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Abstract: Although acute inflammatory responses are host-protective and generally self-limited,
unresolved and delayed resolution of acute inflammation can lead to further tissue damage and
chronic inflammation. The mechanism of pain induction under inflammatory conditions has been
studied extensively; however, the mechanism of pain resolution is not fully understood. The resolution
of inflammation is a biosynthetically active process, involving specialized pro-resolving mediators
(SPMs). In particular, maresins (MaRs) are synthesized from docosahexaenoic acid (DHA) by
macrophages and have anti-inflammatory and pro-resolving capacities as well as tissue regenerating
and pain-relieving properties. A new class of macrophage-derived molecules—MaR conjugates
in tissue regeneration (MCTRs)—has been reported to regulate phagocytosis and the repair and
regeneration of damaged tissue. Macrophages not only participate in the biosynthesis of SPMs,
but also play an important role in phagocytosis. They exhibit different phenotypes categorized
as proinflammatory M1-like phenotypes and anti-inflammatory M2 phenotypes that mediate both
harmful and protective functions, respectively. However, the signaling mechanisms underlying
macrophage functions and phenotypic changes have not yet been fully established. Recent studies
report that MaRs help resolve inflammatory pain by enhancing macrophage phagocytosis and shifting
cytokine release to the anti-inflammatory M2 phenotypes. Consequently, this review elucidated the
characteristics of MaRs and macrophages, focusing on the potent action of MaRs to enhance the M2
macrophage phenotype profiles that possess the ability to alleviate inflammatory pain.
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1. Introduction

Inflammation is an immune response to harmful stimuli, including pathogens, damaged cells,
toxic compounds, surgery, or irradiation [1]. Inflammation is characterized by swelling, heat, pain,
redness, and loss of tissue function, which is caused by local immune, vascular, and inflammatory
cell responses to infection or injury [2]. Inflammatory processes that include changes in vascular
permeability, recruitment and accumulation of leukocytes, and release of inflammatory mediators, are
important in the regeneration of injured tissues [3]. Therefore, inflammation is an essential defense
mechanism for preserving health. A weak inflammatory response can lead to tissue destruction
by harmful stimuli, while chronic unresolved inflammation may culminate in various pathological
conditions, including cancer, fibrosis, and pain [4]. Wound regeneration promotes resolution of
inflammation by restoring barrier function [5]. Neutrophils are the first circulating inflammatory cells
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to be recruited to the wound site [6]. Clinical observations demonstrating that leukocyte recruitment
disorders and reduced neutrophil infiltration are associated with delayed wound healing indicate the
importance of neutrophils for efficient wound repair [7]. Recent studies have shown that macrophages
exhibit different functions during the immune response, with proinflammatory signaling occurring
during the early stages of inflammation and, once inflammation is resolved, promotion of tissue
regeneration at late stages [8,9].

Inflammatory pain indicates increased mechanical and thermal sensitivity due to inflammatory
reactions [10]. These mechanisms have been extensively investigated over the past two decades [11,12].
The earliest factors causing inflammatory pain are lipid mediators (leukotrienes (LTs) and prostaglandins
(PGs)) and proinflammatory cytokines (Tumor necrosis factor (TNF)-α and interleukin (IL)-1β) [13].
They sensitize nociceptors of the primary sensory neurons (peripheral sensitization) through modulation
of ion channels including TRP channels [14–16]. However, our understanding of the resolution
processes and mechanisms that causes inflammatory pain is limited. The acute inflammatory response
is protective, evolved to repair damaged tissues and eliminate invading organisms [17,18]. This
is ideally a self-limited inflammatory response that leads to a complete resolution of leukocyte
infiltrates and removal of cellular debris, allowing for the return to normal homeostasis [18]. However,
uncontrolled or unresolved acute inflammatory conditions can lead to chronic inflammation, causing
greater tissue damage, tissue remodeling disorders, and poor tissue healing [19,20]. These conditions
are known to induce the transition to chronic and maladaptive inflammatory pain [21,22] and may
lead to vascular disease, metabolic syndromes, and neurological diseases [19].

