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Abstract

The protozoan parasite Entamoeba histolytica is the causative agent of amebiasis, an infection that 

manifests as colitis and, in some cases, liver abscess. A better understanding of host protective 

factors is key to developing an effective remedy. Recently, significant advances have been made in 

understanding the mechanisms of MUC2 production by goblet cells upon amebic infection, 

regulation of antimicrobial peptide production by Paneth cells, the interaction of commensal 

microbiota with immune stimulation, and host genetics in conferring protection from amebiasis. In 

addition to host pathways that may serve as potential therapeutic targets, significant progress has 

also been made with respect to development of a vaccine against amebiasis. Here, we aim to 

highlight the current understanding and knowledge gaps critically.

Outline of Amebiasis

Entamoeba histolytica infection accounts for millions of symptomatic infections and about 

55 000 deaths worldwide annually [1]. Infection occurs when amebic cysts (see Glossary) 

enter the host intestinal lumen via contaminated food and water. In the lumen, the cyst 

produces trophozoites which can invade intestinal epithelial cells. Trophozoites adhere to 

intestinal epithelial cells by the parasite's surface Gal/GalNAc lectin which binds to host 

cell membrane carbohydrates galactose (Gal) and/or N-acetyl-D-galactosamine (GalNAc) 

[2]. After adhering to host cells, an ameba uses several cytotoxic mechanisms to induce cell 

killing and tissue invasion, including apoptosis, phagocytosis, and trogocytosis [3,4] (Box 

1).

Besides the symptomatic cases, a large number of infections remain asymptomatic [5]. Host 

defense mechanisms presumably contribute to these asymptomatic infections. In recent 

years, significant advancement has been made in our understanding of the mechanisms 

through which the MUC2 mucin protects from amebic infection [6-8]. Epithelial cells, in 

addition to mucin production, can also promote protection by producing antimicrobial 
peptides (AMPs) and cytokines [9-11]. In addition to the host epithelium, the role of the 

microbiome has re-emerged as important in determining protection from amebic infection 

[12-15]. Our group's recent work has built a framework for how different members of the 

bacterial microbiota can communicate with bone marrow progenitor cells, resulting in 
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amebic protection [16]. We also explored the impact of cell-mediated immunity in amebiasis 

[12,17]. Building on our early findings – that the amebic surface antigen LecA is critical for 

colonization – work over the last couple of decades has focused on developing an effective 

vaccine against amebiasis. By adding liposome-based adjuvants to LecA, the efficacy of the 

vaccine has been recently improved [18,19]. Here, we outline the recent progress on host 

response to amebiasis.

The Host Mucus Layer Plays the Role of Primary Sentinel against E. 

histolytica Infections

The mucus layer keeps the approximate 100 trillion microorganisms away from the 

intestinal epithelial layer and confers the first line of defense in the gut against harmful 

infections. MUC2 mucin is the primary component of the mucus layer and is known to be 

essential for the protection from detrimental intestinal insults [20]. MUC2 mucin was shown 

to be involved in the maintenance of a healthy microbiota, with transplantation of Muc2−/− 

microbiota making Muc2+/+ mice more susceptible to dextran sodium sulfate colitis [21].

The protective role of the host's mucin layer against E. histolytica is well studied. Chadee et 
al. isolated and purified colonic mucus from rat and human colon and showed that even the 

crude mucus could inhibit amebic adherence to Chinese hamster ovary (CHO) cells by up to 

70% and prevented killing of rat colonic epithelial cells by amebic trophozoites by up to 

40% [22]. In vivo studies using closed colonic loops in Muc2−/− mice revealed severe 

colonic disease and a substantially higher expression of inflammatory cytokines compared 

with wild-type (WT) mice [23]. It will be important to follow up these studies. While the 

colonic loop model has been useful in unraveling host–parasite interactions, it does not 

mimic the natural infection model in several ways. In this model, infection is forced to be 

confined in a certain portion of the colon. Also, mice are harvested after only several hours 

of amebic challenge, which does not allow long-term colonization. To understand the role of 

MUC2 in long-term colonization with ameba, a different model with several days of 

established infection is required (Box 2).

