
Chang et al. GigaScience (2015) 4:7
DOI 10.1186/s13742-015-0047-8

TECHNICAL NOTE Open Access

Second-generation PLINK: rising to the
challenge of larger and richer datasets
Christopher C Chang1,2*, Carson C Chow3, Laurent CAM Tellier2,4, Shashaank Vattikuti3,
Shaun M Purcell5,6,7,8 and James J Lee3,9

Abstract
Background: PLINK 1 is a widely used open-source C/C++ toolset for genome-wide association studies (GWAS) and
research in population genetics. However, the steady accumulation of data from imputation and whole-genome
sequencing studies has exposed a strong need for faster and scalable implementations of key functions, such as
logistic regression, linkage disequilibrium estimation, and genomic distance evaluation. In addition, GWAS and
population-genetic data now frequently contain genotype likelihoods, phase information, and/or multiallelic variants,
none of which can be represented by PLINK 1’s primary data format.
Findings: To address these issues, we are developing a second-generation codebase for PLINK. The first major
release from this codebase, PLINK 1.9, introduces extensive use of bit-level parallelism, O

(√
n
)
-time/constant-space

Hardy-Weinberg equilibrium and Fisher’s exact tests, and many other algorithmic improvements. In combination,
these changes accelerate most operations by 1-4 orders of magnitude, and allow the program to handle datasets too
large to fit in RAM. We have also developed an extension to the data format which adds low-overhead support for
genotype likelihoods, phase, multiallelic variants, and reference vs. alternate alleles, which is the basis of our planned
second release (PLINK 2.0).
Conclusions: The second-generation versions of PLINK will offer dramatic improvements in performance and
compatibility. For the first time, users without access to high-end computing resources can perform several essential
analyses of the feature-rich and very large genetic datasets coming into use.

Keywords: GWAS, Population genetics, Whole-genome sequencing, High-density SNP genotyping, Computational
statistics

Findings
Because of its broad functionality and efficient binary
file format, PLINK is widely employed in data-processing
pipelines that are established for gene-trait mapping and
population-genetic studies. However, the five years since
the final first-generation update (v1.07), however, have
witnessed the introduction of new algorithms and analyt-
ical approaches, the growth in size of typical datasets, as
well as wide deployment of multicore processors.
In response, we have developed PLINK 1.9, a compre-

hensive performance, scaling, and usability update. Our
data indicate that its speedups frequently exceed two, and

*Correspondence: chrchang@alumni.caltech.edu
1Complete Genomics, 2071 Stierlin Court, 94043 Mountain View, CA, USA
2BGI Cognitive Genomics Lab, Building No. 11, Bei Shan Industrial Zone,
Yantian District, 518083 Shenzhen, China
Full list of author information is available at the end of the article

sometimes even three, orders of magnitude for several
commonly used operations. PLINK 1.9’s core functional
domains are unchanged from that of its predecessor—data
management, summary statistics, population stratifica-
tion, association analysis, identity-by-descent estimation
[1] —and it is usable as a drop-in replacement in most
cases, requiring no changes to existing scripts. To sup-
port easier interoperation with newer software, for exam-
ple BEAGLE 4 [2], IMPUTE2 [3], GATK [4], VCFtools
[5], BCFtools [6] and GCTA [7], features such as the
import/export of VCF andOxford-format files and an effi-
cient cross-platform genomic relationship matrix (GRM)
calculator have been introduced. Most pipelines currently
employing PLINK 1.07 can expect to benefit from upgrad-
ing to PLINK 1.9.
A major problem remains: PLINK’s core file format can

only represent unphased, biallelic data; however we are
developing a second update, PLINK 2.0, to address this.

© 2015 Chang et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

mailto: chrchang@alumni.caltech.edu
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/

Chang et al. GigaScience (2015) 4:7 Page 2 of 16

Improvements in PLINK 1.9
Bit-level parallelism
Modern ×86 processors are designed to operate on data
in (usually 64-bit) machine word or (≥ 128-bit) vector
chunks. The PLINK 1 binary file format supports this
well: the format’s packed 2-bit data elements can, with
the use of bit arithmetic, easily be processed 32 or 64 at
a time. However, most existing programs fail to exploit
opportunities for bit-level parallelism; instead their loops
painstakingly extract and operate on a single data element
at a time. Replacement of these loops with bit-parallel
logic is, by itself, enough to speed up numerous operations
by more than one order of magnitude.
For example, when comparing two DNA segments, it is

frequently useful to start by computing their Hamming
distance. Formally, define two sequences {a1, a2, . . . , am}
and {b1, b2, . . . , bm} where each ai and bi has a value in
{0, 1, 2,φ}, representing either the number of copies of
the major allele or (φ) the absence of genotype data. Also
define an intersection set Ia,b := {i : ai �= φ and bi �= φ}.
The “identity-by-state” measure computed by PLINK can
then be expressed as

1 −
∑

i∈Ia,b |ai − bi|
2|Ia,b| .

where |Ia,b| denotes the size of set Ia,b, while |ai − bi|
is the absolute value of ai minus bi. The old calculation
proceeded roughly as follows:

IBS0 := 0
IBS1 := 0
IBS2 := 0
For i ∈ {1, 2, . . . ,m}:

If ai = φ or bi = φ, skip
otherwise, if ai = bi, increment IBS2
otherwise, if (ai = 2 and bi = 0), or (ai = 0 and
bi = 2), increment IBS0
otherwise, increment IBS1

Return 0·IBS0+1·IBS1+2·IBS2
2·(IBS0+IBS1+IBS2)

We replaced this with roughly the following, based on
bitwise operations on 960-marker blocks:

m′ := 960
⌈ m
960

⌉

Pad the ends of {ai} and {bi} with φs, if necessary
Ai := {012 if ai = φ,002 if ai = 0,102 if ai = 1,112 if

ai = 2}
Bi := {012 if bi = φ,002 if bi = 0,102 if bi = 1,112 if

bi = 2}
Ci := {002 if ai = φ,112 otherwise}
Di := {002 if bi = φ,112 otherwise}

diff := 0
obs := 0
For i ∈ {1, 961, 1921, . . . ,m′ − 959}:

E := Ai..i+959 XOR Bi..i+959
F := Ci..i+959 AND Di..i+959
diff := diff + popcount(E AND F)
obs := obs + popcount(F)

Return obs−diff
obs .

The idea is that ({Ci} AND {Di}) yields a bit vector with
two ones for every marker where genotype data is present
for both samples, and two 0 s elsewhere, so 2|Ia,b| is equal
to the number of ones in that bit vector; while (({Ai}
XOR {Bi}) AND {Ci} AND {Di}) yields a bit vector with
a 1 for every nucleotide difference. Refer to Additional
file 1 [8] for more computational details. Our timing data
(see “Performance comparisons” below) indicate that this
algorithm takes less than twice as long to handle a 960-
marker block as PLINK 1.07 takes to handle a single
marker.

Bit population count
The “popcount” function above, defined as the num-
ber of ones in a bit vector, merits further discussion.
Post-2008 x86 processors support a specialized instruc-
tion that directly evaluates this quantity. However, thanks
to 50 years of work on the problem, algorithms exist
which evaluate bit population count nearly as quickly
as the hardware instruction while sticking to univer-
sally available operations. Since PLINK is still used on
some older machines, we took one such algorithm (pre-
viously discussed and refined by [9]), and developed an
improved SSE2-based implementation. (Note that SSE2
vector instructions are supported by even the oldest x86-
64 processors).
The applications of bit population count extend further

than might be obvious at first glance. As another exam-
ple, consider computation of the correlation coefficient r
between a pair of genetic variants, where some data may
be missing. Formally, let n be the number of samples in
the dataset, and {x1, x2, . . . , xn} and {y1, y2, . . . , yn} contain
genotype data for the two variants, where each xi and yi
has a value in {0, 1, 2,φ}. In addition, define

Ix,y := {i : xi �= φ and yi �= φ},
vi := {0 if xi = φ, (xi − 1)otherwise},
wi := {0 if yi = φ, (yi − 1)otherwise},
v := |Ix,y|−1

∑
i∈Ix,y

vi,

w := |Ix,y|−1
∑
i∈Ix,y

wi,

Chang et al. GigaScience (2015) 4:7 Page 3 of 16

v2 := |Ix,y|−1
∑
i∈Ix,y

v2i , and

w2 := |Ix,y|−1
∑
i∈Ix,y

w2
i .

