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ABSTRACT: Water molecules in the active site of an enzyme
occupy a complex, heterogeneous environment, and the thermody-
namic properties of active-site water are functions of position. As a
consequence, it is thought that an enzyme inhibitor can gain affinity
by extending into a region occupied by unfavorable water or lose
affinity by displacing water from a region where it was relatively
stable. Recent advances in the characterization of binding-site water,
based on the analysis of molecular simulations with explicit water
molecules, have focused largely on simplified representations of water
as occupying well-defined hydration sites. Our grid-based treatment
of hydration, GIST, offers a more complete picture of the complex distributions of water properties, but it has not yet been
applied to proteins. This first application of GIST to protein−ligand modeling, for the case of Coagulation Factor Xa, shows that
ligand scoring functions based on GIST perform at least as well as scoring functions based on a hydration-site approach (HSA),
when applied to exactly the same simulation data. Interestingly, the displacement of energetically unfavorable water emerges as
the dominant factor in the fitted scoring functions, for both GIST and HSA methods, while water entropy plays a secondary role,
at least in the present context.

1. INTRODUCTION

The binding of a drug-like molecule to a protein leads to
displacement of water molecules from the protein’s binding
pocket, and the thermodynamics of this displacement process is
thought to contribute significantly to the overall thermody-
namics of protein−ligand binding.1−14 For example, displace-
ment of water that is tightly bound via multiple water−protein
hydrogen bonds may incur a large energetic penalty, whereas
displacement of water from hydrophobic parts of the binding
pocket may help drive ligand-binding. Intuitively, one may view
different parts of the protein’s surface as imposing different
surface energies on the nearby water, with correspondingly
different thermodynamic consequences for water displacement
by various ligands.
The use of molecular distribution functions15−21 to analyze

molecular dynamics (MD) simulations has led to important
advances in the study of binding site water and its role in
molecular recognition; parallel progress with the 3D RISM
approach22−24 also deserves mention but is not considered
here. Key early contributions include development of Water-
Map8,12 (Schrödinger LLC), STOW,25 and other ap-
proaches,26,27 which have provided new insight and shown
promise as tools to help discover small molecules that will bind
a targeted binding pocket. Such methods frequently define
spherical sites, where water is present at high density, to
represent the distribution of water in the binding site. This

hydration site approach (HSA) is motivated in part by the
practical consideration that, in regions where water is present at
lower density, it becomes more difficult to obtain converged
values of the local orientational entropy of water. This is a
simple consequence of the lower number of water samples
available from the simulation in such low-density locations. The
HSA strategy of limiting attention to hydration sites where
water is present at high density maximizes the chances for good
numerical convergence of the orientational entropy. However,
as previously discussed,28 the regions in a binding site where
water is present at high density can have a complex shape,
which is not easily represented by a collection of spheres.
This limitation has been addressed in a grid-based

implementation of inhomogeneous solvation theory (IST),
termed GIST.28,29 Instead of constructing hydration sites, GIST
discretizes the smooth distributions of water density and other
properties onto a fine, three-dimensional grid. The problem of
converging the local orientational entropy of water is overcome
through the use of a highly efficient nearest-neighbor (NN)
method, as opposed to histogram methods, which require more
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sampling to reach adequate convergence.30,31 GIST can also
take advantage of the fact that regions of lower density
contribute proportionately less than regions of higher density
regions to the overall orientational entropy of the displaced
water. This density-weighting means that, if one is interested in
the integral of the orientational entropy over a volume
containing both high and low density regions, one can
converge the overall integral to an acceptable tolerance, so
long as the high-density regions are well converged.
Alternatively, the grid approach makes it straightforward to
focus on regions where water is present at high density, as done
in HSA, without simplifying their shapes.
Here, we describe the first test of GIST for a ligand−protein

system. In order to establish a clear basis for comparing
methods, we study coagulation factor Xa (FXa) with a set of
small molecule inhibitors used in early studies of the WaterMap
method,12 and we derive scoring functions based on both GIST
and HSA methods. For this initial test of GIST’s applicability to
protein−ligand modeling, we do not seek to establish a full-
fledged protein−ligand scoring function, suitable for virtual
screening or lead optimization. Instead, as previously done,12

we ask how well the GIST treatment of hydration can capture
affinity differences between closely related congeneric pairs of
ligands, where differences in binding affinity that result from
contributions other than solvation such as configurational
entropy and protein−ligand energy are minimal. Our results
support the applicability of GIST and, in addition, provide an
unexpected outcome regarding the role of energetically versus
entropically unfavorable water.

2. METHODS

We ran explicit-water MD simulations of FXa and used both
GIST and our local HSA implementation to extract information
about the structure and thermodynamics of the water in the
binding site. We then considered the displacement of this
binding site water by various FXa inhibitors, whose binding site
poses are known or could be inferred from the known poses of
very similar compounds. Candidate scoring functions, based on
the computed properties of the water displaced by each ligand,
were trained on subsets of the experimental affinity data and
then tested on separate sets, in order to assess the utility of the
hydration data to resolve the relative binding affinities of pairs
of congeneric ligands. Details of the computational methods are
presented in the following subsections.
2.1. Grid Inhomogeneous Solvation Theory (GIST).

2.1.1. GIST Implementation. As previously detailed, GIST uses
a three-dimensional rectangular grid of cubic voxels in the
region of interest and processes the snapshots of an MD
trajectory to compute the following thermodynamic quantities
for each voxel, k, centered at location rk:
• ΔEk,swnorm, the mean solute−water interaction energy of a

water molecule in voxel k.
• ΔEk,ww

norm, one-half the mean interaction energy of the water
in voxel k with all other waters. The factor of 1/2, which was
not included in the definition of the corresponding water−
water interaction energy in our initial presentation of GIST,28 is
customary in liquid-state theory; it allows the total energy of
neat water to be written as the sum of the individual water
energies.
• −TΔSk,swtrans,norm, the single-body (one-water) translational

entropy of water in voxel k, relative to bulk, normalized to the
mean number of waters in the voxel.