E. histolytica needs to cleave the mucus surface and attach to intestinal epithelial cells to 

establish an infection. Although several cysteine proteases, including EhCP1, EhCP2, and 

EhCP5, are expressed by E. histolytica, only the role of EhCP5 in amebiasis is well 

established. In vitro studies have revealed that the C-terminal cysteine-rich domain of 

MUC2 is cleaved off by EhCP5 [6,24]. Since MUC2 is a major component of the mucin 

layer, EhCP5 facilitates mucin degradation by cleaving it, which allows E. histolytica to 

overcome the mucin barrier. EhCP5-deficient E. histolytica trophozoites were unable to 

cleave the mucus layer in LS174T epithelial cells derived from human colon; however, 

trophozoites were able to kill the cells without the mucus layer, suggesting that cysteine 

proteases are critical for cleaving the mucins but not for amebic cytotoxicity [25].

Once trophozoites pass the mucin layer, and attach to the intestinal epithelial cells, there is 

an immediate stimulation of mucin production by the goblet cells to impose a secondary 

mucin shield. The pathogen-associated molecular patterns (PAMPs) and the mechanism 

of this attachment-induced mucin production were not quite understood until recently. 
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Cornick et al. discovered that induction of mucin secretion by goblet cells is mostly 

mediated by the interaction of EhCP5 with goblet cell αvβ3 integrin. This interaction 

activated SRC family kinases, which, in turn, phosphorylated and activated 

phosphatidylinositol-3-kinase (PI3K). PI3K activation resulted in the activation of protein 

kinase (PK)Cδ to drive vesicle-mediated exocytosis of mucin [6]. Using monolayers of the 

mucin-producing LS174T cell line, the authors found that challenge with WT trophozoites 

resulted in a fivefold increase in mucin, while EhCP5-silenced trophozoites increased mucin 

production by only twofold. While it is clear that EhCP5 plays a major role in mucus 

secretion, these results suggest that other important players have yet to be investigated. 

Vesicle-mediated mucin exocytosis is critical from protection from amebic damage. 

Knocking down of vesicle-associated membrane protein 8 (VAMP8) in LS174T cells 

inhibited mucin generation and facilitated the attachment and cell killing by trophozoites. As 

expected, VAMP−/− mice had more colonic pathology and inflammation compared with 

littermate controls [8]. Interestingly, there were noticeably higher MUC2-positive goblet 

cells in VAMP−/− mice compared with VAMP8+/+ mice, suggestive of inefficient mucin 

exocytosis but not mucin production in VAMP8−/− mice.

In addition to MUC2, there are other mucins that are important for protection from colitis. 

One important cell surface mucin is MUC1. Muc1 expression was observed to be increased 

in the small intestine, cecum, and colon of mice upon infection with the bacterial pathogen 

Campylobacter jejuni [26]. In support of the importance of MUC1 in protection, patients 

with ulcerative colitis had increased expression of Muc1 in inflamed tissue [27]. Expression 

of another secretory mucin, MUC6, was observed to be increased in amebic infected colonic 

tissue [23]. These data suggest that other mucins, in addition to MUC2, may play a role in 

protection from amebiasis. These areas are open to being investigated to understand the 

complex interaction between host and E. histolytica in the context of mucus response.

Trophozoites That Pass the Mucus Layer Experience Secondary Host 

Defense at the Epithelial Layer

In response to attachment of the parasite, different functional and regulatory changes occur 

in epithelial cells. A recent study showed that EhCP112 is involved in degrading tight-

junction proteins and reducing transepithelial electrical resistance [28]. One of the first 

responses is by the goblet cells that produce mucins. In addition to mucin production, goblet 

cells can regulate Paneth cell morphology and function; it has been reported that, in Muc2−/− 

mice, the localization of Paneth cells is altered and secretion of cathelicidin is decreased, 

while the secretion of α-defensins is increased [7,29]. Studies have revealed the amebicidal 

activity of α-defensins and β-defensins. In vitro treatment with cryptdin-2 (an α-defensin) 

damaged the structural integrity of E. histolytica trophozoites and diminished the synthesis 

of DNA, RNA, and protein [11]. Expression of human β-defensin-2 (HBD-2) mRNA was 

shown to be increased in a human colonic cell line (Caco-2) upon exposure to E. histolytica. 

Interestingly, released HBD-2 damaged the membrane integrity of the parasite [9]. Amebic 

infection can also induce cathelicidin and cathelicidin-related AMPs in human and murine 

colonic cells, however, the amebicidal role of these compounds is not established [3]. 

Another AMP expressed by Paneth cells is the REG (islet of Langerhans regenerating 
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protein) family protein. Peterson et al. performed a microarray analysis of human colonic 

biopsies and observed around an eight- to 10-fold increase in expression of REG1A and 

REG1B mRNA during acute amebic infection [30]. REG1A is known to be antiapoptotic 

and is induced in the inflamed tissue in patients with inflammatory bowel disease (IBD) 

[31]. When colonic epithelial cells from Reg−/− and littermate WT control mice were 

incubated with amebic protein there was higher apoptosis of epithelial cells of Reg−/− mice. 