The correlation coefficient of interest can then be
expressed as

r =
|Ix,y|−1 ∑

i∈Ix,y (vi − v) (wi − w)√(
v2 − v2

) (
w2 − w2

)

= |Ix,y|−1 ∑n
i=1 viwi − v · w√(

v2 − v2
) (

w2 − w2
)

Given PLINK 1 binary data, |Ix,y|, v, w, v2, and w2 can
easily be expressed in terms of bit population counts. The
dot product

∑n
i=1 viwi is trickier; to evaluate it, we pre-

process the data so that the genotype bit vectors X and Y
encode homozygote minor calls as 002, heterozygote and
missing calls as 012, and homozygote major calls as 102,
and then proceed as follows:

1. Set Z := (X OR Y) AND 01010101. . . 2
2. Evaluate

popcount2(((X XOR Y) AND (10101010. . . 2
- Z)) OR Z),

where popcount2() sums 2-bit quantities instead of
counting set bits. (This is actually cheaper than
PLINK’s regular population count; the first step of
software popcount() is reduction to a
popcount2() problem).

3. Subtract the latter quantity from n.

The key insight behind this implementation is that each
viwi term is in {−1, 0, 1}, and can still be represented in
2 bits in an addition-friendly manner. (This is not strictly
necessary for bitwise parallel processing—the partial sum
lookup algorithm discussed later handles 3-bit outputs by
padding the raw input data to 3 bits per genotype call—
but it allows for unusually high efficiency). The exact
sequence of operations that we chose to evaluate the dot-
product terms in a bitwise parallel fashion is somewhat
arbitrary.
We note that when computing a matrix of correlation

coefficients between all pairs of variants, if no genotype
data is absent, then |Ix,y| is invariant, v and v2 do not
depend on y, and w and w2 do not depend on x. Thus,
these five values would not need to be recomputed for
each variant pair at O(m2n) total time cost; they could
instead be precomputed outside the main loop at a total
cost of O(mn) time and O(m) space. PLINK 1.9 optimizes
this common case.

See popcount_longs() in plink_common.c for
our primary bit population count function, and
plink_ld.c for several correlation coefficient evalua-
tion functions.

Multicore and cluster parallelism
Modern x86 processors also contain increasing num-
bers of cores, and computational workloads in genetic
studies tend to contain large “embarrassingly parallel”
steps which can easily exploit additional cores. There-
fore, PLINK 1.9 autodetects the number of cores present
in the machine it is running on, and many of its heavy-
duty operations default to employing roughly that number
of threads. (This behavior can be manually controlled
with the -threads flag.) Most of PLINK 1.9’s multi-
threaded computations use a simple set of cross-platform
C functions and macros, which compile to pthread
library idioms on Linux and OS X, and OS-specific idioms
like _beginthreadex() on Windows.
PLINK 1.9 also contains improved support for dis-

tributed computation: the -parallel flag makes it
easy to split large matrix computations across a cluster,
while -write-var-ranges simplifies splitting of per-
variant computations.
Graphics processing units (GPUs) remain as a major

unexploited computational resource. We have made the
development of GPU-specific code a low priority since
their installed base is much smaller than that of multicore
processors, and the speedup factor over well-written mul-
tithreaded code running on similar-cost, less specialized
hardware is usually less than 10x [10,11]. However, we do
plan to build out GPU support for the heaviest-duty com-
putations after most of our other PLINK 2 development
goals are achieved.

Memory efficiency
To make it possible for PLINK 1.9 to handle the huge
datasets that benefit the most from these speed improve-
ments, the program core no longer keeps the main
genomic data matrix in memory; instead, most of its func-
tions only load data for a single variant, or a small window
of variants, at a time. Sample × sample matrix compu-
tations still normally require additional memory propor-
tional to the square of the sample size, but -parallel
gets around this:

plink -bfile [fileset name] -make-grm-bin
-parallel 1 40

plink -bfile [fileset name] -make-grm-bin
-parallel 2 40

...
plink -bfile [fileset name] -make-grm-bin
-parallel 40 40

Chang et al. GigaScience (2015) 4:7 Page 4 of 16

cat plink.grm.bin.1 ... plink.grm.bin.40
> plink.grm.bin

cat plink.grm.N.bin.1 ...
plink.grm.N.bin.40 > plink.grm.N.bin

calculates 1/40th of the genomic relationship ma-
trix per run, with correspondingly reduced memory
requirements.

Other noteworthy algorithms
Partial sum lookup Each entry of a weighted genomic
distance matrix between pairs of individuals is a sum of
per-marker terms. Given PLINK 1 binary data, for any
specific marker, there are seven distinct cases at most:

1. Both genotypes are homozygous for the major allele.
2. One is homozygous major, and the other is

heterozygous.
3. One is homozygous major, and the other is

homozygous minor.
4. Both are heterozygous.
5. One is heterozygous, and the other is homozygous

minor.
6. Both are homozygous minor.
7. At least one genotype is missing.

For example, the GCTA genomic relationship matrix is
defined by the following per-marker increments, where q
is the minor allele frequency:

1. (2−2q)(2−2q)
2q(1−q)

2. (2−2q)(1−2q)
2q(1−q)

3. (2−2q)(0−2q)
2q(1−q)

4. (1−2q)(1−2q)
2q(1−q)

5. (1−2q)(0−2q)
2q(1−q)

6. (0−2q)(0−2q)
2q(1−q)

7. 0; subtract 1 from the final denominator instead, in
another loop

This suggests the following matrix calculation algo-
rithm, as a first draft:

1. Initialize all distance/relationship partial sums to
zero.

2. For each marker, calculate and save the seven
possible increments in a lookup table, and then refer
to the table when updating partial sums. This
replaces several floating point adds/multiplies in the
inner loop with a single addition operation.

We can substantially improve on this by handling mul-
tiple markers at a time. Since seven cases can be dis-
tinguished by three bits, we can compose a sequence of
operations which maps a pair of padded 2-bit genotypes
to seven different 3-bit values in the appropriate manner.

On 64-bit machines, 20 3-bit values can be packed into
a machine word—for example, let bits 0-2 describe the
relation at marker #0, bits 3-5 describe the relation at
marker #1, and so forth, all the way up to bits 57-59
describing the relation at marker #19—so this represen-
tation lets us instruct the processor to act on 20 markers
simultaneously.
Then, we need to perform the update

Ajk := Ajk + f0(x0) + f1(x1) + . . . + f19(x19)

where the xi’s are bit trios, and the fi’s map them to incre-
ments. This could be done with 20 table lookups and
floating point addition operations. Or, the update could be
restructured as

Ajk := Ajk + f{0−4}(x{0−4}) + . . . + f{15−19}(x{15−19})

where x{0−4} denotes the lowest-order 15 bits, and
f{0−4} maps them directly to f0(x0) + f1(x1) + f2(x2) +
f3(x3) + f4(x4); similarly for f{5−9}, f{10−14}, and f{15−19}.
In exchange for some precomputation—four tables with
215 entries each; total size 1 MB, which is not onerous
for modern L2/L3 caches—this restructuring licenses the
use of four table lookups and adds per update instead of
twenty. See fill_weights_r() and incr_dists_r()
in plink_calc.c for source code.

Hardy-Weinberg equilibrium and Fisher’s exact tests
Under some population genetic assumptions such as
minimal inbreeding, genotype frequencies for a biallelic
variant can be expected to follow the Hardy-Weinberg
proportions

freq(A1A1) = p2 freq(A1A2) = 2pq
freq(A2A2) = q2

where p is the frequency of allele A1 and q = 1 − p
is the frequency of allele A2 [12]. It is now common for
bioinformaticians to use an exact test for deviation from
Hardy-Weinberg equilibrium (HWE) to help detect geno-
typing error and major violations of the Hardy-Weinberg
assumptions.
PLINK 1.0 used the SNP-HWE algorithm in a paper

by Wigginton et al. [13] to execute this test. SNP-HWE
exploits the fact that, while the absolute likelihood of a
contingency table involves large factorials which are fairly
expensive to evaluate, the ratios between its likelihood
and that of adjacent tables are simple since the factori-
als almost entirely cancel out [14]. More precisely, given
n diploid samples containing a total of n1 copies of allele
A1 and n2 copies of allele A2 (so n1 + n2 = 2n), there
are (2n)!

n1!n2! distinct ways for the alleles to be distributed
among the samples, and (2n12)(n!)