• −TΔSk,sworient,norm, the single-body (one-water) orientational
entropy of water in voxel k, relative to bulk, normalized to the
mean number of waters in the voxel.
Note that we previously used a somewhat different notation

for these quantities;29 for example, ΔEk,swnorm was ΔEswnorm(rk).
Here, a 20.5 × 20.5 × 22.5 Å grid was centered on the active
site of FXa. The grid spacing of 0.5 Å provides voxels large
enough to give statistically meaningful data but small enough to
still give a high resolution description of the density distribution
functions.28 It is worth noting that the volume of each voxel is
33.5 times less than that of a hydration site (see below), as the
latter represents a sphere of radius 1 Å. The GIST Lennard-
Jones and electrostatic energies were computed from stored
MD frames, using the minimum image convention and no
cutoff, and the reference value of the bulk water−water
interaction energy was computed in the same convention. The
main GIST calculations presented here used 100 000 frames
saved at 1 ps intervals during a 100 ns production MD run, but
shorter durations were also examined, to study convergence, as
detailed below.

2.1.2. Functional Form of GIST-Based Scoring Functions.
When a ligand binds a protein, it displaces water from the
protein’s binding site. If the displaced water was unfavorable
relative to bulk, then water displacement should make a
favorable contribution to the ligand’s binding affinity. With this
in mind, we initially looked for a correlation between measured
ligand binding affinities and regional hydration free energies
(eq 25 of ref 28), where the region was defined as those voxels
covered by each ligand in a bound pose. However, finding little
correlation (data not shown), we conjectured that any
underlying correlation had been obscured by noise, due to
sharp variations in the hydration energies with even small
changes in ligand position. This sharpness traces, at least in
part, to our use of a single pose for each ligand, and a restrained
protein structure in the water simulations. We addressed this
issue by constructing scoring functions which are based on the
GIST data but are less sensitive to the details of local water
properties, due to the use of cutoffs in local water density,
energy, and entropy. The use of cutoffs to construct a well-
behaved scoring function from local hydration data was first
introduced in the context of a hydration site model.12

We tested three such scoring functions based on the GIST
hydration data available from the grid described above. In all
three cases, voxel k can contribute to a ligand’s score only if the
voxel’s center, rk, lies within the van der Waals radius of any
atom of the ligand. For a given ligand, then, each voxel is
assigned a binary displacement indicator, dk, which equals 1 if
the center of the voxel lies within the van der Waals radius of
any ligand atom and 0 if it does not. The van der Waals radii
are drawn from the software package Crystal Maker (Crystal-
Maker Software Ltd.), which in turn relies on Bondi.32 We also
allowed the scoring function to focus on voxels where water is
present at high density by setting up an additional binary
indicator, gk, which is set to 1 if the water density in voxel k
exceeds a cutoff gco, and 0 if it does not. This cutoff is one of the
trained parameters, so it will be greater than zero only if
imposing a density cutoff actually improves the accuracy of the
scoring function. Finally, we set up similar cutoffs for the total
energy and entropy, Ek

norm and −TΔSk,swnorm, associated with each
voxel k, and used these to define additional binary masks based
on energy and entropy thresholds. Thus, the binary mask, ek,
equals 1 if Ek

norm exceeds the cutoff, Eco, and 0 otherwise; and
the binary mask, sk, equals 1 if −TΔSk,swnorm exceeds the cutoff, Sco,
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and 0 otherwise. Like the density cutoff, gco, the values of Eco
and Sco are fitted parameters and hence are free to go to zero if
imposing these cutoffs does not improve the accuracy of the
scoring function. The total energy and entropy were computed
as Ek

norm ≡ ΔEk,sw
norm + 2ΔEk,wwnorm − 2Eww,bulk

norm and −TΔSk,swnorm ≡
−TΔSk,swtrans,norm − TΔSk,sworient,norm, respectively. The quantity Ek

norm

is the mean interaction energy of the water in voxel k with the
protein and all other waters, relative to what its interactions
would be in bulk, 2Eww,bulk

norm , computed in the same convention
as the other GIST quantities.
With the voxels’ binary masks in place for density, energy,

and entropy, we now define the three candidate scoring
functions, one using both the energy and entropy data from
GIST, the second using only the energy data, and the third
using only the entropy data:

∑ ∑

∑

∑

Δ = + +

Δ = +

Δ = +

G E d g e S d g s C
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G S d g s C
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ES aff aff

E aff

S aff
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Here, Eaff and Saff are additional fitted parameters, which
specify the affinity increments provided by voxels surpassing
the energy and entropy cutoffs, respectively, and also meeting
the criteria dk = gk = 1. Note that in this study, each of these
scoring functions was trained separately and has its own fitted
values of gco and C, as well as Eco and Eaff and/or Sco and Saff.
2.1.3. Training and Testing of the GIST-Based Scoring

Function.We adjusted the scoring functions described above to
fit the measured relative binding free energies, ΔΔGexpt, of 28
different congeneric pairs of FXa inhibitors (see below).
Separate training and test sets were used, in order to avoid
overfitting of the parameters. Thus, we used a random number
generator to split the 28 pairs into two arbitrarily selected sets
of 14 apiece. Ten such random splits were carried out, creating
10 distinct training and test sets. Parameters were optimized for
each training set and then tested on the corresponding test set.
We report means and standard deviations over these 10 splits
for the resulting fitted parameters and accuracy metrics. We
further assess the significance of these results by comparing
them with results obtained after a shuffling operation, which
used the gsl_permutation function in the GNU Scientific
Library, to randomly exchange the entropy and enthalpy values
among pairs of voxels.
For each training set, the parameters were adjusted as