These data suggest that REG1 potentially protects from amebiasis by resisting the amebic 

induced apoptosis of epithelial cells, though in vivo confirmation is missing. REG4 was 

recently added to this family and was shown to be predominantly expressed by 

enteroendocrine cells in human and mice colon and is transcriptionally regulated by the 

ATF2 transcription factor [32]. In the inflamed tissue of ulcerative colitis patients, Reg4 
mRNA expression was higher and was correlated with increased expression of inflammatory 

cytokines [32]. Future studies should investigate the role of REG4 in infection-induced 

colitis-like amebiasis.

Amebic attachment to epithelium induces the production of proinflammatory cytokines. 

Using an ex vivo model, Bansal et al. observed that trophozoites breach the mucus layer 

within 2 h and stimulate the production of proinflammatory cytokines, including interleukin 

(IL-)1β, IL-6, IL-8, interferon-gamma (IFN-γ), and tumor necrosis factor-alpha (TNF-α) 

(Figure 1, Key Figure) [33].

Thus, the epithelium provides at least three layers of protection against amebic colitis: (i) 

mucins produced by goblet cells deter trophozoite attachment to epithelial cells, (ii) AMPs, 

secreted primarily from Paneth cells, dampen down the trophozoites functionality and 

membrane integrity, and (iii) inflammatory cytokines from epithelial cells signal and recruit 

immune cells to fight parasites that have already passed the barrier. It is likely that tuft cells 

also play an important role in amebiasis since they produce IL-25, which has been found to 

be protective [17].

Host Genetics Plays an Important Role in Determining the Outcome of E. 

histolytica Infection

Studies on Bangladeshi children showed that amebiasis is more common in malnourished 

children [34]. Leptin, a hormone produced mainly by adipocytes, regulates food intake and 

energy expenditure and is suppressed in malnourished children. Duggal et al. observed that 

genetic polymorphisms in the leptin receptor were significantly associated with increased E. 
histolytica infection in mice and humans. A strong association was observed for a 

nonsynonymous SNP at the amino acid 223 position of the leptin receptor, with a glutamine 

(Q) for the WT allele and arginine(R) for the mutant allele [35]. Leveraging the murine 

model of infection, they found that having RR and QR alleles led to a significantly higher 

infection rate and the death of intestinal epithelial cells. Leptin signaling in epithelial cells, 

but not in hematopoietic cells, was critical for protection; however, it was observed that RR 

mice had impaired recruitment of neutrophils to the site of amebic infection. Neutrophils 

from polymorphic mice also showed compromised chemotaxis toward leptin in vitro, 

suggesting that leptin-mediated protection might be dependent on neutrophils [36,37]. It is 
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important to mention that activation of signal transducer and activator of transcription 

(STAT)3, but not SHP-2 and STAT5, was critical for protection mediated by leptin signaling 

[38].

A genome-wide association study was conducted in two birth cohort studies in Bangladesh 

to identify genetic variations associated with symptomatic E. histolytica infection [39]. An 

association with SNPs in a locus that included CREM (cAMP-responsive element 

modulator) with E. histolytica diarrhea was identified [39]. Interestingly, using GTEx data, 

the polymorphisms were associated with decreased CREM expression. In support of this 

human data, CREM-deficient mice were found to be more susceptible to amebic infection. 

The mechanism of CREM-mediated protection is under investigation. CREM might protect 

by conferring on epithelial cells resistance to amebic-induced apoptosis since CREM 
knockout mice had significantly higher caspase-3-positive cells upon amebic infection [39]. 

CREM could also confer protection by regulating the type-1 and type-3 cytokines (IFN-γ, 

IL-17A). IFN-γ and IL-17A protect against amebic infection, and it was observed that 

CREM-deficient mice had compromised differentiation of T helper (Th)1 and Th17 cells 

[13,40,41].