((n1−n12)/2)!n12!((n2−n12)/2)! of those
ways correspond to exactly n12 heterozygotes when n12
has the same parity as n1 and n2. Under Hardy-Weinberg
equilibrium, each of these ways is equally likely. Thus, the
ratio between the likelihoods of observing exactly n12 =

Chang et al. GigaScience (2015) 4:7 Page 5 of 16

k + 2 heterozygotes and exactly n12 = k heterozygotes,
under Hardy-Weinberg equilibrium and fixed n1 and n2, is(

(2k+2)(n!)
(
n1−k
2 −1)!(k+2)!(n2−k

2 −1)!

/
(2k)(n!)

n1−k
2 !k! n2−k

2 !

)

= 2k+2

2k · n!
n! ·

n1−k
2 !

(
n1−k
2 −1)!

· k!
(k+2)! ·

n2−k
2 !

(
n2−k
2 −1)!

= 4 · 1 · n1−k
2 · 1

(k+1)(k+2) · n2−k
2

= (n1−k)(n2−k)
(k+1)(k+2) .

SNP-HWE also recognizes that it is unnecessary to start
the computation with an accurate absolute likelihood for
one table. Since the final p-value is computed as
[sum of null hypothesis likelihoods of at-least-as-extreme tables]

[sum of null hypothesis likelihoods of all tables]
,

it is fine for all computed likelihoods to be relative values
off by a shared constant factor, since that constant factor
will cancel out. This eliminates the need for log-gamma
approximation.
While studying the software, we made two additional

observations:

• Its size-O(n) memory allocation (where n is the sum
of all contingency table entries) could be avoided by

reordering the calculation; it is only necessary to
track a few partial sums.

• Since likelihoods decay super-geometrically as one
moves away from the most probable table, only
O(

√
n) of the likelihoods can meaningfully impact

the partial sums; the sum of the remaining terms is
too small to consistently affect even the 10th
significant digit in the final p-value. By terminating
the calculation when all the partial sums stop
changing (due to the newest term being too tiny to be
tracked by IEEE-754 double-precision numbers),
computational complexity is reduced from O(n) to
O(

√
n) with no loss of precision. See Figure 1 for an

example.

PLINK 1.0 also has association analysis and quality con-
trol routines which perform Fisher’s exact test on 2 × 2
and 2 × 3 tables, using the FEXACT network algorithm
from Mehta et al. [15,16]. The 2 × 2 case has the same
mathematical structure as the Hardy-Weinberg equilib-
rium exact test, so it was straightforward to modify the
early-termination SNP-HWE algorithm to handle it. The
2 × 3 case is more complicated, but retains the property
that only O(

√
of tables) relative likelihoods need to be

evaluated, so we were able to develop a function to handle

Figure 1 2× 2 contingency table log-frequencies. This is a plot of relative frequencies of 2 × 2 contingency tables with top row sum 1000, left
column sum 40000, and grand total 100000, reflecting a low-MAF variant where the difference between the chi-square test and Fisher’s exact test is
relevant. All such tables with upper left value smaller than 278, or larger than 526, have frequency smaller than 2−53 (dotted horizontal line); thus, if
the obvious summation algorithm is used, they have no impact on the p-value denominator due to numerical underflow. (It can be proven that this
underflow has negligible impact on accuracy, due to how rapidly the frequencies decay.) A few more tables need to be considered when evaluating
the numerator, but we can usually skip at least 70%, and this fraction improves as problem size increases.

Chang et al. GigaScience (2015) 4:7 Page 6 of 16

it in O(n) time; see Figure 2 for more details. Our tim-
ing data indicate that our new functions are consistently
faster than both FEXACT and the update to the network
algorithm by Requena et al. [17].
Standalone source code for early-termination SNP-

HWE and Fisher’s 2 × 2/2 × 3 exact test is posted at [18].
Due to recent calls for use of mid-p adjustments in bio-
statistics [19,20], all of these functions have mid-pmodes,
and PLINK 1.9 exposes them.
We note that, while the Hardy-Weinberg equilibrium

exact test is only of interest to geneticists, Fisher’s exact
test has wider application. Thus, we are preparing another
paper which discusses these algorithms in more detail,
with proofs of numerical error bounds and a full expla-
nation of how the Fisher’s exact test algorithm extends to
larger tables.

Haplotype block estimation It can be useful to divide
the genome into blocks of variants which appear to
be inherited together most of the time, since observed
recombination patterns are substantially more “block-
like” than would be expected under a model of uniform

recombination [21]. PLINK 1.0’s -blocks command
implements a method of identifying these haplotype
blocks by Gabriel et al. [22]. (More precisely, it is a
restricted port of Haploview’s [23] implementation of the
method).
This method is based on 90% confidence intervals (as

defined by Wall and Pritchard [21]) for Lewontin’s D′ dis-
equilibrium statistic for pairs of variants. Depending on
the confidence interval’s boundaries, a pair of variants is
classified as “strong linkage disequilibrium (LD)”, “strong
evidence for historical recombination”, or “inconclusive”;
then, contiguous groups of variants where “strong LD”
pairs outnumber “recombination” pairs by more than 19
to 1 are greedily selected, starting with the longest base-
pair spans.
PLINK 1.9 accelerates this in several ways:

• Estimation of diplotype frequencies and maximum-
likelihood D′ has been streamlined. Bit population
counts are used to fill the contingency table; then we
use the analytic solution to Hill’s diplotype frequency
cubic equation [24,25] and only compute and

Figure 2 Computation pattern for our 2× 3 Fisher’s exact test implementation. This is a plot of the set of alternative 2 × 3 contigency tables
explicitly considered by our algorithm when testing the table with 65, 136, 324 in the top row and 81, 172, 314 in the bottom row. Letting � denote
the relative likelihood of observing the tested table under the null hypothesis, the set of tables with null hypothesis relative likelihoods between
2−53� and � has an ellipsoidal annulus shape, with area scaling as O(n) as the problem size increases; while the set of tables with relative likelihood
greater than 2−53lmax (where lmax is the maximal single-table relative likelihood) has an elliptical shape, also with O(n) area. Summing the relative
likelihoods in the first set, and then dividing that number by the sum of the relative likelihoods in the second set, yields the desired p-value to 10+
digit accuracy in O(n) time. In addition, we exploit the fact that a “row” of 2 × 3 table likelihoods sums to a single 2 × 2 table likelihood; this lets us
essentially skip the top and bottom of the annulus, as well as all but a single row of the central ellipse.

Chang et al. GigaScience (2015) 4:7 Page 7 of 16

compare log likelihoods in this step when
multiple solutions to the equation are in the valid
range.

• 90% confidence intervals were originally estimated by
computing relative likelihoods at 101 points
(corresponding to D′ = 0,D′ = 0.01, . . . ,D′ = 1) and
checking where the resulting cumulative distribution
function (cdf) crossed 5% and 95%. However, the
likelihood function rarely has more than one extreme
point in (0, 1) (and the full solution to the cubic
equation reveals the presence of additional extrema);
it is usually possible to exploit this unimodality to
establish good bounds on key cdf values after
evaluating just a few likelihoods. In particular, many
confidence intervals can be classified as
“recombination” after inspection of just two of the
101 points; see Figure 3.

• Instead of saving the classification of every variant
pair and looking up the resulting massive table at a
later point, we just update a small number of “strong
LD pairs within last k variants” and “recombination
pairs within last k variants” counts while processing
the data sequentially, saving only final haploblock

candidates. This reduces the amount of time spent
looking up out-of-cache memory, and also allows
much larger datasets to be processed.

• Since “strong LD” pairs must outnumber
“recombination” pairs by 19 to 1, it does not take
many “recombination” pairs in a window before one
can prove no haploblock can contain that window.
When this bound is crossed, we take the opportunity
to entirely skip classification of many pairs of
variants.

Most of these ideas are implemented in haploview_
blocks_classify() and haploview_blocks() in
plink_ld.c. The last two optimizations were previ-
ously implemented in Taliun’s “LDExplorer” R package
[26].

Coordinate-descent LASSO PLINK 1.9 includes a
basic coordinate-descent LASSO implementation [27]
(-lasso), which can be useful for phenotypic prediction
and related applications. See Vattikuti et al. for discussion
of its theoretical properties [28].

Figure 3 Rapid classification of “recombination” variant pairs. This is a plot of 101 equally spaced D’ log-likelihoods for (rs58108140,
rs140337953) in 1000 Genomes phase 1, used in Gabriel et al.’s method of identifying haplotype blocks. Whenever the upper end of the 90%
confidence interval is smaller than 0.90 (i.e. the rightmost 11 likelihoods sum to less than 5% of the total), we have strong evidence for historical
recombination between the two variants. After determining that L(D′ = x) has only one extreme value in [0, 1] and that it’s between 0.39 and 0.40,
confirming L(D′ = 0.90) < L(D′ = 0.40)/220 is enough to finish classifying the variant pair (due to monotonicity: L(D′ = 0.90) ≥ L(D′ = 0.91)
≥ . . . ≥ L(D′ = 1.00)); evaluation of the other 99 likelihoods is now skipped in this case. The dotted horizontal line is at L(D′ = 0.40)/220.