follows, using ΔGES as an example. We scanned values of Eco
and Sco from 0 to 4 kcal/mol and values of gco from 0 to 4 (in
units of neat water density), each in increments of 0.1. This
scan yields 41 × 41 × 41 = 68 921 combinations of the three
cutoff values. For each combination, the sums in eq 1 were
computed for all ligands. Linear regression was then used to
obtain values of Eaff and Saff that provide the highest correlation
coefficient (R2) of the relative scores for the congeneric pairs,
ΔΔGES, to the corresponding experimental values, ΔΔGexpt, for
the training set. The optimized values of the five fitted
parameters were then used to compute ΔΔGES for the
congeneric pairs in the training set, and the reliability of the
scoring function was evaluated based on the resulting value of
R2 for the test set. Analogous procedures were used for the
other two scoring functions, ΔGE and ΔGS. These require

scanning only 41 × 41 = 1681 cutoff combinations and yield
only one of the two affinity parameters, Eaff or Saff, rather than
both as for ΔGES.

2.2. Hydration Site Analysis (HSA). 2.2.1. Assignment of
Thermodynamic Properties to Hydration Sites. Hydration
sites in the FXa binding site were defined and analyzed
thermodynamically based on the same MD simulation used for
the GIST calculations, using the first 10 ns (10 000 frames), in
accord with the common practice of using approximately 2−10
ns simulations for HSA calculations.12,27,33−35 We used every
10th frame of this segment to identify the hydration sites. We
first collected all instances, in these 1000 frames, of water
molecules within 5 Å of any heavy atom of any bound ligand
(see below). For each water molecule in this set, we counted
the number of neighboring waters from the same set, using the
criterion of an oxygen−oxygen distance within 1 Å. With this
definition, a water molecule can count as its own neighbor, if
two instances of it in different frames meet the distance
criterion. The location of the first hydration site was then set to
the coordinates of the water oxygen with the most neighbors.
This water molecule and all of its neighbors were then removed
from consideration as potential hydration sites, and the location
of the next hydration site was set to the coordinates of the
remaining water oxygen with the most neighbors, based on the
initial counts. This removal process was iterated until the
number of neighbors of all remaining waters was less than twice
that expected for a 1000 frame simulation of bulk water (i.e., <
280 from 1000 frames). Each hydration site then was associated
with all water instances, from the full 10 000 MD frames
(above), whose oxygens lay within 1 Å of the site.
Each hydration site i was associated with a mean energy Ei

and a one-body entropy Si. The energy of a water molecule in a
given hydration site was calculated as half the difference
between the total energy of the water−protein system with the
water present and without it. A script invoking the program
AMBER,36 with settings matched to those of the MD
simulation, was used to compute these energies. The mean
energy of the hydration site then is the average of these
energies for all water molecules that populate the site, minus
the average energy of a water molecule in neat water from
matched calculations. The water entropy Si associated with
hydration site i is the sum of its one-body translational and
orientational entropies, Si,sw

trans ≡ −kρ ∫
Vhs

g(r) ln g(r) dr and Si,sw
orient

≡ ((−kNi)/Ω) ∫
Vhs

g(ω) ln g(ω) dω, where r is position in the

protein frame of reference, k is Boltzmann’s constant, ρ is bulk
water density, g(r) is the local water density referenced to bulk,
Ni is the number of water molecules associated with hydration
site i, Ω ≡ 8π2, Vhs indicates an integral restricted to the
spherical hydration site, and ω defines orientational coordinates
in the protein frame of reference. The translational entropy was
computed by the histogram method, where spherical
coordinates r, θ, ϕ centered on the hydration site were divided
into uniformly spaced bins in r, cos θ, ϕ to generate 512 three-
dimensional bins of equal volume, with r ∈ [0, 1] Å, θ ∈ [0, π],
and ϕ ∈ [0, 2π]. The orientational entropy associated with a
hydration site was computed via the same nearest neighbor
method used by GIST for individual voxels.28

2.2.2. HSA-Based Scoring Function. We used the hydration
sites described above as the basis for three cutoff-based scoring
functions, whose functional forms build on prior work.12 Like
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the three GIST scoring functions (above), the free HSA-based
scoring functions are based on, respectively, both energy and
entropy, energy alone, and entropy alone:

∑ ∑

∑

∑

Δ = + +

Δ = +

Δ = +

G E d e S d s C
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G S d s C
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i i

i
i i

i
i i

i
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ES aff aff

E aff

S aff
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Here, the sums range over hydration sites i; ei and si equal 1 if
Ei and −TSi are greater than cutoff values Eco and Sco,
respectively, and 0 otherwise; di is a displacement function,
defined below, which accounts for the overlap of the ligand, in a
given pose, with hydration site i; Eaff and Saff are fitted
constants; and C is a constant offset. Note that the HSA scoring
parameters in eq 2 are set independently of the GIST scoring
parameters in eq 1, despite the use of some equivalent symbols.
We tried two forms of the displacement function. One is

identical to that used in the previous paper,12 while the second,
as discussed below, applies a physically motivated cap to this
quantity:
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Here, Θ(x), the Heaviside step function, equals 0 if x ≤ 0
and 1 otherwise; Rco is a distance cutoff; Rij is the distance
between hydration site i and atom j of the ligand being scored;
and the sum runs over all atoms belonging to the ligand being
scored, i. For di

nocap, which is modeled on the prior hydration
site scoring function,12 each ligand atom within Rco of the
hydration site makes a contribution that scales between 0 and 1
as it approaches the center of the site, so the displacement
function accounts for the degree to which a ligand displaces the
water in the site. However, this approach is nonphysical in the
sense that, if Rij < Rco for multiple ligand atoms j and a single
site i, then the displacement of solvent from the site may be
multiply counted. That is, for the energy/entropy scoring
function, a site might contribute more than Eaff + Saff; for the
energy-only scoring function, it might contribute more than
Eaff; and for the entropy-only scoring function, it might
contribute more than Saff. Indeed, in the present study, we
found values of di

nocap up to 3.2, implying that a single site might
contribute over three times. We therefore also considered the
alternative displacement function, di

cap, which is capped at a
value of 1, so that no hydration site may contribute more than
one-fold to a ligand’s score, in accordance with the fact that the
site cannot be displaced more than once.
2.2.3. Training and Testing of the HSA-Based Scoring