In general, the resolution of acute inflammation is an active rather than a passive process that
requires the biosynthesis of SPMs including lipoxins (LXs), resolvins (Rvs), protectins (PDs), and
maresins (MaRs), derived from the omega-6 fatty acid arachidonic acid (AA) and the omega-3
polyunsaturated fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) [23]. SPMs
turn off the inflammatory response by acting on distinct G-protein-coupled receptors expressed in
immune cells that activate dual anti-inflammatory and pro-resolution activity in various animal models
of inflammation [24–26]. In response to injury or infection, an acute inflammatory response involves
early tissue edema and neutrophil infiltration, some of which transits to mature macrophages [27,28].
Macrophages are major repair mediators in peripheral nerve and spinal cord injuries [29] that exist
in two polarization states [30]. These states are not fixed but instead change rapidly in response to
the microenvironment [31–33]. M1 (classically activated) macrophages produce proinflammatory
cytokines and promote nociceptor sensitization that can be converted into inflammatory pain, whereas
M2 (alternatively activated) macrophages produce anti-inflammatory cytokines and promote wound
healing [34]. Based on these functional roles, macrophages regulate the enhancement or alleviation of
pain sensitivity under various conditions [32,35]. For example, M1 infiltration has been identified in
pain-associated synovial tissue in models of muscle, joint, and paw inflammation [35,36]. In contrast,
M1 deficiency has been reported to reduce increased proinflammatory cytokines and prevent local
inflammatory pain in response to proinflammatory agents or chemotherapy-induced peripheral
neuropathy [37]. The transition from M1 to M2 phenotypes—or the balance thereof—appears to be
crucial for resolution associated with acute inflammatory response [13,38]. Spinal cord injury (SCI),
a condition frequently associated with prolonged inflammatory pain, increases the abundance of M1
phenotype cells in the spinal cord [13]. Thus, the balance of M1/M2 macrophages plays an important
role in the resolution of inflammation and inflammatory pain relief.

MaRs are believed to act as potent protective mediators of macrophage function [39,40] and
promote the resolution of acute inflammation and tissue regeneration [23,41,42]. Recent studies report
that MaRs promote inflammatory activity in macrophages; furthermore, the incubation of human
macrophages with MaRs improves resolution by increasing phagocytosis and efferocytosis. These
effects are likely due to various substances released by MaRs that alter macrophage function and
possibly contribute to the resolution of inflammation. For example, biosynthesized MaRs downregulate
proinflammatory cytokines, such as IL-1β, IL-6, and TNF-α, to induce inflammation resolution and
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tissue regeneration [43,44]. However, defective or delayed resolution causes chronic inflammation that
can eventually lead to chronic inflammatory pain [20]. It has been reported that inflammatory resolution
is reduced due to the following functional problems of the lipid mediator family and macrophages:
(a) M1/M2 macrophage imbalance [45,46]; (b) reduced MaR or other SPM formation [27,42,47–49];
(c) impaired synthesis of DHA [50]; and (d) aging [2,51,52]. Therefore, MaRs may act directly or
indirectly to reverse the inflammation relief deficiencies caused by these functional problems, thereby
restoring normal inflammation relief function. Moreover, a new series of bioactive peptide-lipid
conjugated mediators—MCTRs—are produced in the later stages of self-resolved infection [23,41] that
regulate inflammation and resolution mechanisms as well as tissue regeneration [23,41]. Consequently,
this review described the functional mechanisms of MaRs based on their potential ability to control
macrophage activation and inflammatory resolution.

2. Tissue Inflammation and Regeneration

2.1. Tissue Inflammation

The inflammatory response after tissue damage is an important biological process that is essential
for the survival of living organisms [1]. When tissues are damaged by infection, exposure to
toxins, or mechanical damage, an inflammatory response is induced by damage-associated molecular
patterns (DAMPs) and pathogen-associated molecular patterns (PRR) released by dead cells and
invading organisms [53]. These molecules provoke a complex inflammatory response characterized
by the recruitment, proliferation, and activation of various hematopoietic and non-hematopoietic
cells, including neutrophils, macrophages, innate lymphoid cells, natural killer cells, B cells, T cells,
fibroblasts, epithelial cells, endothelial cells, and stem cells, which together constitute the cellular
response that orchestrates tissue repair [54–56].