A Healthy Microbiota Cooperates with the Immune Compartment to Shape 

the Protective Response

Different gut bacteria have been associated with both protection and disease progression in 

amebiasis. Verma et al., using qPCR, showed that E. histolytica-positive stool samples have 

a substantially lower abundance of Bacteroides, Eubacterium, Clostridium leptum subgroup, 

Clostridium coccoides subgroup, Lactobacillus, and Campylobacter, and a significantly 

higher abundance of Bifidobacterium [42]. However, the direct role of any of these bacterial 

genera in amebiasis was not investigated. E. histolytica is a colonic parasite and relies on 

colonic bacteria for survival and pathogenicity. One of the toxic factors that an ameba needs 

to adapt to in the colonic environment is oxidative stress. Several studies have revealed that 

enteric bacteria help amebae to resist oxidative stress [43-45]. Varet et al. recently identified 

that incubation with live Escherichia coli O55 increased E. histolytica resistance to H2O2-

mediated killing by up to three to five times [44]. Interestingly, preincubation with E. coli 
O55 reversed the expression profile of more than 1000 genes in trophozoites that were 

observed to be modulated by H2O2 treatment [44]. E. coli malate dehydrogenase (MDH) is 

necessary for protection as treatment with MDH mutant E. coli could not protect from 

H2O2-mediated oxidative stress [43]. The addition of oxaloacetate to the medium, instead of 

E. coli, restored the protection. Overexpression of MDH in amebae could not maintain the 

defense, suggesting that bacterial MDH and its product oxaloacetate regulate the defense to 

H2O2-mediated oxidative killing. In addition to a survival advantage, the presence of 

particular bacterial species could be predictive of the symptomatic diseases. Gilchrist et al. 
analyzed E. histolytica-positive diarrheal stools and asymptomatic monthly stools collected 

from Bangladeshi children and showed that diarrheal stools have a significantly higher 

burden of Prevotella copri [15]. A similar observation was reported in a cohort of South 

African children [14]. This association requires further exploration to determine if P. copri is 

merely taking advantage of the inflamed gut or if it directly increases amebic virulence.
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Decreased microbial diversity is a risk factor for amebiasis. Children with symptomatic E. 
histolytica infections had a decreased Shannon diversity index of the stool microbiota 

compared with children with asymptomatic infection [12]. To identify the mechanism of 

microbiota-mediated protection from amebiasis, our group recently developed a dysbiotic 

mouse model [12]. Mice were treated with an antibiotic cocktail in their drinking water for 2 

weeks before challenge with amebic trophozoites. Upon amebic challenge, antibiotic-treated 

mice had significantly increased weight loss, clinical score, and trophozoite load in cecal 

contents. Remarkably, dysbiotic mice had fewer goblet cells with significantly decreased 

Muc2 mRNA expression in cecal tissue. In agreement with these findings, other groups 

recently demonstrated the importance of gut microbiota in regulating the MUC2 mucin 

[46,47]. One of the potential mechanisms of protection is the regulation of immune cell 

recruitment at the site of infection. Antibiotic-treated mice had decreased CXC chemokine 

receptor 2 (CXCR2) expression and decreased recruitment of neutrophils in cecal tissue 

[12].

The microbiota–bone marrow axis is a relatively new area of study that scientists are 

exploring. Through modulating systemic responses, the microbiome can interact with bone-

marrow stem cells to regulate the immune compartment [48]. Colonization with segmented 

filamentous bacteria (SFB) protected mice from amebiasis with an induced level of colonic 

IL-17A, IL-23, neutrophils, and dendritic cells and serum amyloid A (SAA) (Figure 2) [13]. 

Adoptive transfer of bone marrow dendritic cells (BMDCs) from SFB+ mice to SFB− mice 

successfully transferred the protection in an IL-17A-dependent manner [13]. Burgess et al. 
recently discovered that intestinal colonization with Clostridium scindens is associated with 

increased bone marrow granulocyte-monocyte progenitors (GMPs) in specific-pathogen-

free and gnotobiotic mice. Adoptive transfer of bone marrow cells from C. scindens-

colonized mice to naïve mice conferred protection from amebiasis with an increased level of 

intestinal neutrophils and serum deoxycholic acid (DCA) (Figure 2). Importantly, treatment 

with exogenous DCA upregulated GMPs and protected from amebiasis [16]. These data 

clearly show the role of commensal microbiota in the regulation of bone marrow cells to 

maintain protection from amebiasis.

Cell-Mediated Innate Immunity

Neutrophils

Neutrophils can exert a defensive action to pathogenic infections by several mechanisms, 

including degranulation of the toxic factors, phagocytosis, and formation of neutrophil 

extracellular traps (NETs) [49]. Although there is some controversy, most of the studies have 

shown that neutrophils play a protective role during amebiasis [12,37,50,51]. Preventing 

neutrophil recruitment to the gut by anti-CXCR2 treatment or depletion of neutrophils by 

anti-Ly6G monoclonal antibody increased susceptibility to amebic infection in mice [12,37]. 