Function. The parameters of the HSA-based scoring functions
were adjusted in the same manner as those of the GIST-based
scoring functions, except that Rco took the place of gco. Thus,
values of Rco were scanned from 2 to 3 Å, in steps of 0.1 Å and,
as for GIST, values of Eco and Sco were scanned from 0 to 4
kcal/mol in increments of 0.1 kcal/mol. (Note that no
hydration sites had energies greater than 3.7 kcal/mol.) The
sums in eq 2 were evaluated for each ligand and with each
combination of Rco, Eco, and Sco. For each set of cutoffs scanned,
values of Eaff and Saff were obtained by linear regression against

the differences in measured binding free energies for a training
set of congeneric ligand pairs, for each scoring function in eq 2.
The parameters that yielded the highest correlation coefficients
were chosen and were tested for their ability to reproduce the
difference in binding affinities for the congeneric pairs in the
test set. This procedure was applied to the same 10 training and
test sets used for the GIST scoring function. As done for GIST,
we assessed the significance of the HSA results by comparing
them with results obtained after a shuffling operation, which
randomly exchanges the entropy and enthalpy values across
pairs of hydration sites.

2.3. Molecular Systems and Modeling. 2.3.1. Molecular
Dynamics Simulations of Binding Site Water. Both GIST and
the HSA methods take as input a Boltzmann sample of water
configurations for a given configuration of the protein. Here, we
used molecular dynamics (MD) simulations to generate this
sample from the canonical ensemble (NVT), as follows. We
used the structure of FXa from Protein Data Bank37,38 entry
1FJS,39 as previously done,12 and our assignment of
protonation states was also consistent with this prior study.
We removed the ligand from the binding site and used Tleap
and other Amber Tools36 to assign protein parameters from the
AMBER99sb force field40 and solvate the protein with 8557
TIP3P water molecules.41 The simulations used a periodic box
with dimensions 66.5 Å × 72.2 Å × 60.9 Å, which afforded at
least 10 Å between any protein atom and the edge of the
periodic box. Four disulfide bonds were set up to join cysteine
pairs 7/12, 27/43, 156/170, and 181/209, and two ions
observed in the crystal structure (Ca2+ and Cl−) were restrained
to their original positions. The resulting simulation system had
29 338 atoms, comprising the protein, the two ions, and the
water molecules.
Energy minimization, followed by MD simulation, was

carried out with the Amber 12 software using pmemd.cuda42

on a single GPU. First, the energy of the system was minimized
in two rounds; both used 1500 steps of the steepest descents
algorithm followed by the conjugate gradient method for a
maximum of 2000 steps. In the first round, all protein atoms
were harmonically restrained to their initial positions with a
force constant of 100 kcal/mol/Å2. In the second round, the
system was further relaxed keeping only non-hydrogen protein
atoms restrained, with the same force constant. The energy
minimized system was then heated with a series of 20 ps
constant-volume and -temperature MD simulations with the
first simulation at 50 K and the temperature incremented by 50
K every 20 ps until 300 K was reached. The system was then
equilibrated for 10 ns at 300 K at a constant pressure of 1 atm.
At the final volume, the system was then equilibrated for an
additional 5 ns at constant volume. The final MD production
run of 100 ns was at constant number of particles, volume, and
temperature (NVT), and system configurations were stored
every 1 ps, for a total of 100 000 stored configurations. During
all MD simulations, all protein atoms were harmonically
restrained to their positions following the energy minimization
step, with a force constant of 100 kcal/mol/Å. The SHAKE
algorithm43 was used to constrain the lengths of all bonds
involving hydrogen atoms. Temperature was regulated by
Langevin dynamics with a collision frequency of 2.0 ps−1. A 9 Å
cutoff was applied to all nonbonded interactions. Particle mesh
Ewald was implemented to account for long-range electrostatic
interactions, and the Leapfrog algorithm was used to propagate
the trajectory. For the constant pressure simulations, isotropic
position scaling was implemented with a pressure relaxation
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time of 0.5 ps. The main GIST and HSA solvation maps were
produced from these configurations. However, in order to study
the convergence properties of GIST, we performed two
additional 20 ns NVT production runs storing configurations
every 0.05 ps; one was begun identically with the 100 ns run,
and the other was begun with the last MD configuration of the
100 ns run.
2.3.2. Ligand Data Set and Preparation. We trained and

tested the scoring functions with a set of 28 congeneric ligand
pairs (see Supporting Information), where the members of each
pair differ only by small, localized chemical changes in rigid
moieties, leading to differential displacement of solvent. As
previously discussed,12 this approach minimizes the contribu-
tions of free energy terms other than hydration and thus allows
a focus on the quantity of central interest in this study. The 28
pairs used here are a subset of 31 drawn from several
experimental series44−55 for use in a previous computational
study:12 we eliminated three pairs (Matter:25/Matter:28;
Matter:28/2BMG:I1H; Mueller:3/Mueller:2), because we
were not confident of the conformation of at least one member
of the pair, and hence of the location of the displaced solvent.
In particular, Mueller:3 differs from Mueller:2 by a phenyl
group whose orientation is not clear, because it is attached by a
rotatable bond; and for the other two pairs, an aromatic ring
changes to a nonaromatic ring, whose conformation is
uncertain. It is worth noting that, for this set of ligands, there
is essentially no correlation between binding free energy and
molecular weight (R2 = 0.12).
Ligand poses were drawn from available cocrystal structures

or generated from a cocrystal structure of a closely related
ligand by a small chemical adjustment. In all cases, the cocrystal
structure was aligned with the simulated protein (above) to
generate an initial pose in the binding site for which the
hydration structure was computed. Final poses for modeling
solvent displacement were generated by protonating the
ligands, then minimizing the initial poses in the simulated
protein structure while allowing the ligand and protein
hydrogen atoms to relax. The atomic partial charges for each
ligand were obtained from the restrained electrostatic potential
(RESP) method,56 using quantum-mechanically derived
electrostatic potentials with the 6-31G* basis set. Other ligand
force field parameters were obtained using GAFF.57 Note that
these parameters were used only to generate the ligand poses
studied with the GIST and HSA scoring functions.