2.2. Tissue Regeneration

When the wound healing reaction is well organized and controlled, the inflammatory response is
quickly resolved and normal tissue structure is restored [57]. However, if the wound healing response is
chronic or becomes dysregulated, it can lead to the development of pathological fibrosis or scars, which
impair normal tissue function and may ultimately lead to organ failure and death [56]. Therefore, the
wound-healing reaction must be strictly regulated. Biological processes involved in cutaneous wound
healing include infiltration of inflammatory cells, fibroblast repopulation and new vessel formation,
keratinocyte migration, and proliferation [54,58,59]. Although many cells are involved in tissue repair,
macrophages exhibit significant regulatory activity at all repair and fibrosis stages and are critically
involved in normal tissue homeostasis [60]. It is clear that monocytes and macrophages play more
complex roles in tissue repair and in contributing to fibrosis and tissue regeneration [8]. Macrophages
are an important source of chemokines, matrix metalloproteinases (MMPs), and other inflammatory
mediators that induce early cellular response after injury [61]. Indeed, when macrophages are depleted
soon after injury, the inflammatory response is often greatly reduced [8]. However, their removal
can also reduce wound debris and cause less efficient repair and regeneration [56]. After the initial
inflammatory phase subsides, the main macrophage population develops a wound healing phenotype
characterized by the production of numerous growth factors, such as transforming growth factor beta
1 (TGF-β1), platelet-derived growth factor (PDGF), vascular endothelial growth factor alpha (VEGF-α),
and insulin-like growth factor 1 (IGF-1) [5].

3. Specialized Pro-Resolving Mediators (SPMs)

3.1. Biosynthesis of SPMs

SPMs are bioactive autacoids enzymatically produced from the omega-6 fatty acids arachidonic
acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA); they include lipoxins (LXs),
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resolvins (Rvs), protectins (PDs), and maresins (MaRs) generated via the action of lipoxygenases (LOXs)
and cytochrome p450 (CYP450) and cyclooxygenase-2 (COX-2) enzymes usually found in different
cell types residing in inflammatory environments [62,63]. Although many cell types can produce
SPMs, immune cells, such as neutrophils, monocytes, and macrophages, are reported to be primarily
responsible for the synthesis of these SPMs [24,64,65] (Figure 1) [66].
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omega-6 polyunsaturated fatty acids (PUFAs).