Chang et al. GigaScience (2015) 4:7 Page 8 of 16

Newly integrated third-party software
PLINK 1.0 commands Many teams have significantly
improved upon PLINK 1.0’s implementations of various
commands and made their work open source. In several
cases, their innovations have been integrated into PLINK
1.9; examples include

• Pahl et al.’s PERMORY algorithm for fast
permutation testing [29],

• Wan et al.’s BOOST software for fast epistasis testing
[30],

• Ueki, Cordell, and Howey’s -fast-epistasis
variance correction and joint-effects test [31,32],

• Taliun, Gamper, and Pattaro’s optimizations to
Gabriel et al.’s haplotype block identification
algorithm (discussed above) [26], and

• Pascal Pons’s winning submission to the GWAS
Speedup logistic regression crowdsourcing contest
[33]. (The contest was designed by Po-Ru Loh, run by
Babbage Analytics & Innovation and TopCoder, and
subsequent analysis and code preparation were
performed by Andrew Hill, Ragu Bharadwaj, and
Scott Jelinsky. A manuscript is in preparation by
these authors and Iain Kilty, Kevin Boudreau, Karim
Lakhani and Eva Guinan.)

In all such cases, PLINK’s citation instructions direct
users of the affected functions to cite the original work.

Multithreaded gzip For many purposes, compressed
text files strike a good balance between ease of interpreta-
tion, loading speed, and resource consumption. However,
the computational cost of generating them is fairly high;
it is not uncommon for data compression to take longer
than all other operations combined. Tomake a dent in this
bottleneck, we have written a simple multithreaded com-
pression library function based on Mark Adler’s excellent
pigz program [34], and routed most of PLINK 1.9’s gzip-
ping through it. See parallel_compress() in pigz.c
for details.

Convenience features
Import and export of Variant Call Format (VCF) and
Oxford-formatted data PLINK 1.9 can import data from
Variant Call Format (-vcf), binary VCF (-bcf), and
Oxford-format (-data, -bgen) files. However, since it
cannot handle genotype likelihoods, phase information or
variants with more than two alleles, the import process
can be quite lossy. Specifically,

• With Oxford-format files, genotype likelihoods
smaller than 0.9 are normally treated as missing calls,
and the rest are treated as hard calls.
-hard-call-threshold can be used to change

the threshold, or request independent pseudorandom
calls based on the likelihoods in the file.

• Phase is discarded.
• By default, when a VCF variant has more than one

alternate allele, only the most common alternate is
retained; all other alternate calls are converted to
missing. -biallelic-only can be used to skip
variants with multiple alternate alleles.

Export to these formats is also possible, via -recode
vcf and -recode oxford.

Unplaced contig and nonhuman species support
When the -allow-extra-chr or -aec flag is used,
PLINK 1.9 allows datasets to contain unplaced contigs or
other arbitrary chromosome names, and most commands
will handle them in a reasonable manner. Also, arbitrary
nonhuman species (with haploid or diploid genomes) can
now be specified with -chr-set.

Command-line help To improve the experience of using
PLINK interactively, we have expanded the -help flag’s
functionality. When invoked with no parameters, it now
prints an entire mini-manual. Given keyword(s), it instead
searches for and prints mini-manual entries associated
with those keyword(s), and handles misspelled keywords
and keyword prefixes in a reasonable manner.

A comment on within-family analysis
Most of our discussion has addressed computational
issues. However, there is one methodological issue that
deserves a brief comment. The online documentation of
PLINK 1.07 weighed the pros and cons of its permuta-
tion procedure for within-family analysis of quantitative
traits (QFAM) with respect to the standard quantitative
transmission disequilibrium test (QTDT) [35]. It pointed
out that likelihood-based QTDT enjoyed the advantages
of computational speed and increased statistical power.
However, a comparison of statistical power is only mean-
ingful if both procedures are anchored to the same Type 1
error rate with respect to the null hypothesis of no linkage
with a causal variant, and Ewens et al. has shown that the
QTDT is not robust against certain forms of confound-
ing (population stratification) [36]. On the other hand, the
validity of a permutation procedure such as QFAM only
depends on the applicability of Mendel’s laws. When this
nicety is combined with the vast speedup of permutation
in PLINK 1.9, a given user may now decide to rate QFAM
more highly relative to QTDT when considering available
options for within-family analysis.

Performance comparisons
In the following tables, running times are collected from
seven machines operating on three datasets.

Chang et al. GigaScience (2015) 4:7 Page 9 of 16

• “Mac-2” denotes a MacBook Pro with a 2.8 Ghz Intel
Core 2 Duo processor and 4GB RAM running OS X
10.6.8.

• “Mac-12” denotes a Mac Pro with two 2.93 Ghz Intel
6-core Xeon processors and 64GB RAM running OS
X 10.6.8.

• “Linux32-2” denotes a machine with a 2.4 Ghz Intel
Core 2 Duo E6600 processor and 1GB RAM running
32-bit Ubuntu Linux.

• “Linux32-8” denotes a machine with a 3.4 Ghz Intel
Core i7-3770 processor (8 cores) and 8GB RAM
running 32-bit Ubuntu Linux.

• “Linux64-512” denotes a machine with sixty-four
AMD 8-core Opteron 6282 SE processors and 512GB
RAM running 64-bit Linux.

• “Win32-2” denotes a laptop with a 2.4 Ghz Intel Core
i5-2430 M processor (2 cores) and 4GB RAM
running 32-bit Windows 7 SP1.

• “Win64-2” denotes a machine with a 2.3 Ghz Intel
Celeron G1610T processor (2 cores) and 8GB RAM
running 64-bit Windows 8.

• “synth1” refers to a 1000 sample, 100000 variant
synthetic dataset generated with HAPGEN2 [37],
while “synth1p” refers to the same dataset after one
round of -indep-pairwise 50 5 0.5 pruning
(with 76124 markers remaining). For case/control
tests, PLINK 1.9’s -tail-pheno 0 command was
used to downcode the quantitative phenotype to
case/control.

• “synth2” refers to a 4000 case, 6000 control synthetic
dataset with 88025 markers on chromosomes 19-22
generated by resampling HapMap and 1000
Genomes data with simuRare [38] and then removing
monomorphic loci. “synth2p” refers to the same
dataset after one round of -indep-pairwise
700 70 0.7 pruning (with 71307 markers
remaining).

• “1000g” refers to the entire 1092 sample, 39637448
variant 1000 Genomes project phase 1 dataset [39].
“chr1” refers to chromosome 1 from this dataset, with
3001739 variants. “chr1snp” refers to chromosome 1
after removal of all non-SNPs and one round of
-indep-pairwise 20000 2000 0.5 pruning
(798703 markers remaining). Pedigree information
was not added to these datasets before our tests.

All times are in seconds. To reduce disk-caching vari-
ance, timing runs are preceded by “warmup” commands
like plink -freq. PLINK 1.07 was run with the
-noweb flag. “nomem” indicates that the program ran
out of memory and there was no low-memory mode or
other straightforward workaround. A tilde indicates that
runtime was extrapolated from several smaller problem
instances.

Initialization and basic I/O
Table 1 displays execution times for plink -freq, one
of the simplest operations PLINK can perform. These tim-
ings reflect fixed initialization and I/O overhead. (Due to
the use of warmup runs, they do not include disk latency).