3. RESULTS

3.1. Comparison of Grid and Site Representations of
Water Density. The HSA hydration sites are informative
about water density but do not capture the level of detail
available from GIST’s grid-based method. The two approaches
are compared in Figure 1, which displays the HSA sites (blue
spheres) computed for the binding pocket of Factor Xa, along
with GIST’s gridded representation of water density, contoured
at three different levels. Contours of water density at 6 times
that of bulk (g = 6) appear as discrete, mostly convex droplets
(yellow contours, left panel), although a few of these high-
density regions are elongated, rather than round. Every high-
density droplet is matched by a spherical HSA site, but there
are many HSA sites in the binding pocket that do not enclose
one of these high-density droplets. Contours at 4 times bulk
density (g = 4) appear as more and larger droplets and match
the HSA sites rather well (gold contours, middle panel).
Contours at twice bulk density (g = 2) form long, curved
strands, which follow the contours of the protein surface
(orange contours, right panel), and are not well represented by
the HSA sites. These begin to delineate the first hydration shell
of the protein. Finally, contours at still lower density (e.g., g =
1.5) include parts of the second hydration shell (not shown).
Overall, the HSA representation captures the droplet-like
distribution of the highest water densities but does not
distinguish between high and medium density regions and
does not capture the complex distributions of water density that
become apparent at densities roughly twice that of bulk. This
observation has practical relevance, because the scoring
functions developed here include regions where water density
is of this order, as detailed in the next subsection.
It is also worth remarking that a hydration site should not be

directly equated with a single bound water, as the sites’
occupancies are typically well below one. Thus, for the HSA
sites within 5 Å of the bound ligands, we find a mean
occupancy of 0.58 waters molecules, with a standard deviation
of 0.22. These values are similar to those reported previously
for Factor Xa in an early implementation of WaterMap:12 the
occupancies reported in Table 1 of the prior report correspond
to a mean of 0.51 water molecules per hydration site, with a
standard deviation of 0.22.

3.2. GIST scoring functions. A GIST-based scoring
function based on both the local energy and one-body entropy
of displaced water yields good correlations with the measured

Figure 1. Comparison of the GIST and HSA representations of water density in the Factor Xa binding pocket. HSA sites (blue spheres) are the same
in all three panels. From left to right, the GIST contour levels are at g = 6, 4, and 2. The GIST water densities are based on the occupancy of grid
voxels by water oxygens, and the boundaries of the grid box may be discerned in the right-hand panel. A smoothed protein surface is shown in order
to highlight the water data.
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binding affinity differences for the 28 congeneric ligand pairs
(Table 1, top row). The mean R2 value is 0.94 across 10
training sets drawn at random from the full set of 28 pairs, and
a high correlation (R2 = 0.84) is preserved when the optimized
parameters are applied to the respective test sets. The best
results are obtained when voxels are excluded if their water
density is less than about twice the bulk density (gco = 1.9).
Each voxel which furthermore meets the energy cutoff (about
0.6 kcal/mol/water above bulk) contributes about −0.2 kcal/
mol of affinity. The entropy terms are somewhat puzzling: the
entropy cutoff of 3.3 kcal/mol/water is much higher than the
energy cutoff of 0.6 kcal/mol/water, and the positive value of
Saff seemingly indicates that displacing low entropy water
disfavors binding, rather than favoring it, as might be

anticipated. These results suggest that the energy term may
be more meaningful; this topic is further discussed below.
It is of interest to visualize the energy and entropy scoring

regions; i.e., those voxels which meet either both the density
and energy cutoffs or both the density and entropy cutoffs,
respectively. As shown in Figure 2 (left), the energy scoring
region tends to localize at extended regions of the nonpolar
surface. These are places where water molecules lose more
energy due to desolvation by the protein than they gain by
making new interactions with the protein. (The projection from
three to two dimensions makes some scoring regions appear
deceptively close to polar protein atoms.) The analogous
visualization for the energy-only scoring function, which is
discussed below, is very similar (data not shown). The locations
of the entropy scoring regions (Figure 2, middle) are more

Table 1. Scoring Functions Based on GIST and HSA Water Calculationsa

test R2 train R2 gco or Rco Eco Sco Eaff Saff C

actual GIST E/S 0.84 ± 0.06 0.94 ± 0.02 1.90 ± 0.32 0.62 ± 0.42 3.34 ± 0.46 −0.18 ± 0.05 0.08 ± 0.05 −0.23 ± 0.20

E 0.85 ± 0.05 0.92 ± 0.02 1.62 ± 0.57 0.65 ± 0.42 N.A. −0.14 ± 0.04 N.A. −0.23 ± 0.19

S 0.35 ± 0.11 0.49 ± 0.11 2.52 ± 0.69 N.A. 2.13 ± 0.44 N.A. −0.10 ± 0.08 −0.50 ± 0.31

HSA Nocap E/S 0.80 ± 0.07 0.88 ± 0.05 2.81 ± 0.28 0.28 ± 0.08 1.87 ± 0.50 −1.70 ± 0.31 0.09 ± 0.60 −0.36 ± 0.26