3.2. SPMs: Resolution Function

The mechanisms involved in acute inflammatory conditions are critical for the restoration of
tissue homeostasis [19,20]. The acute inflammatory response can be divided into two general phases:
initiation of acute inflammation and resolution [23]. Initiation is marked by tissue edema, resulting
from increased blood flow and vessel dilation that allows for the migration of leukocytes from the
post-capillary lumen to the interstitial space [17,18]. This process is mediated by proinflammatory lipid
mediators—namely, leukotrienes (LTs) and prostaglandins (PGs)—derived from the omega-6 fatty acid
AA [28,67]. The initial recruitment of neutrophils (polymorphonuclear leukocytes (PMNs)) is followed
by the recruitment of monocytes/macrophages from the blood and into the affected tissue [67,68].
In contained inflammatory exudates, coordinated lipid mediator class switching occurs in the course
of acute inflammation and resolution (Figure 2) [23,69,70]. AA-derived LXA4 is the first PUFA-derived
mediator found to have anti-inflammatory and pro-resolving activities [71,72]. Platelet-leukocyte
interaction leads to the formation of LXA4 and LXB4, which stimulates the lipid signaling class switch
by blocking the further recruitment of polymorphonuclear cells from post-capillary venules [73].
Once the noxious materials are removed via phagocytosis, the inflammatory reaction must be resolved
to maintain homeostasis [70,74]. The resolution of acute inflammation is an active process that is
controlled by SPMs [39,75]. These SPMs lead to the recovery of homeostasis by blocking leukocyte
trafficking to the inflamed site, reversing vasodilation and vascular permeability, and promoting the
clearance of inflammatory cells, exudates, and tissue debris [76,77]. In the lipid class-switch process,
SPMs share similar biological functions, limiting neutrophil infiltration, shifting cytokine profiles from
pro- to anti-inflammatory, and promoting macrophage phagocytosis [78].
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Figure 2. The outcome of acute inflammation and resolution. Under stimulation of injury or infection,
release of proinflammatory lipids (prostaglandin (PG), leukotriene (LT)), chemokines (C-C motif
chemokine ligand 2 (CCL2), C-X-C motif ligand 8 (CXCL8)), and cytokines (tumor necrosis factor-α
(TNF-α), interleukin (IL)-6) induce the recruitment of neutrophils. Other immune cells (macrophages,
B cells, and T cells) also participate in the process. Macrophages directly phagocytize organisms and
apoptotic neutrophils, while B cells are converted into plasma cells to kill organisms through secreted
antibodies, referred to as antibody-dependent cell-mediated cytotoxicity. Macrophages and B cells
activate T cells via antigen cross presentation (AP). PGE2 leads to vasodilation and LTB4 stimulates
PMN influx into the inflammatory locus. Subsequently, lipid mediator (LM) class switching converts
proinflammatory signals into pro-resolving signals and triggers resolution. SPMs restrict excessive
PMN influx to the injury site, enhance efferocytosis, and stimulate pro-resolving signals.

4. MaRs

4.1. Biosynthesis of MaRs

MaRs (from macrophage mediator in resolving inflammation) are a fourth family of DHA-derived
SPMs [79]. In macrophages, MaR-1 biosynthesis is initiated by 12-LOX from DHA, producing
14S-hydroperoxydocosa-4Z,7Z,10Z,12E,16Z,19Z-hexaenoic acid—the hydroperoxy intermediate—which
undergoes further conversion via enzymatic 13(14)-epoxidation. This epoxide intermediate is hydrolyzed
enzymatically via an acid-catalyzed nucleophilic attack by water at carbon 7, resulting in the introduction of
a hydroxyl group at that position and a double bond rearrangement to form the stereochemistry of bioactive
MaR1, which has potent pro-resolution properties. The 13S, 14S-epoxy-MaR intermediate is also the
precursor of MaR-2 (13R, 14S-dihydroxy-4Z,7Z,9E,11Z,16Z,19Z-DHA). This product of DHA biosynthesis by
12-LOX produces the 14S-hydroperoxide that is converted to the 13S, 14S-epoxy-MaR and finally converted
by a soluble epoxide hydrolase into MaR-2 (Figure 3A) [49].
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Figure 3. Synthesis and function of maresins (MaRs) and macrophages. (A) MaRs and MaR conjugates
in tissue regeneration (MCTRs) biosynthesis. Human macrophage 12-LOX converts DHA to the
13S,14S-epoxy-maresin intermediate and hydrolase or soluble epoxide hydrolase is converted to MaR1
and MaR2, respectively. The MCTR biosynthetic pathway is initiated by lipoxygenation of 14S-HpDHA,
converted by lipoxygenase activity to the 13S,14S-epoxy-maresin intermediate. MCTR1 is catalyzed by
glutathione s-transferase mu4 (GSTM4) and/or leukotriene C4 synthase (LTC4S). MCTR1 is converted
by gamma-glutamyl transferase (GGT) to MCTR2, which then acts as a substrate for conversion by
dipeptidase (DPEP) to MCTR3. (B) M1 and M2 polarization of macrophages. Bone marrow-derived
macrophages differentiate into mononuclear cells and gradually become mature macrophages that
can be released into circulation. IFN-γ, TNF-α, and LPS stimulate macrophages into M1, IL-4 and
IL-13 into M2a, IC and TLR into M2b, and IL-10 into M2c; A2AR agonist stimulates them into
M2d. M1 macrophages induce a proinflammatory response, whereas M2 macrophages induce an
anti-inflammatory response. M1 macrophages can also differentiate into M2 macrophages through local
cues. The M1 phenotype is proinflammatory, phagocytic, and bactericidal, while the M2 macrophages
act to switch off inflammation. IFN-γ: interferon gamma; TNF-α: tumor necrosis factor alpha; LPS:
lipopolysaccharides; IC: immune complexes; TLR: toll-like receptor; A2AR: adenosine A2A receptor;
IL: interleukin; IL-1R: IL-1 receptor.