Identity-by-statematrices, complete linkage clustering
The PLINK 1.0 -cluster -matrix flag combina-
tion launches an identity-by-state matrix calculation and
writes the result to disk, and then performs complete
linkage clustering on the data; when -ppc is added, a
pairwise population concordance constraint is applied to
the clustering process. As discussed earlier, PLINK 1.9
employs an XOR/bit population count algorithm which
speeds up thematrix calculation by a large constant factor;

Table 1 -freq times (sec)

Dataset Machine PLINK 1.07 PLINK 1.90 Ratio

synth1

Mac-2 7.3 0.24 30

Mac-12 6.2 0.18 34

Linux32-2 13.1 0.56 23

Linux32-8 4.3 0.18 24

Linux64-512 5.4 0.18 27

Win32-2 14.3 0.68 21

Win64-2 9.6 0.33 29

synth2

Mac-2 43.3 0.84 52

Mac-12 38.2 0.34 110

Linux32-2 80.1 1.9 42

Linux32-8 25.2 0.53 48

Linux64-512 34.1 0.40 85

Win32-2 83.6 1.3 64

Win64-2 70.8 0.55 130

chr1snp

Mac-2 52.5 3.5 15

Mac-12 40.5 1.3 31

Linux32-2 72.9 10.2 7.15

Linux32-8 29.7 1.4 21

Linux64-512 36.8 1.4 26

Win32-2 104.3 4.5 23

Win64-2 76.8 2.2 35

chr1

Mac-2 403.9 35.0 11.5

Mac-12 163.9 5.3 31

Linux32-2 nomem 65.3

Linux32-8 134.1 12.8 10.5

Linux64-512 144.7 5.4 27

Win32-2 389.2 21.4 18.2

Win64-2 285.3 8.1 35

This command reports allele frequencies for each variant. The computation is
trivial, so the timings just reflect program initialization speed and file I/O
efficiency.

Chang et al. GigaScience (2015) 4:7 Page 10 of 16

the computational complexity of the clustering algorithm
has also been reduced, from O(n3) to O(n2 log n). (Fur-
ther improvement of clustering complexity, to O(n2), is
possible in some cases [40].)
In Table 2, we compare PLINK 1.07 and PLINK 1.9

execution times under three scenarios: identity-by-state
(IBS) matrix calculation only (-cluster -matrix -K
[sample count - 1] in PLINK 1.07, -distance ibs
square in PLINK 1.9), IBS matrix + standard clustering
(-cluster -matrix for both versions), and identity-
by-descent (IBD) report generation (-Z-genome.)
(Note that newer algorithms such as BEAGLE’s

fastIBD [41] generate more accurate IBD estimates than
PLINK -Z-genome. However, the -Z-genome report
contains other useful information.)

Genomic relationshipmatrices
GCTA’s -make-grm-bin command (-make-grm in
early versions) calculates the variance-standardized
genomic relationship matrix used by many of its other
commands. The latest implementation as of this writing
(v1.24) is very fast, but only runs on 64-bit Linux, uses
single- instead of double-precision arithmetic, and has a
high memory requirement.
PLINK 1.9’s implementation of this calculation is

designed to compensate for GCTA 1.24’s limitations—it is
cross-platform, works in low-memory environments, and
uses double-precision arithmetic while remaining within
a factor of 2-5 on speed. See Table 3 for timing data. The
comparison is with GCTA 1.24 on 64-bit Linux, and v1.02
elsewhere.

Linkage disequilibrium-based variant pruning
The PLINK 1.0 -indep-pairwise command is fre-
quently used in preparation for analyses which assume
approximate linkage equilibrium. In Table 4, we compare
PLINK 1.07 and PLINK 1.9 execution times for some rea-
sonable parameter choices. The r2 threshold for “synth2”
was chosen to make the “synth1p” and “synth2p” pruned
datasets contain similar number of SNPs, so Tables 2 and
3 could clearly demonstrate scaling with respect to sample
size.

Haplotype block estimation
Table 5 demonstrates the impact of our rewrite of
-blocks. Due to a minor bug in PLINK 1.0’s handling
of low-MAF variants, we pruned each dataset to contain
only variants with MAF ≥ 0.05 before running -blocks.
95506 markers remained in the “synth1” dataset, and
554549markers remained in “chr1”. A questionmark indi-
cates that the extrapolated runtime may not be valid since
we suspect Haploview or PLINK 1.07 would have run out
of memory before finishing.

Association analysis max(T) permutation tests
PLINK 1.0’s basic association analysis commands were
quite flexible, but the powerful max(T) permutation
test suffered from poor performance. PRESTO [42] and
PERMORY introduced major algorithmic improvements
(including bit population count) which largely solved the
problem. Table 6 demonstrates that PLINK 1.9 success-
fully extends the PERMORY algorithm to the full range
of PLINK 1.0’s association analyses, while making Fisher’s
exact test practical to use in permutation tests. (There is
no 64-bit Windows PERMORY build, so the comparisons
on the Win64-2 machine are between 64-bit PLINK and
32-bit PERMORY.)

PLINK 2.0 design
Despite its computational advances, we recognize that
PLINK 1.9 can ultimately still be an unsatisfactory tool for
working with imputed genomic data, due to the limita-
tions of the PLINK 1 binary file format. To address this,
we designed a new core file format capable of representing
most of the information emitted by modern imputation
tools, which is the cornerstone of our plans for PLINK 2.0.

Multiple data representations
As discussed earlier, PLINK 1 binary is inadequate in three
ways: likelihoods strictly between 0 and 1 cannot be repre-
sented, phase information cannot be stored, and variants
are limited to two alleles. This can be addressed by rep-
resenting all calls probabilistically, and introducing a few
other extensions. Unfortunately, this would make PLINK
2.0’s representation of PLINK 1-format data so inefficient
that it would amount to a serious downgrade from PLINK
1.9 for many purposes.
Therefore, our new format defines several data repre-

sentations, one of which is equivalent to PLINK 1 binary,
and allows different files, or even variants within a single
file, to use different representations. To work with this,
PLINK 2.0 will include a translation layer which allows
individual functions to assume a specific representation is
used. As with the rest of PLINK’s source code, this transla-
tion layer will be GPLv3-licensed open source; and unlike
most of the other source code, we are explicitly design-
ing it to be usable as a standalone library. PLINK 2.0 will
also be able to convert files/variants from one data rep-
resentation to another, making it practical for third-party
tools lacking access to the library to demand a specific
representation.

Reference vs. alternate alleles
The now-ubiquitous VCF file format requires reference
alleles to be distinguished from alternate alleles, and an
increasing number of software tools and pipelines do not
tolerate scrambling of the two. This presents an interop-
erability problem for PLINK: while it was theoretically

Chang et al. GigaScience (2015) 4:7 Page 11 of 16

Table 2 Identity-by-state (Hamming distance) and complete linkage clustering times (sec)

Calculation Dataset Machine PLINK 1.07 PLINK 1.90 Ratio

IBS matrix only

synth1p

Mac-2 2233.6 1.9 1.2 k

Mac-12 1320.4 1.2 1.1 k

Linux32-8 1937.2 2.8 690

Linux64-512 1492 3.7 400

Win32-2 3219.0 7.2 450

Win64-2 2674.4 1.5 1.8 k

synth2p

Mac-2 ∼190 k 118.8 1.6 k

Mac-12 ∼99 k 23.5 4.2 k

Linux32-8 152.5 k 214.3 710

Linux64-512 ∼98 k 25.3 3.9 k

Win32-2 ∼270 k 654.5 410

Win64-2 ∼200 k 104.6 1.9 k

chr1snp

Mac-2 ∼26 k 17.5 1.5 k

Mac-12 13.4 k 12.6 1.06 k

Linux32-8 18.4 k 30.9 600

Linux64-512 ∼14 k 43.1 320

Win32-2 32.7 k 95.9 341

Win64-2 ∼26 k 15.3 1.7 k

Basic clustering

synth1p

Mac-2 2315.7 2.7 860

Mac-12 1317.9 2.0 660

Linux32-8 1898.7 4.1 460

Linux64-512 1496 4.5 330

Win32-2 3301.7 9.1 360

Win64-2 2724.5 1.9 1.4 k

synth2p

Mac-2 ∼230 k 245.6 940

Mac-12 ∼140 k 123.9 1.1 k

Linux32-8 197.1 k 395.6 498

Linux64-512 ∼125 k 143.3 872

Win32-2 ∼440 k 976.7 450

Win64-2 ∼270 k 127.9 2.1 k

chr1snp

Mac-2 ∼26 k 18.4 1.4 k

Mac-12 13.6 k 13.5 1.01 k

Linux32-8 18.5 k 33.4 554

Linux64-512 ∼14 k 44.2 320

Win32-2 33.2 k 95.0 349

Win64-2 ∼26 k 15.8 1.6 k

IBD report

synth1p

Mac-2 2230.1 12.4 180

Mac-12 1346.2 2.4 560

Linux32-8 2019.9 12.4 163

Linux64-512 1494 5.0 300

Win32-2 3446.3 42.2 81.7

Win64-2 2669.8 15.1 177

synth2p

Mac-2 ∼190 k 447.1 420

Mac-12 ∼99 k 50.3 2.0 k

Linux32-8 161.4 k 618.7 261

Linux64-512 ∼98 k 57.4 1.7 k

Win32-2 ∼270 k 1801.1 150

Win64-2 ∼200 k 541.0 370

Chang et al. GigaScience (2015) 4:7 Page 12 of 16

Table 2 Identity-by-state (Hamming distance) and complete linkage clustering times (sec) (Continued)