E 0.83 ± 0.07 0.85 ± 0.06 2.91 ± 0.07 0.30 ± 0.06 N.A. −1.50 ± 0.15 N.A. −0.43 ± 0.14

S 0.67 ± 0.10 0.66 ± 0.11 2.57 ± 0.17 N.A. 2.25 ± 0.05 N.A. −1.52 ± 0.33 −0.68 ± 0.33

HSA Cap E/S 0.66 ± 0.24 0.86 ± 0.07 2.35 ± 0.19 0.48 ± 0.52 2.10 ± 0.62 −2.44 ± 2.51 −0.18 ± 1.75 −0.47 ± 0.23

E 0.80 ± 0.08 0.83 ± 0.06 2.38 ± 0.06 0.28 ± 0.08 N.A. −2.31 ± 0.31 N.A. −0.53 ± 0.19

S 0.69 ± 0.12 0.72 ± 0.08 2.53 ± 0.09 N.A. 2.09 ± 0.26 N.A. −2.38 ± 0.38 −0.50 ± 0.26

shuffled GIST E/S 0.42 ± 0.20 0.85 ± 0.06 2.45 ± 0.80 1.74 ± 1.14 1.19 ± 1.01 −0.52 ± 1.94 −0.44 ± 1.12 −0.64 ± 0.61

E 0.35 ± 0.20 0.62 ± 0.15 2.50 ± 0.75 0.36 ± 0.93 N.A. 0.24 ± 2.17 N.A. −0.72 ± 0.70

S 0.44 ± 0.16 0.69 ± 0.11 1.91 ± 1.24 N.A. 1.56 ± 1.17 N.A. −0.89 ± 0.65 −0.59 ± 0.45

HSA Nocap E/S 0.44 ± 0.18 0.82 ± 0.08 2.89 ± 0.13 −1.52 ± 1.62 1.84 ± 1.39 0.12 ± 1.84 −0.88 ± 1.75 −0.57 ± 0.30

E 0.46 ± 0.14 0.50 ± 0.16 2.81 ± 0.06 −3.30 ± 2.20 N.A. −0.90 ± 0.34 N.A. −0.79 ± 0.32

S 0.38 ± 0.18 0.57 ± 0.19 2.85 ± 0.10 N.A. 2.02 ± 1.17 N.A. −1.26 ± 0.90 −0.75 ± 0.31

HSA Cap E/S 0.36 ± 0.20 0.78 ± 0.13 2.85 ± 0.09 −1.54 ± 2.26 1.96 ± 1.49 −0.34 ± 4.79 −3.32 ± 4.05 −0.67 ± 0.30

E 0.17 ± 0.16 0.36 ± 0.17 2.86 ± 0.12 −2.48 ± 1.78 N.A. −1.48 ± 1.30 N.A. −0.95 ± 0.37

S 0.28 ± 0.24 0.47 ± 0.22 2.89 ± 0.13 N.A. 2.00 ± 0.99 N.A. −2.06 ± 1.36 −0.90 ± 0.28
aThe quality of each scoring function is reported in terms of coefficients of determination (R2). The test-set results (test R2) are the most
meaningful; the training-set results (train R2) are included for completeness. All quantities are averages across the 10 splits, with associated standard
deviations. Results are presented for the actual hydration data and for hydration data shuffled among voxels (GIST) or hydration sites (HSA), and
HSA results are presented for capped and uncapped displacement functions (see Methods). Scoring functions were constructed based on both
energy and entropy data (E/S), energy data only (E), and entropy data only (S); the parameters are defined in the Methods section.

Figure 2. GIST contours in binding site of FXa, in molecular surface representation. Left: Energy scoring region, which meets both density and
energy cutoff criteria for the combined energy−entropy scoring function. Middle: Entropy scoring region, which meets both density and entropy
cutoff criteria for the combined energy−entropy scoring function. Right: Normalized total water energy, contoured at −2.6 kcal/mol/water. White
arrows: entropy scoring subregions at the polar surface. Magenta arrows: entropy scoring subregions at hydrophobic surface. Red: oxygen. Blue:
nitrogen. Pale blue: carbon. Graphic generated with VMD.58
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complicated. Some (white arrows) lie at the surface of polar
atoms; others (pink arrows) lie at hydrophobic locations. The
frequent localization of entropy scoring regions at polar
surfaces, and the unexpectedly positive value of Saff, likely
reflects the fact that polar surfaces can tightly bind waters,
leading to unfavorable entropies but favorable energies (Figure
2, right) typical of traditional entropy−enthalpy compensation.
Displacement of water from such regions may be net
unfavorable, and this might help account for the positive
value of Saff. On the other hand, the displacement of
entropically disfavored water from subregions where energy is
not particularly favorable should favor ligand binding. Thus, the
energetically mixed nature of the entropic scoring regions
further suggests that it may not give a clear signal in the overall
scoring function.
In order to study the significance of the energy and entropy

terms in more detail, we also considered a scoring function
based only on density and energy, and another based only on
density and entropy. As shown in Table 1 (second and third
rows), the energy-only scoring function performs just as well
(R2 = 0.85 for the test sets) as the original one based on both
energy and entropy. In addition, the fitted parameters are
similar in magnitude and sign to those of the original energy
term. In contrast, the entropy-only scoring function yielded a
poor correlation with experimental data (R2 = 0.35 for the test
sets), and the sign of Saff is reversed relative to that in the
original scoring function. Thus, the hydration energy alone
carries all of the predictive power of the GIST-based scoring
function, at least for FXa with this ansatz. This result is
consistent with the analysis of the combined energy/entropy
scoring function, above.
As a further check of the statistical significance of the present

results, we shuffled the GIST data among voxels and then
refitted all three GIST-based scoring functions using the

shuffled data. The results are presented in the lower half of
Table 1. This procedure was repeated with three independent
randomizations. Although correlations as high as R2 = 0.82 are
obtained for the training sets, the test-set results are all poor (R2