4.2. Biosynthesis of MaR Conjugates in Tissue Regeneration (MCTRs)

Macrophages also produce a family of bioactive peptide-conjugated mediators called MCTRs [80].
MCTR compounds are produced from the 13(S), 14S-epoxide MaR intermediate during MaR
biosynthesis. This epoxide intermediate is enzymatically converted to an MCTR. DHA is converted
by 12-LOX into 13,14-epoxy-maresin (an intermediate of MaR-1 and MaR-2) that can be directly
conjugated at C13 to glutathione by LTC4 synthase, yielding MaR conjugated in tissue regeneration
1(MCTR 1). MCTR 1 (13R-glutathionyl, 14S-hydroxy-4Z,7Z,9E,11E,13R,14S,16Z,19Z-DHA)—the first
cysteinyl-SPM to be identified—is synthesized in the presence of leukotriene C4 (LTC4) synthase and
γ-glutamyltransferase-µ4 in human macrophages. γ-Glutamyl transferase is involved in the conversion
of MCTR-1 to MCTR2 (13R-cysteinylglycinyl, 14S-hydroxy-4Z,7Z,9E,11E,13R,14S,16Z,19Z-DHA) and
MCTR-3 (13R-cysteinyl,14S-hydroxy-4Z,7Z,9E,11E,13R,14S,16Z,19Z-DHA) (Figure 3A) [34,39].

4.3. Function of MaRs and MCTRs

13S, 14S-epoxy-DHA(eMaR) stimulates the conversion of the M1 macrophage phenotype to
M2 and blocks LTA4 hydrolase [81]. MaR1 possesses potent pro-resolving, antinociceptive, tissue
regenerative, antiaggregant, and vasculoprotective functions. Recently, MaR-2 was reported to have
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powerful bioregulatory effects. Similarly, MCTRs act as tissue protective and regenerative agents, with
anti-inflammatory and pro-resolving properties [25]. Thus, MaRs and MCTRs are regulated during
acute self-limited infectious-inflammation and possess many attributes that contribute to host defense,
tissue regeneration, organ protection, and pain modulation [25,34,39,49,72].

5. Macrophages

5.1. Macrophage Origin, Polarization, and Function

Naïve macrophages are widely distributed in all tissues via circulation through the bloodstream [82].
These cells remove apoptotic cells and foreign material via phagocytosis and participate in various
processes, such as wound healing and tissue repair [83]. Macrophages are derived from bone marrow
hematopoietic stem cells [84]. When stimulated by cytokines, bone marrow-derived macrophages
develop into monocytes that then differentiate into pre-macrophages [35,85]. Finally, they become
mature macrophages that can be released into the bloodstream [35,86]. Macrophages respond to
current conditions to form a heterogeneous cell population [87]. Under the influence of various
stimuli, they usually differentiate into one of two phenotypes (polarization) [88]: proinflammatory type
(M1) and anti-inflammatory or reparative type (M2) [89]. M1 macrophages are proinflammatory and
secrete cytokines, while M2 macrophages are anti-inflammatory and promote tissue repair to resolve
inflammation [87]. M2 macrophages can be further sub-classified as M2a, M2b, M2c, and M2d based
on transcriptional changes that result from exposure to different stimuli [90]. Lipopolysaccharides
(LPS), TNF-α, and interferon gamma (IFN)-γ are used to convert macrophages to M1, IL-4 and IL-13 to
M2a, immune complexes (IC) and toll-like receptors (TLR) to M2b, IL-10 to M2c, and adenosine A2A
receptor (A2AR) agonist to M2d (Figure 3B) [29]. Therefore, stimulus-dependent polarization controls
the specific functions and phenotypes of macrophages.