In vitro studies showed that neutrophils primed with IFN-γ, TNF-α, or lipopolysaccharide 

(LPS) have amebicidal potential [51]. The exact mechanism of how neutrophils might clear 

the amebic infection is not fully understood. Exposure of human neutrophils to live 

trophozoites, but not fixed trophozoites, induced the release of NETs in a time- and dose-

dependent manner [52,53]. Interestingly, E. histolytica purified lipopeptidophosphoglycan 
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was able to induce NET formation in a dose-dependent manner. It is not clear how amebic 

lipopeptidophosphoglycan induced NET formation while fixed amebae did not.

Macrophages

Macrophages are one of the early responders to infections. By releasing inflammatory 

cytokines, such as IL-1β, TNF-α, and IFN-γ, and toxic nitric oxide (NO), macrophages can 

help to recruit other immune cells as well as exert direct amebicidal functions (Figure 1) 

[54-56]. Macrophages stimulated with colony stimulating factor (CSF), IFN-γ, or TNF-α 
are more potent in killing amebic trophozoites [57]. Treatment with NO downregulated the 

amebic virulence genes encoding cysteine proteinases and alcohol dehydrogenase 2 [58]. A 

recent study discovered that the interaction of trophozoites with human monocyte-derived 

macrophages and mouse bone-marrow-derived macrophages could induce the rapid 

secretion of the nuclear alarmin high-mobility group box 1 (HMGB1) [54]. Induction of 

HMGB1 might be the potential mechanism of the E. histolytica-mediated inflammatory 

response of macrophages since neutralization of HMGB1 dropped the expression of IL-1β 
and TNF-α [54,55,59]. Amebic attachment to macrophages induces inflammasome 
activation. In vitro experiments showed that culture of macrophages with trophozoites, but 

not the amebic lysate, produced activated caspase-1 and IL-1β within 10 min. Inhibition of 

NLRP3 inflammasome activation blocked caspase-1 and IL-1β activation [60]. Upon 

attachment, E. histolytica mediated cytoskeletal breakage of macrophages through a 

caspase-6-dependent mechanism [55].

Macrophage activation upon exposure to pathogens is a complex and context-dependent 

process. Classically activated or M1 macrophages are involved mainly in the induction of 

inflammation and killing of pathogens, while alternatively activated M2 macrophages are 

involved in tissue-repair mechanisms [61-63]. It would be worth exploring further to 

delineate the role of differentially activated macrophages in protection against amebiasis.

Eosinophils

Eosinophilia is known to be associated with protection from bacterial and parasitic 

infections and disease progression in allergic diseases [64-67]. Toxocara canis antigen-

induced eosinophilia protected gerbils from an amebic liver abscess [64]. However, this is 

not direct evidence of eosinophil-mediated protection since injection of T. canis antigen 

could have multifaceted impacts on the immune response [65]. Noor et al. recently 

discovered that treatment with recombinant IL-25 protected mice from amebiasis (Figure 1). 

This protection is thought to be conferred by IL-25-mediated eosinophilia since depletion of 

eosinophilia with anti-SiglecF administration abrogated the protection [17]. It is not clear if 

the ablation of basal level eosinophils can make mice susceptible to amebic infection. The 

downstream mechanisms of eosinophil-mediated protection from amebiasis are yet to be 

elucidated. The potential mechanisms could be: (i) regulating the production of mucosal 

secretory IgA, (ii) degranulation of toxic contents, (iii) secretion of cytokines, or (iv) 

governing production of AMPs [68].

In addition to neutrophils and macrophages, the recruitment of inflammatory monocytes was 

reported during amebiasis. In hepatic amebiasis, Ly6Chi monocytes were involved in 
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increasing the abscess volume [69]. Androgen-driven recruitment of Ly6Chi monocytes was 

uncovered as a possible reason for sexual dimorphisms in disease pathology [70].

Adaptive Immune Response

Immunization with several E. histolytica antigens, including the serine-rich E. histolytica 
protein (SREHP), Gal/GalNAc lectin, 29 kDa alkyl hydroperoxide reductase, a tetramer 

derivative of an anti-inflammatory pentapeptide, and heparan sulfate binding proteins have 

been shown to produce protective immune responses to amebiasis in animal models [71-76]. 