IBD report chr1snp

Mac-2 ∼26 k 24.8 1.0 k

Mac-12 13.4 k 14.6 918

Linux32-8 18.5 k 53.5 346

Linux64-512 ∼14 k 46.5 300

Win32-2 33.1 k 199.2 166

Win64-2 ∼26 k 25.1 1.0 k

Computation of the basic distance matrix is expensive, but has an “embarrassingly parallel” structure. Clustering requires an additional serial step, while the
identity-by-descent report includes a pairwise population concordance test which does not benefit from bit-level parallelism, but speedups for both remain greater
than 100x on 64-bit systems.

possible to handle binary data with PLINK 1.0 in amanner
that preserved the reference vs. alternate allele distinc-
tion when it was originally present, with constant use
of -keep-allele-order and related flags, doing so
was inconvenient and error-prone, especially since the
accompanying native .ped/.map and .tped/.tfam text for-
mats had no place to store that information. PLINK
1.9’s -a2-allele flag, which can import that informa-
tion from a VCF file, provides limited relief, but it is
still necessary for users to fight against the program’s
major/minor-allele based design.

Table 3 Genomic relationshipmatrix calculation times
(sec)

Dataset Machine GCTA PLINK 1.90 Ratio

synth1p

Mac-2 222.2 7.2 31

Mac-12 184.7 5.0 37

Linux32-8 248.4 10.9 22.8

Linux64-512 4.4 9.6 0.46

Win32-2 373.1 39.3 9.5

Win64-2 367.2 6.6 56

synth2p

Mac-2 nomem 805.8

Mac-12 17.0 k 138.3 123

Linux32-8 nomem 1153.4

Linux64-512 65.1 318.9 0.20

Win32-2 nomem 2007.2

Win64-2 nomem 450.1

chr1snp

Mac-2 nomem 87.1

Mac-12 2260.9 50.9 44.4

Linux32-8 nomem 94.3

Linux64-512 58.3 91.6 0.64

Win32-2 nomem 317.5

Win64-2 nomem 65.7

This involves a variance-normalizing distance function which cannot be
efficiently computed with just bit population counts. PLINK 1.9’s lookup
table-based algorithm is slower than GCTA 1.24 on heavily multicore machines
(see the Linux64-512 results), but has complementary advantages in portability,
accuracy, and memory efficiency.

We aim to solve this problem for good in PLINK 2.0. The
file format explicitly defines reference vs. alternate alle-
les, and this information will be preserved across runs by
default. In addition, the file format will include a flag dis-
tinguishing provisional reference allele assignments from
those derived from an actual reference genome. When
PLINK 2.0 operates on .ped/.map or similar data lack-
ing a reference vs. alternate distinction, it will treat a
highest-frequency allele as the reference, while flagging
it as a provisional assignment. When a file with flagged-
as-provisional reference alleles is merged with another
file with unflagged reference alleles, the unflagged refer-
ence allele assignments take precedence. (Merges involv-
ing conflicting unflagged reference alleles will fail unless
the user specifies which source file takes precedence.) It
will also be straightforward to import real reference allele
assignments with an analogue of -a2-allele.

Data compression
PLINK 1.9 demonstrates the power of a weak form of
compressive genomics [43]: by using bit arithmetic to per-
form computation directly on compressed genomic data,
it frequently exhibits far better performance than pro-
grams which require an explicit decompression step. But
its “compressed format” is merely a tight packing which
does not support the holy grail of true sub-linear analysis.
To do our part to make “strong” sub-linear compressive

genomics a reality, the PLINK 2 file format will introduce
support for “deviations frommost common value” storage
of low-MAF variants. For datasets containing many sam-
ples, this captures much of the storage efficiency benefit
of having real reference genomes available, without the
drawback of forcing all programs operating on the data to
have access to a library of references. Thanks to PLINK
2.0’s translation layer and file conversion facilities, pro-
grammers will be able to ignore this feature during initial
development of a tool, and then work to exploit it after
basic functionality is in place.
We note that LD-based compression of variant groups

is also possible, and Sambo’s SNPack software [44] applies
this to the PLINK 1 binary format. We do not plan to

Chang et al. GigaScience (2015) 4:7 Page 13 of 16

Table 4 -indep-pairwise runtimes (sec)

Parameters Dataset Machine PLINK 1.07 PLINK 1.90 Ratio

50 5 0.5 synth1

Mac-2 701.3 0.63 1.1 k

Mac-12 569.4 0.55 1.0 k

Linux32-8 572.7 0.95 600

Linux64-512 462 0.60 770

Win32-2 1163.9 3.2 360

Win64-2 1091.9 1.0 1.1 k

700 70 0.7 synth2

Mac-2 ∼120 k 31.9 3.8 k

Mac-12 63.0 k 20.6 3.06 k

Linux32-8 57.4 k 66.0 870

Linux64-512 ∼120 k 26.4 4.5 k

Win32-2 139.3 k 127.3 1.09 k

Win64-2 ∼200 k 22.9 8.7 k

20000 2000 0.5

chr1

Mac-2 nomem 1520.1

Mac-12 nomem 1121.7

Linux32-8 nomem 4273.9

Linux64-512 ∼950 k 1553.3 610

Win32-2 nomem 4912.7

Win64-2 nomem 1205.1

1000g

Mac-2 nomem 20.5 k

Mac-12 nomem 14.5 k

Linux32-8 nomem 54.5 k

Linux64-512 ∼13000 k 20.2 k 640

Win32-2 nomem 64.5 k

Win64-2 nomem 14.7 k

This command is used to select a set of genetic markers which are not too highly correlated with one another. The PLINK 1.9 implementation benefits from laziness
(i.e. the correlation coefficient between a pair of variants is no longer computed when it is not needed by the main pruning algorithm) and bitwise operations.

Table 5 -blocks runtimes (sec)

Parameters Dataset Machine Haploview 4.2 PLINK 1.07 PLINK 1.90

-ld-window-kb 500 synth1

Mac-2 nomem 3198.4 1.7

Mac-12 ∼45 k 3873.0 1.3

Linux32-2 nomem 5441.1 3.4

Linux64-512 ∼57 k 2323.4 2.9

Win32-2 nomem 9803.4 8.9

Win64-2 ∼51 k 5513.4 2.8

-ld-window-kb 1000 synth1

Mac-2 nomem 6185.7 2.2

Mac-12 ∼45 k 7394.4 9.8

Linux32-2 nomem 9876.8 10.0

Linux64-512 ∼57 k 4462.1 3.9

Win32-2 nomem 18925.7 17.3

Win64-2 ∼51 k 10.3 k 3.6

-ld-window-kb 500 chr1

Mac-2 nomem ∼2700 k? 550.9

Mac-12 nomem ∼3600 k? 426.0

Linux32-2 nomem ∼4300 k? 1288.4

Linux64-512 ∼440 k? ∼2600 k? 1119.7

Win32-2 nomem ∼17000 k? 4535.8

Win64-2 nomem ∼5700 k? 1037.2

This command breaks the genome into estimated “haplotype blocks” which are usually inherited together. The PLINK 1.9 implementation combines optimizations
recently developed by Taliun et al. [26] with additional laziness and bit-level parallelism.