5.2. Relationships between Macrophages and MaRs

Macrophages participate in the biosynthesis of SPMs with both anti-inflammatory and
pro-resolving properties [34]. SPMs are enzymatically biosynthesized from essential fatty acids
with different stereochemistry [74,80,91]. MaRs—a new family of macrophage-derived mediators—are
synthesized from DHA by macrophages and are potent in the resolution of inflammation [33]. Most
importantly, MaR1 directly enhances neutrophil activation and the switch from macrophage M1 to
M2 phenotype [92], both of which promotes anti-inflammatory and pro-resolving actions, inhibiting
neutrophil infiltration and stimulating macrophage phagocytosis and efferocytosis to enhance the
clearance of inflammation without affecting the innate response [27,49].

6. Role of MaRs in Inflammation Resolution

The level of this potent leukocyte agonist decreases in the later stages of the self-limited
inflammatory response [93]. It is possible that other signals regulate leukocyte responses to promote
tissue repair and regeneration. Given the pivotal roles of chemical signals in infections, it has been
revealed that new mediators, within self-resolving infections, can regulate tissue repair and regeneration
without immune suppression [34]. MaR-1 exhibits potent pro-resolving and tissue regenerative activity
and is involved in self-limited infections that regulate tissue regeneration [34,94]. New pathways and
mediators in planaria promote recovery and regeneration during infection [27]. The recruitment of
leukocytes into the lesioned spinal cord is regulated by various proinflammatory mediators [95,96].
Cytokines mediate inflammation by acting on specific receptors that activate different intracellular
inflammatory cascades [97]. Additionally, MaR-1 downregulates cytokine expression in mouse models
of colitis and acute respiratory distress syndrome [41,49,92]. However, little is known about the
intracellular cascades regulated by MaR-1.

Although IL-10 has anti-inflammatory properties, its contribution to the healing process is not
fully established. In a recent report, MaR1 increased the levels of IL-10 postoperatively for 14 days [98].
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Notably, MaR-1 has been reported to interact with stem cells to reduce chronic inflammation and improve
wound healing following SCI [77,99]. Interestingly, macrophages incubated with MaR-1 are polarized
toward an anti-inflammatory phenotype and increase MRC1 mRNA expression (an M2 macrophage
phenotype marker), implying a possible role of MaR-1 in M2 macrophage polarization [42]. TNF-α is
one of the earliest cytokines to appear following tissue damage and is associated with the production
of many cytokines, including IL-1β and IL-6. MaR-1 attenuates the release of proinflammatory
cytokines and TNF-α in macrophages [49,100]. In addition, intracellular adhesion molecule 1 (ICAM-1)
is an epithelial PMN ligand that promotes neutrophil migration through epithelial cells during
inflammation [92]. MaR-1 inhibits the 10-fold upregulation of ICAM-1, suggesting that it contributes
to the resolution of inflammation by affecting neutrophil clearance and efferocytosis. Another possible
avenue for treatment with MaRs is motor neuron disease, a fatal neurodegenerative disease that
causes loss of motor neuron function and progressive degeneration [101]. However, the molecular
mechanisms of motor neuron degeneration in amyotrophic lateral sclerosis (ALS) are not yet full known.
Many pathogenic changes occur in the affected motor neurons, including mitochondrial dysfunction,
hyper excitability, glutamate excitotoxicity, and nitroxidative stress [101]. Superoxide dismutase 1
(SOD1) G93A and transactivation response DNA-binding protein (TDP)-43A315T cause oxidative stress,
endoplasmic reticulum (ER) stress, and inflammation. MaR-1 possesses neuroprotective effects against
stress-induced cell death induced by various factors, such as SOD1 G93AA315T and TDP-43A315T,
inhibiting NF-κB activation [102]. Therefore, MaR-1 may also contribute to treatment options for motor
neuron diseases, such as ALS and SMA (spinal muscular atrophy).