Roncolato et al. has recently shown that vaccination with the amebic surface metalloprotease 

protected hamsters from liver abscess [77]. There is also evidence in humans that an 

acquired immune response is protective: Haque et al. followed 202 Bangladeshi children 

from birth to 4 years of age and observed that the protection of children from subsequent E. 
histolytica infection was associated with the presence of anti-lectin stool IgA [5].

Mice vaccinated with a 64 kDa recombinant fragment of lectin (LecA), combined with the 

adjuvant alum, were protected from amebic infection and intestinal colitis [78,79]. 

Supporting the human data, LecA stimulated a robust mucosal IgA response in mice. 

However, mucosal IgA was not critical for the vaccine-mediated protection in mice since 

protection could be transferred to naïve mice by transferring CD3, CD4, or CD8 T cells. 

Besides a mucosal IgA response, immunization stimulated a robust IFN-γ and IL-17A 

response. Using different adjuvants with LecA gave partially different antibody responses; 

however, in all of them, IFN-γ was common and robust. Vaccinated mice lost protection to 

amebiasis when IFN-γ and IL-17A were neutralized [78,79]. Abhyankar et al. further 

improved the vaccination by adding liposome-based adjuvants in the formulation. Adding 

synthetic Toll-like receptor (TLR)-4 ligand and TLR7/8 ligand as adjuvant and all-trans 
retinoic acid as a coadjuvant further increased the mucosal IgA, IFN-γ, and IL-17A 

responses [18,19]. Interestingly, vaccination also induced a Th2 response (IL-4, and IgG1), 

which was previously thought to help in maintaining persistent amebic infection [41,80]. 

Effort should be continued to expound the role of the type 2 immune response in amebic 

infection. Considering the significant advances in the mouse model, a controlled preclinical 

and clinical trial of the vaccine is warranted.

Concluding Remarks

Of the reported amebic cases, around 10–25% develop colitis, and 1% develop a liver 

abscess [81]. It is an enigma to scientists why one individual develops disease following 

colonization by E. histolytica while another does not. Further work studying host-protective 

factors will enable us to better understand how these variable outcomes occur.

Host defense to amebiasis is maintained by a composite interplay between microbiota, the 

epithelial layer, and the immune compartment. Host genetics, nutritional status, and other 

environmental factors further modulate this multilayered interaction. Contemporary research 

done by several groups has disentangled various aspects of the host response; that begins our 

understanding of the inconsistent outcomes of infection. Nevertheless, gaps remained to be 
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filled in order to obtain a well defined picture of the host-protective immune response (see 

Outstanding Questions).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Glossary

Adjuvant
a synthetic or a biological molecule that is added to vaccines to induce a robust and long-

lasting immune response. Quite often, adjuvants are designed to activate the inflammasome 

or a pattern-recognition receptor such as a TLR.

Amebic cyst
amebae undergo encystation by forming a double-layered wall before exiting the host. Inside 

the cyst, amebae are immotile and metabolically inactive. This amebic cyst enables an 

ameba to survive for up to several weeks outside the host.

Antimicrobial peptides (AMPs)
peptide molecules that are cytotoxic to microbes and are released as a part of host defense. 

In the intestine, AMPs are mainly released from Paneth cells.

Cysteine protease
an amebic virulence protein involved in cleaving the host mucus layer and binding amebic 

trophozoites to host cell membranes.

Gal/GalNac lectin
an amebic surface protein necessary for virulence; it can bind host cell membrane 

carbohydrates D-galactose or N-acetyl-D-galactosamine.

Genome-wide association study
survey of a genome by mapping SNPs to test for genetic variation among individuals 

associated with a disease or particular trait.

Granulocyte-monocyte progenitors (GMPs)
bone marrow-derived progenitor cells that can give rise to neutrophils, monocytes, and 

dendritic cells.

Inflammasome
a multiprotein complex inside the cell that activates IL-1β, IL-18, and gasdermin to initiate 

inflammation.

Pathogen-associated molecular patterns (PAMPs)
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microbial molecules, such as endotoxin or peptidoglycan, that are recognized as foreign by 

host cell pattern-recognition receptors such as Toll-like receptors (TLRs) to initiate 

inflammation.

Shannon diversity index
a mathematical measure of the diversity of a bacterial community, for example, within the 

gut microbiome. This index takes into account both the abundance and the evenness of the 

species within a community.

SNP
a change in a nucleotide at a specific site in the genome that is found in a fraction of the 

population. Although most SNPs are not known to have any functional impact on the 

genome, some have been found to be associated with, and in some cases to be the cause of, 

susceptibility to infectious diseases.
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Box 1.