Chang et al. GigaScience (2015) 4:7 Page 14 of 16

Table 6 Association analysis max(T) permutation test times (sec)

Other parameter(s) Dataset Machine PLINK 1.07 PERMORY 1.1 PLINK 1.90 Ratio

-trend (C/C)

synth1

Mac-2 ∼20 k 18.7 1.1 k

Mac-12 ∼16 k 2.8 5.7 k

Linux32-2 ∼21 k 65.0 320

Linux64-512 ∼17 k 285.0 2.8

Win32-2 ∼35 k 1444.2 61.5

Win64-2 ∼25 k 889.7 14.4

synth2

Mac-2 ∼170 k 42.4 4.0 k

Mac-12 ∼180 k 6.4 28 k

Linux32-2 ∼410 k 391.0 1.0 k

Linux64-512 ∼200 k 580.9 13.7

Win32-2 ∼1100 k 2362.5 198.0

Win64-2 ∼370 k 1423.6 34.0

-fisher (C/C)

synth1

Mac-2 ∼150 k 21.9 6.9 k

Mac-12 ∼150 k 3.7 41 k

Linux32-2 ∼170 k 57.8 2.9 k

Linux64-512 ∼120 k 3.4 35 k

Win32-2 ∼440 k 64.9 6.8 k

Win64-2 ∼200 k 22.0 9.1 k

synth2

Mac-2 ∼890 k 49.8 18 k

Mac-12 ∼690 k 7.6 91 k

Linux32-2 ∼1300 k 393.7 3.3 k

Linux64-512 ∼720 k 13.0 55 k

Win32-2 ∼3600 k 208.3 17 k

Win64-2 ∼1700 k 35.6 48 k

-assoc (QT) synth1

Mac-2 ∼30 k 148.0 200

Mac-12 ∼22 k 22.6 970

Linux32-2 ∼68 k 847.2 80

Linux64-512 ∼29 k 29.2 990

Win32-2 ∼58 k 896.1 65

Win64-2 ∼36 k 264.2 140

-assoc lin (QT) synth1

Mac-2 606.8

Mac-12 34.7

Linux32-2 3212.6

Linux64-512 1259.8 46.4 27.2

Win32-2 2115.7 3062.7 0.69

Win64-2 972.6 336.6 2.89

All runs are with 10000 permutations and -seed 1. The PLINK 1.9 implementation extends Pahl et al.’s PERMORY algorithm [29] with multithreading (note the 12-
and 512-core machine results) and additional low-level optimizations.

support this in PLINK 2.0 due to the additional software
complexity required to handle probabilistic and multial-
lelic data, but we believe this is a promising avenue for
development and look forward to integrating it in the
future.

Remaining limitations
PLINK 2.0 is designed to meet the needs of tomorrow’s
genome-wide association studies and population-genetics
research; in both contexts, it is appropriate to apply a
single genomic coordinate system across all samples, and

Chang et al. GigaScience (2015) 4:7 Page 15 of 16

preferred sample sizes are large enough to make compu-
tational efficiency a serious issue.
Whole-exome and whole-genome sequencing also

enables detailed study of structural variations which defy
clean representation under a single coordinate system;
and the number of individuals in such studies is typically
much smaller than the tens or even hundreds of thou-
sands which are sometimes required for effective GWAS.
There are no plans to make PLINK suitable for this type of
analysis; we strongly recommend the use of another soft-
ware package, such as PLINK/SEQ [45], which is explicitly
designed for it. This is why the PLINK 2 file format will
still be substantially less expressive than VCF.
An important consequence is that, despite its ability to

import and export VCF files, PLINK should not be used
for management of genomic data which will be subject to
both types of analysis, because it discards all information
which is not relevant for its preferred type. However, we
will continue to extend PLINK’s ability to interpret VCF-
like formats and interoperate with other popular software.

Availability and requirements
• Project name: Second-generation PLINK
• Project (source code) home page: https://www.

cog-genomics.org/plink2/ (https://github.com/
chrchang/plink-ng)

• Operating systems: Linux (32/64-bit), OS X (64-bit
Intel), Windows (32/64-bit)

• Programming language: C, C++
• Other requirements (when recompiling): GCC

version 4, a few functions also require LAPACK 3.2
• License: GNU General Public License version 3.0

(GPLv3)
• Any restrictions to use by non-academics: none

Availability of supporting data
The test data and the source code snapshots supporting
the results of this article are available in the GigaScience
repository, GigaDB [8].

Additional file

Additional file 1: Detailed description of software bit population
count, as applied to identity-by-state computation.

Abbreviations
PLINK: The software toolset that is the main subject of this paper. The name
was originally shorthand for “population linkage”; BEAGLE: A software package
capable of high-accuracy haplotype phasing, genotype imputation, and
identity-by-descent estimation, developed by Browning [2]; GCTA:
Genome-wide Complex Trait Analysis. This refers to both the statistical
method and the software implementation discussed in [7]; VCF: Variant Call
Format [5]; x86: A family of backward compatible instruction set architectures
based on the Intel 8086 CPU; IBS: Identity-by-state. A simple measure of
genomic similarity, equal to the number of identical alleles divided by the
number of observations; popcount: Bit population count. The number of ’1’
bits in a bit vector; XOR: Exclusive-or. A binary logical operation that evaluates

to true if exactly one of its arguments is true; SSE2: Streaming SIMD Extensions
2. A SIMD (single instruction, multiple data) processor supplementary
instruction set first introduced by Intel with the initial version of the Pentium 4
in 2001; GPU: Graphics processing unit; HWE: Hardy-Weinberg equilibrium;
SNP: Single-nucleotide polymorphism; FEXACT: A network algorithm for
evaluating Fisher’s exact test p-values, developed by Mehta et al. [15,16]; LD:
Linkage disequilibrium; PERMORY: A software package designed to perform
efficient permutation tests for large-scale genetic data sets, developed by Pahl
et al. [29]; GWAS: Genome-Wide Association Study; QFAM: A family-based
quantitative trait association analysis procedure, introduced by PLINK 1.0,
which combines a simple linear regression of phenotype on genotype with a
special permutation test which corrects for family structure; QTDT: Quantitative
Transmission Disequilibrium Tests, developed primarily by Abecasis et al. [35];
Ghz: Gigahertz; GB: Gigabyte; RAM: Random-access memory; I/O: Input/output;
MAF: Minor allele frequency. Frequency of the least common allele that is still
present in a population; GPLv3: GNU General Public License version 3.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
SMP and Ch C designed the software. Ch C drafted the manuscript and did
most of the v1.9 C/C++ programming. Ca C, SV, and JJL drove early v1.9
feature development and wrote MATLAB prototype code. Ca C, LCAMT, SV,
SMP, and JJL assisted with v1.9 software testing. All authors read and
approved the final manuscript.

Acknowledgements
We thank Stephen D.H. Hsu for helpful discussions. We also continue to be
thankful to PLINK 1.9 users who perform additional testing of the program,
report bugs, and make useful suggestions.
Christopher Chang and Laurent Tellier were supported by BGI Hong Kong and
Shenzhen Municipal Government of China grant CXB201108250094A. Carson
Chow and Shashaank Vattikuti were supported by the Intramural Research
Program of the NIH, NIDDK.

Author details
1Complete Genomics, 2071 Stierlin Court, 94043 Mountain View, CA, USA. 2BGI
Cognitive Genomics Lab, Building No. 11, Bei Shan Industrial Zone, Yantian
District, 518083 Shenzhen, China. 3Mathematical Biology Section, NIDDK/LBM,
National Institutes of Health, 20892 Bethesda, MD, USA. 4Bioinformatics
Centre, University of Copenhagen, 2200 Copenhagen, Denmark. 5Stanley
Center for Psychiatric Research, Broad Institute of MIT and Harvard, 02142
Cambridge, MA, USA. 6Division of Psychiatric Genomics, Department of
Psychiatry, Icahn School of Medicine at Mount Sinai, 10029 New York, NY, USA.
7Institute for Genomics and Multiscale Biology, Icahn School of Medicine at
Mount Sinai, 10029 New York, NY, USA. 8Analytic and Translational Genetics
Unit, Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts
General Hospital, 02114 Boston, MA, USA. 9Department of Psychology,
University of Minnesota Twin Cities, 55455 Minneapolis, MN, USA.

Received: 16 October 2014 Accepted: 26 January 2015

References
1. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira M, Bender D, et al.

Plink: A tool set for whole-genome association and population-based
linkage analyses. Am J Hum Genet. 2007;81:559–75.

2. Browning B, Browning S. Improving the accuracy and efficiency of identity
by descent detection in population data. Genetics. 2013;194:459–71.

3. Howie B, Donnelly P, Marchini J. A flexible and accurate genotype
imputation method for the next generation of genome-wide association
studies. PLoS Genet. 2009;5:1000529.

4. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A,
et al. The genome analysis toolkit: A mapreduce framework for analyzing
next-generation dna sequencing data. Genome Res. 2010;20:1297–303.

5. Danecek P, Auton A, Abecasis G, Albers C, Banks E, DePristo M, et al.
The variant call format and vcftools. Bioinformatics. 2011;27:2156–8.

6. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, 1000
Genome Project Data Processing Subgroup, et al. The sequence
alignment/map format and samtools. Bioinformatics. 2009;25:2078–9.

https://www.cog-genomics.org/plink2/
https://www.cog-genomics.org/plink2/
https://github.com/chrchang/plink-ng
https://github.com/chrchang/plink-ng
http://www.gigasciencejournal.com/content/supplementary/s13742-015-0047-8-s1.pdf

Chang et al. GigaScience (2015) 4:7 Page 16 of 16

7. Yang J, Lee S, Goddard M, Visscher P. Gcta: A tool for genome-wide
complex trait analysis. Am J Hum Genet. 2011;88:76–82.

