 2009),

SOAP2 (Li et al., 2009), mrFAST (Alkan et al., 2009), Novoalign
(http://www.novocraft.com), SSAHA2 (Ning et al., 2001), LAST (Frith
et al., 2010; Hamada et al., 2011), Stampy (Lunter and Goodson, 2011)
and RazerS (Weese et al., 2009)–on simulated and real read datasets (see
Supplementary Tables S1 for version numbers). These read mappers were
evaluated with their default and, in some cases, customized parameters for
allowing maximal permissible edit distance. We also forced them to report
one single best hit. For TreQ, parameters q=3, d =64(=4q), g =3 and
k =200 were fixed throughout the experiments. Currently, quality scores
are ignored in the match evaluation phase of TreQ. For simulated data, we
define accuracy as the percentage of reads mapped to the actual genomic
locations from where they were sampled (Fig. 2). We use human genome
HG18 build 36 as the reference for all the experiments.

3.1 Simulated data
We simulated four different read data sets, comprising a set of
different model parameters, each by sampling 10 000 reads from
the human reference genome. Given read length �, we have:

• S1 0 to 15�% single-nucleotide substitutions at random
positions
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• S2 Indels of size 0–25 at 2�% random locations in the read

• S3 Indels of size 2 at 0–10�% random locations in the read

• S4 A single indel of size 0 to 17�% at a random location

On top of that, we simulated sequencing error by estimating and
interpolating an Illumina error profile. We estimated a first-order
Markov chain of Phred score transitions from 1 million reads of
length 101 from a Yoruba African individual (NA18507) for each of
those 101 positions. To remove noise and simulate reads of lengths
other than 101 bp, we used univariate spline interpolation to estimate
the evolution of each entry of the matrix over the read sequence.
These functions were then stretched or skewed for other read lengths,
and new transition probabilities were derived by evaluating the
spline function at the appropriate positions and rescale the rows,
so that the matrix becomes stochastic. The resulting Phred score
distributions of the reads simulated by iterating the new Markov
chains were then verified to correspond to those of real data. As
Phred scores correspond to actual error rates (Ewing and Green,
1998), we used them to simulate position-dependent sequencing
errors.

Our evaluation shows that Stampy outperforms all other methods
in terms of accuracy (Fig. 2). Its running time, however, depends on
the type of read. For instance mapping all S1 reads of 500 bp length
takes 1 h 35 min, in whereas mapping S2 takes 5 h (Supplementary
Table S1). TreQ’s running time ranges consistently at about 3.5 h.
Stampy’s running time also increases with read length, although
it is mostly better than TreQ’s. LAST performs in about the same
accuracy range as TreQ but is not competitive in running time.

In terms of accuracy, geometric embedding outperforms all suffix
trie and seed-extend-based read mappers other than Stampy and
LAST on almost all instances. The authors of both these programs
argue that their accuracy is mainly due to the elaborate downstream
analysis they perform after finding candidates. Our results are thus
preliminary, as in essence we are comparing statistical alignment
models of Stampy and LAST to a simple filter based on Levenshtein
distance in our case. BWA can be customized to be competitive
on S1 for shorter reads, at the cost of higher running times, but
this improvement does not translate to S2–S4. Similarly, LAST
outperforms TreQ on S1, but its performance is similar or worse
than TreQ’s on other conditions. Trie-based read mappers (Bowtie
BWA and SOAP2) are very fast but do not perform well in general.
Using a hybrid approach—in which SOAP’s unmapped reads are
mapped by TreQ—increases the accuracy for lower distances at the
expense of slightly lower accuracy for higher distances, whereas
drastically reducing the running time.

3.2 Biological data
Following the evaluation in Hach et al. (2010), we compared TreQ
to popular read mappers on a set of 1 million randomly selected
101 bp reads from Yoruba African individual (NA18507) (The 1000
Genomes Project Consortium, 2010). The running time and the
percentage of reads mapped to the reference human genome HG18
build 36 within 3, 6, 12, and 18 edit distances are reported in Table 1.
Times are for a single thread on a single core of a 2.2 GHz AMD
Opteron processor.

We have found suffix-trie-based read mappers, implemented using
Burrows–Wheeler transform, to be very fast on the real dataset but,

unsurprisingly, limited in their ability to map reads with higher
edit distances. Seed-extend-based techniques in contrast usually
map more reads at large edit distances but require more CPU
time. Except LAST, Stampy and TreQ, none of the other read
mappers that we have evaluated successfully maps reads at high edit
distances, possibly containing indels, in a reasonable amount of time.
TreQ does so at competitive running time compared with mrFAST,
RazerS, SSAHA2 and BWA with customized parameters (BWA’s
default parameters are not competitive with respect to accuracy).
The hybrid SOAP/TreQ approach, taking advantage of suffix-trie-
based read mappers’ efficiency on low edit distances and TreQ’s
sensitivity at higher edit distances, uses less time and maps more
reads within all edit distances considered.