7. Role of MaRs and Macrophages in Inflammation Resolution

Macrophages are involved in the processes of homeostasis, tissue repair, and regeneration [29].
They are recruited to damaged nerve sites through the activation of M1 and M2 subtypes [29]: M1
macrophages exhibit a proinflammatory profile and mediate cytotoxic actions; and M2 macrophages
have anti-inflammatory effects and promote tissue healing and recovery [31,32]. The balance of M1 and
M2 macrophages regulates early events in local inflammation [103]. In this process, cytokine contributes
to the recruitment of M1 macrophages [104]. It releases other proinflammatory cytokines, such as
TNF-α, IL-1α, and IL-β, to promote further tissue damage [105]. To control this process, activated M2
macrophages release anti-inflammatory cytokines, IL-10 and TGF-β, which mediate tissue regeneration
and inhibition of the proinflammatory function [106]. Also, an increased ratio of M2 macrophages
significantly enhances nerve regeneration and wound healing [107]. DHA plays important roles in
peripheral organs, as well as in the central nervous system, and is the precursor of various molecules that
regulate the resolution of inflammation [50,108]. Macrophages derived from mice deficient of Elov12
(Elovl2-/-)—the main enzyme for DHA synthesis—demonstrate an increased expression of M1-like
markers (iNOS and CD86), whereas M2 macrophages downregulate M2-like markers such as CD206 [50].
Similarly, the impairment of systemic DHA synthesis in activated macrophages results in an alteration of
M1/M2 macrophages, supporting the important role played by DHA in regulating the balance between
pro- and anti-inflammatory processes. Inflammation resolution is an active and highly regulated
inflammatory process that is necessary to prevent the transition into chronic inflammation with the
spread of tissue injury or exacerbated scarring [13]. However, differential leukocyte subpopulations
reduce or otherwise impair the ability to resolve inflammation at the lesion site after acute experimental
spinal cord injury (SCI) [95,103]. For example, after SCI, M2 macrophage function is shown to be
defective in resolving inflammation, impairing tissue remodeling and healing [77]. Macrophages in
SCI are not defined within the M1-M2 dichotomy. MaR1 is effective in enhancing several stages of
inflammation resolution after SCI through the downregulation of cytokines, reduction of neutrophils
and macrophages, shift in macrophage phenotype, and stimulation of macrophage phagocytosis [77].
Treatment with MaR1 after SCI reportedly enhances neutrophil clearance and reduces macrophage
accumulation in the lesioned tissue [77]. Inappropriate biosynthesis of SPMs after SCI interferes with
the resolution of inflammation and contributes to the pathophysiology of SCI. Abnormal production of
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SPMs is also reported in the cerebrospinal fluid (CSF) of patients with Alzheimer’s disease and multiple
sclerosis [68,75]. Thus, the potential function of MaRs can be confirmed by their immunoresolvent
effects on the phagocytosis of macrophages and their inhibitory functions on cytokine levels and
inflammatory signaling pathways [77]. Chronic inflammation is the basis of the common pathology of
age-related diseases, such as cardiovascular disease, diabetes, and Alzheimer’s disease [2], involving
alterations to the immune system that promote chronic inflammation. Macrophages are important
in these age-associated changes that cause chronic inflammatory diseases [72]. Recent studies have
shown that aging impairs macrophage phagocytosis, resulting in a failure to resolve damage-associated
molecular patterns in aged animals [2,45,51].