≈ 0.4 ± 0.2). This result supports the significance of the high
correlations obtained with the true (unshuffled) data and
indicates that the low correlations observed for the entropy-
only scoring function should be viewed as statistically
insignificant.
Finally, we examined the amount of MD simulation data

required to generate the high correlations observed above. First,
we reanalyzed the original set of MD frames, which had been
saved at 1 ps intervals. For increasing numbers of frames from
this set, we reran the 10 training and test calculations and
computed the mean and standard deviation of the resulting 10
values of R2. As shown in Figure 3 (left), the value of R2 and its
standard deviation (error bars) appear to plateau at about 60 ns
for the combined energy−entropy scoring function (top left).
Interestingly, the plateau starts much earlier, at about 30 ns, for
the energy-alone scoring function (lower left). It appears that
the more slowly convergent entropy term delays convergence
of the energy−entropy scoring function, so that leaving out the
entropy term in the energy-only scoring function speeds
convergence. This result is, again, consistent with the
irrelevance of the entropy term in the GIST scoring functions.
We then asked whether shorter MD simulations might give
better convergence if frames were saved at shorter time
intervals. First, we reprocessed the first 20 ns of the same
simulation, now processing frames saved at 0.05 ps. As shown
in Figure 3 (top middle), the combined energy/entropy scoring
function now converges somewhat more quickly, especially as
measured by the reduction in the standard deviation of R2

across the 10 train/test calculations. The improvement is more
marked for the energy-only scoring function, as well-converged

Figure 3. Convergence of R2 values for GIST scoring functions, as a function of simulation duration. Top row: combined energy/entropy scoring
function. Bottom row: energy-only scoring function. Left: 100 ns simulation, frames saved at 1 ps intervals. Middle: The first 20 ns of the same 100
ns simulation, frames saved every 0.05 ps. Right: 20 ns simulation initiated from the last frame of the 100 ns simulation, frames saved every 0.05 ps.
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results are now available after only 10 ns of simulation time,
although the standard deviation of R2 remains slightly higher
than that from the 100 ns simulation. We then extended the
100 ns simulation by 20 ns, saving frames at 0.05 ps intervals,
and examined convergence over this short simulation. The
results are further improved, with good convergence and tight
error bars achieved within about 5 ns for the energy-only
scoring function, and 10 ns for the combined energy/entropy
one. The improvement in these results, relative to those from
the early 20 ns segment, suggests that the water structure
continued to equilibrate somewhat during the 100 ns run, so it
would have been appropriate to use a somewhat longer
equilibration period in the MD protocol. In summary, at least
for FXa, a simulation of 10 ns or less suffices to gain all the
benefit of these GIST scoring functions.
3.3. HSA-Based Scoring Functions. As discussed in the

Methods section, a prior HSA scoring function was constructed
in such a way that the thermodynamic contribution of each
hydration could be counted multiple times, if more than one
ligand atom lay within a cutoff distance.12 This function gave
good results but is arguably nonphysical, because once the
water in a hydration site has been displaced, it cannot be
displaced again. Here, we present results for a set of similarly
constructed HSA-based scoring functions in which, as before, a
hydration site can be counted multiple times; as well as a
second set, in which the contribution of each hydration site is
capped, so that it can only contribute once. For both the
uncapped and capped models, we examine scoring functions
based on energy and entropy, energy only, and entropy only, as
also done for GIST.
With the original uncapped approach, where a hydration site

can contribute multiple times, the combined energy/entropy
scoring function provides high correlation coefficients for both
the training (R2 = 0.88) and test (R2 = 0.80) sets (Table 1,
fourth row, marked E/S). These values of R2 are slightly lower
than those for GIST, but the difference is not statistically

significant. Interestingly, the fitted value of Eaff (−1.70 kcal/
mol) is much greater than that of Saff, which in fact is assigned a
positive sign (0.09 kcal/mol). In addition, the training
procedure puts much sharper constraints on the energy terms
than the entropy terms, as indicated by the fact that the
standard deviations of Eo and Eaff (0.08 and 0.31 kcal/mol,
respectively) are lower than those for So and Saff (0.50 and 0.60
kcal/mol). Thus, the training results suggest that the entropy
term is of lower importance than the energy term, much as
observed in the case of GIST. Accordingly, a scoring function
based entirely on energy (Table 1, row 5, marked E) performs
as well as the one with both energy and entropy, and
furthermore yields values of Rco, Eco, and Eaff very similar to
those of the combined energy−entropy scoring function. On
the other hand, an entropy-only scoring function (Table 1, row
6, marked S) also performs fairly well, with a value of R2 = 0.66
for the test sets, and the fitted value of Saff, −1.52 kcal/mol, is
essentially the same as the fitted value of Eaff for the energy-only
scoring function, −1.50 kcal/mol. Thus, the entropy-only
scoring function appears to largely replicate the energy-only
scoring function, with some drop in the correlation with
experimental data. These results are similar to those for GIST,
as in both cases, the energy-only scoring function performed as
well as the energy/entropy one, while the entropy-only one is
worse. However, the decline in performance on going to
entropy-only is much greater for GIST than for HSA.
In the second variant of the HSA-based scoring functions, no

hydration site can contribute more than one-fold to the
difference between two ligands’ affinities. Imposing this
physically reasonable cap on the contribution of each site
reduced the experimental correlation of the scoring function
with experimental data to 0.66 for the test sets with the
combined energy−entropy scoring function but had essentially
no effect on the correlations for the energy-only and entropy-
only test-set results. Thus, the results remain consistent with a
conclusion that the energy term alone is enough to gain all the

Figure 4. Comparison of GIST and HSA scoring locations, in the context of the FXa binding site (gray). Left: Scoring sites from the capped HSA
energy-only scoring function (blue spheres) and energy scoring regions from the GIST energy-only scoring function (orange contours). GIST results
are present only within the limits of the GIST grid (orange lines). Right: a representative ligand, PDB HET ID 4QC, in van der Waals representation
(pink).
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benefit of the scoring functions. The only other major change,
relative to the uncapped version of the scoring function, is that
the fitted values of Eaff and Saff changed from about −1.5 kcal/
mol to about −2.3 kcal/mol, except that Saff for the combined
energy/entropy scoring function remained small. These
increases presumably have the effect of compensating for the
reduced values of the displacement function, i.e., for the fact
that di

cap ≤ di
nocap in eqs 2 and 3.