8. Chang C, Chow C, Tellier L, Vattikuti S, Purcell S, Lee J. Software and
Supporting Material for "Second-generation PLINK: Rising to the
Challenge of Larger and Richer Datasets". GigaScience Database. http://
dx.doi.org/10.5524/100116.

9. Dalke A. Update: Faster Population Counts. http://www.dalkescientific.
com/writings/diary/archive/2011/11/02/faster_popcount_update.html.

10. Lee V, Kim C, Chhugani J, Deisher M, Kim D, Nguyen A, et al. Debunking
the 100x gpu vs. cpu myth: an evaluation of throughput computing on
cpu and gpu. In: Proceedings of the 37th Annual International
Symposium on Computer Architecture: 19-23 June 2010. Saint-Malo,
France,: ACM; 2010. p. 451–460.

11. Haque I, Pande V, Walters W. Anatomy of high-performance 2d similarity
calculations. J Chem Inf Model. 2011;51:2345–51.

12. Hardy H. Mendelian proportions in a mixed population. Science. 1908;28:
49–50.

13. Wigginton J, Cutler D, Abecasis G. A note on exact tests of
hardy-weinberg equilibrium. Am J Hum Genet. 2005;76:887–93.

14. Guo S, Thompson E. Performing the exact test of hardy-weinberg
proportion for multiple alleles. Biometrics. 1992;48:361–72.

15. Mehta C, Patel N. Algorithm 643: Fexact: a fortran subroutine for fisher’s
exact test on unordered r×c contingency tables. ACM Trans Math Softw.
1986;12:154–61.

16. Clarkson D, Fan Y, Joe H. A remark on algorithm 643: Fexact: an
algorithm for performing fisher’s exact test in r x c contingency tables.
ACM Trans Math Softw. 1993;19:484–8.

17. Requena F, Martín Ciudad N. A major improvement to the network
algorithm for fisher’s exact test in 2×c contingency tables. J Comp Stat &
Data Anal. 2006;51:490–8.

18. Chang C. Standalone C/C++ Exact Statistical Test Functions. https://
github.com/chrchang/stats.

19. Lydersen S, Fagerland M, Laake P. Recommended tests for association in
2×2 tables. Statist Med. 2009;28:1159–75.

20. Graffelman J, Moreno V. The mid p-value in exact tests for
hardy-weinberg equilibrium. Stat Appl Genet Mol Bio. 2013;12:433–48.

21. Wall J, Pritchard J. Assessing the performance of the haplotype block
model of linkage disequilibrium. Am J Hum Genet. 2003;73:502–15.

22. Gabriel S, Schaffner S, Nguyen H, Moore J, Roy J, Blumenstiel B, et al.
The structure of haplotype blocks in the human genome. Science.
2002;296:2225–9.

23. Barrett J, Fry B, Maller J, Daly M. Haploview: analysis and visualization of
ld and haplotype maps. Bioinformatics. 2005;21:263–5.

24. Hill W. Estimation of linkage disequilibrium in randomly mating
populations. Heredity. 1974;33:229–39.

25. Gaunt T, Rodríguez S, Day I. Cubic exact solutions for the estimation of
pairwise haplotype frequencies: implications for linkage disequilibrium
analyses and a web tool ’cubex’. BMC Bioinformatics. 2007;8:428.

26. Taliun D, Gamper J, Pattaro C. Efficient haplotype block recognition of
very long and dense genetic sequences. BMC Bioinformatics. 2014;15:10.

27. Friedman J, Hastie T, Höfling H, Tibshirani R. Pathwise coordinate
optimization. Ann Appl Stat. 2007;1:302–32.

28. Vattikuti S, Lee J, Chang C, Hsu S, Chow C. Applying compressed
sensing to genome-wide association studies. GigaScience. 2014;3:10.

29. Steiß V, Letschert T, Schäfer H, Pahl R. Permory-mpi: A program for
high-speed parallel permutation testing in genome-wide association
studies. Bioinformatics. 2012;28:1168–9.

30. Wan X, Yang C, Yang Q, Xue H, Fan X, Tang N, et al. Boost: A fast
approach to detecting gene-gene interactions in genome-wide
case-control studies. Am J Hum Genet. 2010;87:325–40.

31. Ueki M, Cordell H. Improved statistics for genome-wide interaction
analysis. PLoS Genet. 2012;8:1002625.

32. Howey R. CASSI: Genome-Wide Interaction Analysis Software. http://
www.staff.ncl.ac.uk/richard.howey/cassi.

33. GWASSpeedup Problem Statement. http://community.topcoder.com/
longcontest/?module=ViewProblemStatement&rd=15637&pm=12525.

34. Adler M. Pigz: Parallel Gzip. http://zlib.net/pigz/.
35. Abecasis G, Cardon L, Cookson W. A general test of association for

quantitative traits in nuclear families. Am J Hum Genet. 2000;66:279–92.

36. Ewens W, Li M, Spielman R. A review of family-based tests for linkage
disequilibrium between a quantitative trait and a genetic marker. PLoS
Genet. 2008;4:1000180.

37. Su Z, Marchini J, Donnelly P. Hapgen2: Simulation of multiple disease
snps. Bioinformatics. 2011;27:2304–5.

38. Xu Y, Wu Y, Song C, Zhang H. Simulating realistic genomic data with
rare variants. Genet Epidemiol. 2013;37:163–72.

39. The 1000 Genomes Project Consortium. An integrated map of genetic
variation from 1,092 human genomes. Nature. 2012;491:56–65.

40. Defays D. An efficient algorithm for a complete link method. Comput J.
1977;20:364–6.

41. Browning B, Browning S. A fast, powerful method for detecting identity
by descent. Am J Hum Genet. 2011;88:173–82.

42. Browning B. Presto: rapid calculation of order statistic distributions and
multiple-testing adjusted p-values via permutation for one and two-stage
genetic association studies. BMC Bioinformatics. 2008;9:309.

43. Loh P, Baym M, Berger B. Compressive genomics. Nat Biotechnol.
2012;30:627–30.

44. Sambo F, Di Camillo B, Toffolo G, Cobelli C. Compression and fast
retrieval of snp data. Bioinformatics. 2014;30:495.

45. PLINK/SEQ: A Library for the Analysis of Genetic Variation Data. https://
atgu.mgh.harvard.edu/plinkseq/.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

http://dx.doi.org/10.5524/100116
http://dx.doi.org/10.5524/100116
http://www.dalkescientific.com/writings/diary/archive/2011/11/02/faster_popcount_update.html
http://www.dalkescientific.com/writings/diary/archive/2011/11/02/faster_popcount_update.html
https://github.com/chrchang/stats
https://github.com/chrchang/stats
http://www.staff.ncl.ac.uk/richard.howey/cassi
http://www.staff.ncl.ac.uk/richard.howey/cassi
http://community.topcoder.com/longcontest/?module=ViewProblemStatement&rd=15637&pm=12525
http://community.topcoder.com/longcontest/?module=ViewProblemStatement&rd=15637&pm=12525
http://zlib.net/pigz/
https://atgu.mgh.harvard.edu/plinkseq/
https://atgu.mgh.harvard.edu/plinkseq/

	Abstract
	Background
	Findings
	Conclusions
	Keywords

	Findings
	Improvements in PLINK 1.9
	Bit-level parallelism
	Bit population count
	Multicore and cluster parallelism
	Memory efficiency
	Other noteworthy algorithms
	Partial sum lookup
	Hardy-Weinberg equilibrium and Fisher's exact tests
	Haplotype block estimation
	Coordinate-descent LASSO

	Newly integrated third-party software
	PLINK 1.0 commands
	Multithreaded gzip

	Convenience features
	Import and export of Variant Call Format (VCF) and Oxford-formatted data
	Unplaced contig and nonhuman species support
	Command-line help

	A comment on within-family analysis
	Performance comparisons
	Initialization and basic I/O
	Identity-by-state matrices, complete linkage clustering
	Genomic relationship matrices
	Linkage disequilibrium-based variant pruning
	Haplotype block estimation
	Association analysis max(T) permutation tests

	PLINK 2.0 design
	Multiple data representations
	Reference vs. alternate alleles
	Data compression
	Remaining limitations

	Availability and requirements
	Availability of supporting data
	Additional file
	Additional file 1

	Abbreviations
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