Although TreQ outperforms other read mappers on many
mismatches or with large indels, its performance start to degrade
gradually. As a result TreQ’s specificity should drop at large edit
distances. We have indirectly tested TreQ and other read mappers’
specificity by combining the genome of human and chicken (a distant
organism from human) and mapping the same one million real
reads to this combined genome. We have found that BWA, BWA
(customized), SOAP2, Novoalign, mrFAST and TreQ (within edit
distance 18) map 87, 191, 65, 149, 189 and 187 reads, respectively, to
the chicken genome. This experiment shows that TreQ’s specificity
is comparable with the other read mappers. For greater control over
specificity, an optional maximum edit distance threshold m can be
set in TreQ to discard any alignment with edit distance greater than
m (default value l

4 , for read length l).

3.3 Memory requirements and multi-threading
The memory requirement for the cache-oblivious kd -tree and the

d -dimensional vectors are d 2	log G
g 
−τ and G

g(2α+1) (d +2gα(α+
1)), respectively. As a result, TreQ requires about O

( dG
g
( 1

2τ + 1
α

))
bytes of memory, given that 2gα(α+1)≤d . Here, G is the genome
size, g is the offset by which the genomic windows are shifted,
Figure 1 (right), while creating d -dimensional q-gram vectors, 2α

is the number of vectors for which we only store the changes from
a nearby point and τ is the number of ignored lowest levels in the
kd-tree. If we set τ =4, α=2 and g =3, for d =64 TreQ’s memory
requirement is around 40 GB (which is equivalent to using less than
1GB per core in a 48-core machine with the multi-threaded TreQ).
Interestingly, these parameters have minor effects on accuracy and
running time; for a detailed analysis, see Supplementary Figure S2.
In addition, memory requirement can be further reduced by creating
separate kd -trees for each chromosome and loading one kd -tree at
a time in the memory.

We have developed a multi-threaded version of TreQ and tested
its performance by mapping 0.1 million randomly selected Illumina
single end reads (Yoruba African individual, NA18507) on a
48-core AMD Opteron 2.2 GHz server with 256 GB memory. The
performance of TreQ scales very well in the number of threads,
within 84% of the achievable maximum up to 40 cores (Fig. 3).

4 CONCLUSION
We address the problem of mapping NGS reads in an indel-
tolerant manner by establishing geometric embedding as a promising
paradigm, allowing identification of structural variants, including
one or several indels of length 1–16 bp, from single read
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Table 1. One million randomly selected Illumina single end reads mapped to HG18 build 36

Technique Algorithm Parameters Time (h:m)
Mapped percentage ≤ ED

≤3 ≤6 ≤12 ≤18

Suffix trie

Bowtie
–best 0:04 85.22 – – –
–best -v 3 0:04 86.85 – – –

BWA
default 0:14 87.31 89.35 – –
-n 50 -o 10 -e 50 -M 1 -O 3 -E 1 5:53 87.35 90.08 92.39 93.03

SOAP2 -v 50 -g 10 -r 1 0:03 84.87 – – –

Seed-extend

mrFAST –best -e 6 19:50 87.54 90.59 – –
Novoalign -l 0 -e 1 -r Random 0:27 83.68 84.80 85.18 85.19
SSAHA2 –best -1 45:36+ – – – –
RazerS –unique 14:45 66.67 79.41 – –

Stampy
default 1:57 85.73 88.32 90.90 92.15
–bwa-options 0:38 90.37 92.05 93.81 94.84

LAST

default 1:32 84.76 87.66 90.23 90.78
-d108 -e120 1:35 84.85 87.77 90.69 91.69
default, LAMA 4:36 68.74 71.12 73.26 73.72
-d108 -e120, LAMA 4:39 39.26 40.60 41.95 42.42

Geometric embedding TreQ

τ =1, β =5000, α=0 7:00 87.34 90.12 93.06 94.67
τ =2, β =4500, α=0 6:28 87.27 90.06 93.01 94.61
τ =3, β =4000, α=0 6:36 87.22 90.04 93.02 94.62
τ =1, β =5000, α=2 8:15 87.32 90.11 93.04 94.66
τ =2, β =4000, α=2 7:44 87.16 89.93 92.87 94.50
τ =3, β =3000, α=2 8:50 86.90 89.69 92.66 94.30