In order to further test the statistical significance of the HSA
scoring results, we shuffled the energies and entropies among
hydration sites and then refitted all six HSA-based scoring
functions with the shuffled data. As summarized in the last six
rows of Table 1, the uncapped scoring functions now yield poor
correlations with experimental data (R2 ≈ 0.4), just as observed
for GIST, and the correlations for the capped scoring functions
fall even lower. These results support the significance of the
correlations obtained with the actual (unshuffled) data. The
fact that the shuffled results are worse for the capped HSA
scoring functions suggests, but does not prove, that applying
the physically reasonable cap might reduce spurious correla-
tions.
It is of interest to examine the locations of HSA scoring sites

relative to the GIST scoring regions. We focus here on the
energy-only scoring functions, since it is not clear that including
entropy adds useful information, at least for FXa within the
present functional form. As shown in Figure 4 (left), the HSA
sites do not capture the complex shapes of the GIST scoring
regions, and substantial parts of the GIST scoring region are
entirely missed by the HSA scoring sites. These regions could
presumably be used to direct rational lead drug design. The
spatial relationship of the scoring sites to the ligands studied
here may be appreciated from Figure 4 (right), which shows the
van der Waals surface of a representative ligand.

4. DISCUSSION

A key result of this first application of GIST to protein−ligand
modeling is that the detailed representation of water structure
and thermodynamics it affords works at least as well in a simple
scoring function as the prior12 and present site-based HSA
implementations. In addition, the GIST results converge well
within 5−10 ns of MD simulation time, depending upon
whether one uses the energy-only model or the energy/entropy
model. These simulation times are commensurate with those
normally used for the HSA approach; see the Methods. Thus,
the two approaches provide similar overall performance in the
present application. Additional considerations include the fact
that site-based approaches may require less data storage and
that they paint a simple picture of water structure in a protein
binding site. On the other hand, the GIST grid files produced
are still small (<1 MB), and we anticipate that the more
detailed rendering of hydration structure and thermodynamics
afforded by the grid approach will be useful for insight and
prediction. Note, in particular, that there are HSA sites which
are only partly occupied by the more refined GIST scoring
regions, as well as GIST scoring regions that are not identified
by the HSA model, as evident from Figure 4. More generally,
the fact that GIST is a more direct representation of the
common underlying inhomogeneous solvation theory facilitates
the interpretation of its results and provides clear pathways to
future enhancements, such as the incorporation of higher-order
correlations, as touched on below. A fast implementation of
GIST, based upon focused grand canonical Monte Carlo

sampling,59 may be of particular interest in the near term for
high-throughput applications.
Another novel and striking result of the present study is that

both the GIST and HSA models provide clear signals that
ligands can gain affinity by displacing energetically unfavorable
binding site water, whereas the displacement of entropically
unfavorable water seems to play a negligible role. The
energetically unfavorable water highlighted by this study
localizes at hydrophobic patches of the protein surface, perhaps
especially in concave regions where water molecules are
expected to lose hydrogen bonds.60 The concept that energy
may outweigh entropy in cases of strong hydrophobic binding
has been raised before,61,62 in both experimental8,63−66 and
computational67,68 contexts. Nonetheless, water entropy is
typically thought to play a central role in hydrophobic
binding.69−72 Here, interestingly, neither the GIST or HSA
models made a compelling case that the displacement of
entropically unfavorable water consistently enhances affinity.
We conjecture that the lack of a clear correlation of water
entropy with affinity may reflect the fact that low water entropy
often results from energetically favorable water−protein
interactions, so that water may actually be quite stable in
many locations where its entropy is low. This view is consistent
with the experimental observation that the entropy of hydration
of small ions is strongly negative,73 although the free energy is
also strongly negative. It may be possible in the future to devise
a more sophisticated scoring function that would account for
the enthalpy−entropy compensation between stabilizing energy
and destabilizing entropy and focus on regions where this
compensation breaks down, such as in the binding cavity of the
synthetic host molecule cucurbit[7]uril.28 It is also worth
mentioning that different protein binding sites affect water
differently, so a different result might be obtained for a different
protein. Finally, it may be that capturing the entropic aspect of
the hydrophobic effect requires accounting for water−water
correlations, which are absent from the one-body entropy
considered here. If so, the entropy term may become more
important once pairwise correlations have been incorporated
into GIST’s entropy calculations.
Our observation that the displacement of high energy water

plays a greater role in ligand scoring than displacement of low
entropy water appears to contrast with a prior HSA-based study
of the same system, where the fitted scoring function placed
approximately equal weight on water energy and entropy.12

However, the range of fitted values for Saff in our HSA models
nearly spans the value of 0.66 kcal/mol for the corresponding
parameter in the prior study, Srwd. In addition, the prior study
did not examine the uncertainty in its fitted energy and entropy
parameters or evaluate a scoring function based purely on water
energy. Therefore, the results of these two studies should not
be regarded as inconsistent.
In summary, the grid-based GIST method of extracting

information about hydration thermodynamics from MD
simulations with explicit water has provided encouraging results
in its first application to protein−ligand binding. It thus appears
to hold significant promise as a broadly applicable method of
understanding the role of binding site water in protein−ligand
binding, and as a tool to improve the accuracy of methods for
discovering high affinity targeted ligands. It is anticipated that
the detailed representation of water distributions and
thermodynamics which GIST affords will make it particularly
informative. We are currently working to develop such
applications and to release an open-source implementation of
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GIST within the AmberTools36 software package for others to
study and use.
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