Mechanisms of Cell Killing and Tissue Invasion

Ralston et al. reported a novel method of host cell ingestion and killing by amebae 

termed 'trogocytosis'. Following adherence of an ameba to a target cell, the parasite starts 

nibbling a part of the target cell and, over time, ingests multiple bites that eventually lead 

to cell killing [4]. The mechanism by which nibbling fragments of the target cell induces 

killing is not fully understood. Trogocytosis may break the membrane integrity of the 

target cells. Alternatively, the ameba might also inject acidic lysosomal content during 

nibbling, which may eventually cause cell death – as inhibiting the lysosomal 

acidification using weak bases inhibits trogocytosis [82]. However, this mechanism might 

not be unique to trogocytosis. Treatment with weak bases also impedes phagocytosis. 

Interestingly, blocking the amebic cysteine proteases, using the inhibitor E-64d, 

downregulated trogocytosis but not phagocytosis [83]. Although trogocytosis is one of 

the cell-killing mechanisms in vitro, the contribution of trogocytosis-mediated host cell 

death in vivo is unknown.

Intracellular calcium signaling in the ameba may also be involved in host cell killing. 

Pretreatment of an ameba with calcium channel blockers, or calcium chelators, 

significantly reduced the adherence and killing of host cells in vitro [84]. Increased 

calcium in the host cell induced by the ameba precedes caspase-3-dependent apoptosis. 

Inhibition of caspase, using pan-caspase inhibitor ZVAD, decreased amebic infection in 

mice [85]. At the end of the apoptosis, dead cells are phagocytosed by the ameba. 

Phagocytosis might help amebae to control excessive inflammation that could be 

cytotoxic for them. However, the role of phagocytosis in maintaining persistent infection 

has yet to be definitively determined [86]. A significant amount of work has been done to 

understand amebic phagocytosis. Recent work showed that amebic ESCRT (endosomal 

sorting complex required for transport) proteins and EhP3 (a homolog of the 14-3-3 

family of proteins) are involved in phagocytic cup formation and actin reorganization 

during phagocytosis [87,88].
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Box 2.

Mouse Model and Current Challenges

Finding an animal model that mimics human-like amebiasis was a limiting factor in the 

study of host defense mechanisms. Houpt and colleagues challenged C3H, CBA, 

C57BL/6, and BALB/c mice with log-phase trophozoites through intracecal laparotomy. 

While CBA and C3H strains remain infected for up to several weeks after the challenge – 

with colitis evidenced by immune infiltration, epithelial ulceration, and submucosal 

edema – the C57BL/6 and BALB/c strains were resistant to amebic infection [41,89]. 

Discoveries from the mouse model include the findings that deletion of CREM, the leptin 

receptor, and CD74, each individually increased susceptibility to infection [36,39,90]. It 

is important to mention here that children with polymorphisms in the leptin receptor and 

the CREM gene were found to have more symptomatic amebic infections [35,39].

Resistance to amebiasis in WT C57BL/6 mice might be orchestrated by innate signaling 

in the epithelial layer or due to a difference in the structure or function of the indigenous 

microbiota. The role of hematopoietic cells was ruled out as adoptive transfer of bone 

marrow cells from CBA mice did not make C57BL/6 mice susceptible [91]. 

Hematopoietic cells, while not responsible for the difference in resistance between CBA 

and C57Bl/6 mice, are important in defense against amebiasis. For example, IL-10 

knockout C57BL/6 mice are susceptible to amebiasis. Transferring the IL-10-sufficient 

bone marrow cells to IL-10-deficient mice was adequate to protect them from amebiasis 

[91]. These data suggest that hematopoietic IL-10 is critical for the protection of 

C57BL/6 mice. C57BL/6 resistance to amebic colitis has been a challenge in amebiasis 

research as most of the genetically engineered mouse models have a C57BL/6 

background. However, for specific questions, this limitation may be overcome by using 

double-knockout mice generated by crossing a mouse deficient in a gene of interest with 

IL-10 knockout (KO) mice. In addition to IL-10 KO mice, C57BL/6 RAG1 KO mice are 

also sensitive to amebiasis [16]. This observation is interesting because it suggests that 

adaptive immunity may play a critical role in early protection from amebiasis indirectly 

via the altered microbiota of RAG1 mice [92]. Cohousing WT with RAG1 mice might 

make WT mice susceptible to amebiasis. In addition, antibiotic-induced dysbiosis renders 

C57Bl/6 mice susceptible to amebiasis [12]. These approaches may help researchers to 

utilize genetic models without resorting to losing a key immune pathway (as one would 

using an IL-10 KO mouse) to study host pathways that affect amebic infection.
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Outstanding Questions

Does MUC2 protect from long-term colonization of trophozoites in the gut?