8. Role of MaRs in Resolution of Inflammatory Pain

MaR1 not only regulates the resolution of inflammation, but also plays a powerful role in
preventing hyperalgesia sensitivity in inflammatory- and chemotherapy-induced chronic inflammatory
pain [23,27]. MaR1 dramatically reduces vincristine-initiated neuropathic pain in a cancer chemotherapy
model [27] and in temporomandibular joint pain [26]. In addition, MaR1 has played an important
role in the prevention of postoperative pain in orthopedic surgery models [24]. Postoperative pain
management with MaR1 may help control the onset of neuroinflammation. Acute perioperative
treatment with MaR1 delayed the development of mechanical and cold allodynia. Moreover, MaR1 has
been shown to induce analgesia by regulating transient receptor potential vanilloid 1 (TRPV1) currents
in neurons. [27]. Intrathecal treatment with MaR1 reduces inflammatory pain with a long-lasting
analgesic profile through the inhibition of astrocytic and microglial activation [109].

In the periphery, various cytokines contribute to neutrophil recruitment into the tissue and,
consequently, an increase in inflammatory processes and pain [28,110]. Intrathecal MaR1 treatment
reduces recruitment and leukocyte count [94,100]. In addition, MaR1 reduces CFA-induced mRNA
expression of Nav1.8 and Trpv1 channels [26]. MaR1 likely controls TRPV1 expression in DRG
neurons during inflammation. Thus, targeting these channels is effective for reducing inflammatory
pain [111,112]. Under noxious stimuli, nociceptor neurons release neuropeptides, such as CGRP and
substance P, which control the recruitment of immune cells to the inflamed tissue [113,114]. MaR1
reduced the release of CGRP from DRG neurons, indicating a possible mechanism by which MaR1
reduces inflammatory pain through reduced recruitment of neutrophils and macrophages. In the
spinal cord, TNF-α and IL-1β contribute to spinal cord plasticity and, hence, central sensitization [97].
Cytokines improve the amplitude of AMPA- and glutamate-induced excitatory currents [97]. Indeed,
the CFA model induces central sensitization with stronger activation of astrocytes when compared to
microglia [111,115,116]. Central sensitization has been recognized as the main cause of pathological pain,
resulting in plastic changes in the CNS [117]. Intrathecal treatment with MaR1 reduced CFA-induced
astrocyte and microglial activation and decreased activation by TNF-α, IL-1β, and NF-κB [26].
In addition, the interaction between glial cells and nociceptor neurons has been linked to these plastic
changes in the spinal cord [26]. MaR1 reduces glial cell activation and blocks capsaicin-induced TRPV1
calcium influx as well as spontaneous EPSC frequency [26]. Thus, MaR1 can reduce spinal cord plastic
changes and inhibit central sensitization via presynaptic and postsynaptic mechanisms [26]. MCTRs
also rescue Escherichia coli infection-mediated delays in tissue regeneration of planaria, in addition
to protecting mice from second-organ reflow injury and promoting repair by limiting neutrophil
infiltration [41]. Furthermore, each MCTR promotes the resolution of E. coli infections by increasing
bacterial phagocytosis and limiting neutrophil infiltration [25]. Phagocytosis is a main means by
which macrophages resolve inflammation [2]. Increasing evidence suggests that MaRs produce potent
anti-inflammatory and pro-resolution profiles, partially by enhancing macrophage activity [17,93].
However, it remains unclear how MaRs regulate macrophage phagocytosis.
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9. Conclusions

MaRs belong to the most recently uncovered family of anti-inflammatory lipid mediators with
pro-resolving activity in the amelioration of inflammation. The activation of MaRs in macrophages
enhances phagocytosis and helps to reverse inflammatory pain by shifting cytokine release to an
anti-inflammatory state. However, M1/M2 macrophage imbalance, reduced SPM formation, impaired
synthesis of DHA, and aging reduce and generally impair the resolution of inflammation under
pathological conditions. MaRs have been shown to alleviate this deficiency by reversing and improving
the function of macrophages (Figure 4). However, the specific receptors and signaling mechanisms
involved in the ability of MaRs to resolve inflammation must be investigated in order to fully establish
their important role in the treatment of inflammation in various diseases.
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