Hybrid SOAP2 + TreQ τ =3, β =3000, α=2 2:06 87.89 90.50 93.26 94.83

The percentages of reads mapped within a fixed edit distance (ED) by various read mappers are reported. As expected, trie-based read mappers are very fast but mostly fail to
map reads with higher errors. BWA with customized parameters performs well but with significantly increased running time. Seed-extend-based methods have varied outcomes;
mrFAST, RazerS and SSAHA2 take significantly more running time than others, Novoalign is comparably fast but fails to map reads with higher edit distances, whereas LAST
(without LAMA option) and Stampy map almost similar amount of reads as TreQ. In contrast to most read mappers, TreQ is not restricted to few mismatches, small indels or few
number of indels, and maps either an almost similar percentage of reads or more with various different parameter settings. TreQ’s running time is significantly lower than mrFAST,
RazerS and SSAHA2 and comparable with customized BWA; we stopped SSAHA2 after it did not finish running in 45 h. Additionally, Hybrid TreQ/SOAP outperforms most read
mappers, whereas significantly reducing the required running time. Note that Bowtie only allows mismatches and is restricted to at most 3. All running times are based on running
the read mappers single threaded on a single core of a 2.2 GHz AMD Opteron processor.

Fig. 3. Speed up achieved by the multi-threaded version of TreQ on the task
of mapping a randomly selected 0.1 million 101 bp single end reads from
Yoruba African individual (NA18507).

experiments: We map reads and genomic locations to trinucleotide
frequency vectors, embedding them in R

64. The L1 distance between
q-gram frequency vectors provides a lower bound for an edit distance
with affine gap costs in which even long indels have small distance,
improving the sensitivity of their detection. A probabilistic argument

assuming reads, and genomes are generated from a Markov chain
provides insight into the quality of the bound.

The problem of approximate matching is thus transformed into
one of computing nearest neighbors using a spatial index. The
decision for kd -trees was based on their favorable performance in
many real-world scenarios (Kibriya and Frank, 2007) and the fact
that they can be easily implemented in a cache-oblivious manner
(Arge et al., 2005), a major factor as memory accesses constitute
the predominant bottleneck on modern CPU architectures.

Apart from the mapping of reads to the q-gram frequency
vectors, our method has running times and memory requirements,
which are about constant for the operations involving the index
in the length of the reads. In practice, because of word sizes
on computers, we expect this to hold for sequences of length
100–1000 bp.

Currently, SMP computers with many cores and 128 GB are the
preferable platform for TreQ as the memory requirement is high,
even when comparable with the state-of-the-art when measured in
memory per core. Fortunately, SMP servers are approaching the
prices of clusters with a comparable number of cores and main
memory, which make the SMP platform the more versatile option
at the same price point and memory usage a lesser issue. Also,
the spatial index we used is a straight-forward kd -tree variant
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implemented in a cache-oblivious manner, which certainly can be
improved upon.

We are currently investigating a parallel distributed index, which
will allow the use of TreQ on clusters. Generally, we expect further
improvements in running times, and consequently in accuracy, from
an spatial index tailored specifically to the high-dimensional, integer
coordinate problem setting, e.g. an adaptation of X-trees (Berchtold
et al., 1996) or through the use of locality-sensitive hashing (Paulevé
et al., 2010). Additional improvements in terms of both memory
and running time can be made by using batch processing for
queries.

The simplistic evaluation of putative matches using Levensthein
distance will be replaced by a statistical, quality-score aware analysis
following the lead of Stampy (Lunter and Goodson, 2011) and LAST
(Frith et al., 2010; Hamada et al., 2011), which attribute their success
to a large degree to the quality of their putative hit filtering. In our
geometric embedding, quality scores can be used while searching
for putative hits by using floating-point or fixed-point arithmetic and
fractional count contributions for low-quality nucleotides.

The approximate matching tasks differ depending on whether
a read has one exact match, few matches of small Hamming or
Levenshtein distance, few matches of large Levenshtein distance
with large indels or many matches of arbitrary distance. The
resulting running times and accuracies depend heavily on the exact
composition of the read set with respect to the types of matches.
This implies that for data sets which are expected to contain both
reads with indels and reads with mutations, a hybrid approach
might be the most sensible option, as exemplified by our hybrid
method. Traditional read mappers that are fast on low-mutation
reads can be used to filter the unproblematic reads and then use
geometric embedding to map the remaining ones in an indel-tolerant
fashion.
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