Are other members of the mucin family (MUC1 or MUC6) important in protection from 

tissue damage and E. histolytica infection? Do membrane-bound mucin and gel-forming 

mucin contribute differently in conferring protection?

What is the role of AMPs in vivo? Are AMPs alone sufficient to confer in vivo protection 

from amebiasis?

Are group 2 innate lymphoid cells (ILC2) involved in IL-25-mediated protection from 

amebiasis?

How do amebae interact with tuft cells to downregulate the secretion of IL-25?

What are the downstream mechanisms of eosinophils during IL-25-mediated protection?

What is the contribution of classically activated macrophages and alternatively activated 

macrophages in protection from amebic colitis?

How do neutrophils exert their amebicidal functions?

In addition to regulating neutrophil recruitment to the site of infection, does the gut 

microbiota modulate neutrophil effector functions?

Where does CREM act (on immune cells or epithelial cells) to protect from amebiasis?

Does a type 2 immune response play a role in vaccine-mediated protection?
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Highlights

Vesicle-mediated exocytosis of MUC2 is critical in providing protection against tissue 

damage, and MUC2 regulates antimicrobial peptide production by Paneth cells during 

Entamoeba histolytica infection.

While certain pathobionts can defend the ameba from oxidative stress in the colon, other 

commensal microbiota can protect the host by controlling the recruitment of neutrophils.

Amebic infection downregulates interleukin (IL)-25 production in mice and humans. 

Exogenous treatment with IL-25 induces eosinophilia to confer protection.

Children with a polymorphism in transcription factor cAMP response element modulator 

(CREM), and CREM knockout mice, are more susceptible to amebiasis.

Vaccination with amebic surface protein LecA combined with Toll-like receptor (TLR)4 

and TLR7/8 agonists induces a robust mucosal IgA, interferon (IFN)-γ, and IL-17a 

response to provide protection from amebiasis.
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Figure 1. Key Figure. Host Protective Pathways to Amebic Infections
For a Figure360 author presentation of Figure 1, see the figure legend at https://doi.org/

10.1016/j.pt.2020.09.015. The colonic epithelial layer is covered with a bilayered mucus 

film. The outer mucus layer contains commensal microbiota and soluble IgA. The mucus 

layer, combined with commensal microbiota and IgA, acts as the first line of defense against 

amebic infection. The ameba can cleave off the mucus layer using cysteine proteases and 

attach to epithelial cells by the surface Gal/GalNAc lectin. Once attached, amebae can 

damage the epithelial layer and initiate a robust inflammatory response [production of 

interleukin (IL)-1β, IL-6, IL-8, interferon (IFN)-γ, and tumor necrosis factor (TNF)-α]. The 

red-colored cytokine TNF-α induces disease progression. Inflammatory cytokines and 

chemokines recruit immune cells, including neutrophils and macrophages. By releasing 

reactive oxygen species (ROS), nitric oxide (NO), and inflammatory cytokines, the 

neutrophils and macrophages can kill the amebae. Intestinal tuft cells are known to be the 

major source of IL-25. Amebic infection can downregulate IL-25 production. Exogenous 

recombinant IL-25 treatment can protect through inducing a type 2 immune response 

followed by the eosinophilia. Exposure to primary infection or LecA can prompt the 

production of ameba-specific mucosal IgA (by B cells), IFN-γ, and IL-17A (by CD4+ and 

CD8+ T cells), which could protect from subsequent amebic infections.
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Figure 2. Microbiota–Bone Marrow Communication Mediates Immune Protection against 
Amebiasis
Clostridium scindens' metabolism of cholic acid to deoxycholic acid (DCA) was sufficient to 

upregulate the generation of granulocyte-monocyte progenitors (GMPs) in the bone marrow. 

Increased bone marrow GMPs resulted in a higher level of colonic neutrophils following 

infection, resulting in protection from amebic colitis. Another mouse commensal segmented 

filamentous bacterium (SFB) interacted with bone marrow dendritic cells (BMDCs) through 

serum amyloid A (SAA). The SAA stimulated BMDC-orchestrated upregulation of colonic 

neutrophils, dendritic cells, and interleukin (IL)-17A during defense against amebiasis.
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