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Most digital models of the equine distal limb that are available in the community

are static and/or subject specific; hence, they have limited applications in veterinary

research. In this paper, we present an articulatable model of the entire equine distal

limb based on statistical shape modeling. The model describes the inter-subject

variability in bone geometry while maintaining proper jointspace distances to support

model articulation toward different poses. Shape variation modes are explained in

terms of common biometrics in order to ease model interpretation from a veterinary

point of view. The model is publicly available through a graphical user interface

(https://github.com/jvhoutte/equisim) in order to facilitate future digitalization in veterinary

research, such as computer-aided designs, three-dimensional printing of bone implants,

bone fracture risk assessment through finite element methods, and data registration and

segmentation problems for clinical practices.

Keywords: principal component analysis, statistical shape model, morphometrics, bone shape model,

equine/horse model, equine hoof, computer aided (geometric) design, digitalization 3D

1. INTRODUCTION

Digital three-dimensional (3D) anatomical models have become an important aspect in the
digitalization of veterinary research and medical practices (1). Being acquired by computed
tomography (CT) imaging or magnetic resonance imaging (MRI) (2) or by 3D optical scanning
(3), those subject-specific models find their way into finite element analyses (FEA) (4), augmented
reality guidance during operations (5), and training of radiograph segmentation networks (6).

A standard procedure in morphological studies of equine distal limb anatomical structures
focuses on one-dimensional linear or angular measures, such as hoof angle, hoof length, medial-
lateral width of the phalanges, and so on, or two-dimensional measures, such as the joint surface.
They are measured from radiographs (7, 8), MRI data (9), photographs (8, 9), or from in-situ
measurements in vivo (10, 11) or post-mortem (12).

Another way to study morphology variations is by means of statistical shape models (SSMs),
which encode the 3D shape variation of the complete bone geometry, rather than reducing the
shape to a limited set of discrete measures (13). The benefit of this representation, compared
to linear biometrics, is that the statistical shape variability is defined as variation modes of the
geometry itself, such that it can be exploited in numerous computer vision applications. In human
medical research, these (articulating) SSMs have been widely adopted for training segmentation
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neural networks on CT data (14, 15). The models also provide
prior shape information for the reconstruction of personalized
3D models from sparse point-data (16) or from two-dimensional
radiographs (17, 18), to facilitate orthopaedic computer-assisted
surgeries (CAS), or to generate personalized finite element
models for mechanical simulations (19, 20). Integrated in
deep learning techniques, the models can discriminate between
pathological cases based on morphing parameters and thereby
outperforms manual subjective classification (21). The inherent
geometric information can also be used to study the relationship
between shape and biomechanical functions (22).

Because of additive manufacturing or 3D printing, physical
models can efficiently be (re-)produced from these digital models
(23). Rapid prototyping has been deployed as didactic material
in anatomy classes to study anatomy besides classical dissection
sessions and for training of surgery techniques as an alternative
to experimental animals (24, 25). Orthopedic implant design also
benefits from computer-aided design (CAD) and 3D printing, as
their design can be customized (26, 27). Osteosynthesis plates
can be designed specifically according to the individual anatomy
prior to fabrication of the plates. CAD thereby omits inter-
operative bending of the plates as is the case with off-the-shelf
template designs. It has been claimed that customized implant
designs, which take the shape variability into account, improve
the clinical outcome (27).

Despite the many potential applications, SSMs remain
underexplored in veterinary research. First, this is due to lack of
availability of large collections of 3D data, fromwhich suchmodel
can be built. Most available models are static and subject specific
and are therefore less relevant for CAD. Second, there is no one-
to-one relation between the variation modes of an SSM and the
linear biometrics. This might complicate the interpretation of
SSMs and make them less attractive for veterinarians.

In the field of equine veterinary research, we see most
potential applications for SSMs to the equine distal limb. The
shape of the horse’s distal limb bones is an important factor in
determining the horse’s performance. Because the phalanges and
metacarpal bones distribute the impact forces upon landing on
the ground, the shape (and bone mineral density) of the bones
affect how efficiently forces are distributed and subsequently
determine its risk of fractures (28). It has also been observed
that hoof conformation is correlated to movement asymmetry
(29). Uneven foot-bearing can eventually lead to biomechanical
injuries or lameness, and should be taken into account for
corrective shoeing and farriery (30, 31).

The aim of this paper is to provide a workflow to generate
an articulating SSM of the equine distal limb. Furthermore, the
SSM’s variation modes are associated with conventional linear
biometrics in order to ease the model interpretation. Unlike
earlier SSMs, our model describes the statistical shape variation
of the different bones simultaneously in one model. This ensures
correct jointspace distances for different model instances and
enables articulation of the model toward different poses.

We first outline the methodology to construct an articulating
multi-component statistical shape model (aSSM) of the equine
distal limb, which is based on the earlier work of (17). Next, we
describe the major statistical variation modes in terms of linear

biometrics. In the discussion, we provide directions of future
research and potential application areas in the field of veterinary
research where the model can be adopted.

2. MATERIALS AND METHODS

2.1. Data Collection and Data Preparation
A random collection of 70 left and right distal front limbs
of 35 cold-blooded and warm-blooded horses and ponies was
donated by a commercial abattoir and bulk CT-scanned post-
mortem with a Canon Aquilion LB CT system (resolution:
(0.78×0.78×0.5)mm3, tube current: 200mA, generator power:
27 kW) from the hoof to the carpus. All legs were unshod
at the time of scanning. The hoofs did not undergo prior
hoof trimming or cleaning. Right limbs were later mirrored to
resemble left limbs.

The acquired CT images were segmented using an open-
source graph-cut multi-label segmentation technique (32),
followed by minor manual corrections. The segmentation label
maps were converted to digital geometry surface models by
a discrete marching cube algorithm (33) and re-meshed to a
coarser curvature-adaptive mesh by ACVD-software (34). Mesh
artifacts were eventually resolved by MeshFix (35).

2.2. Construction of the Articulating
Multi-Component Statistical Shape Model
In this section, we describe the proposed methodology to build
a compact representation model of the shape variations in our
population of L = 70 equine distal limb models Si, i ∈ {0, . . . , L},
with i = 0 indicating the reference model that was adopted from
earlier work (6). As illustrated in Figure 1A, each limb model Si
consists of M = 10 components (nine distal limb bones and the
hoof capsule); thus, Si = {Sij, j = 0, . . . ,M − 1}, where Sij is
the jth component of the ith subject with Nij vertices. We denote
the homogeneous vertex coordinates of shape Sij by vij = {vijp ∈

IR4, p = 0, . . . ,Nij− 1}. The number of vertices per component j
of the reference model are tabulated in Table 1 and the resolution
of the reference model is visualized in Figure 1B.

2.2.1. Articulation Model
Articulation of the surface model, as illustrated in Figure 2

for the different stages of the stance phase, is limited to the
major degrees of freedom of the equine distal limb. This
includes the extension and flexion around the following three
joints: metacarpophalangeal (MCP), proximal interphalangeal
(PIP), and the distal interphalangeal (DIP). The articulation
model articulates the proximal sesamoid bones and the proximal
phalanx as one geometry structure (38). This approximation
is justified by their relatively small range of motion and any
latent motion, which happens in reality, will end up as a shape
variability in the model. Similarly, the distal sesamoid bone
and the hoof capsule are assumed to be rigidly attached to the
distal phalanx in the articulation model. Furthermore, the three
metacarpal bones are rigidly attached to each other. Under these
assumptions, the articulationmodel effectively consists ofNb = 4
skeleton bones to transformM = 10 surface model components.
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FIGURE 1 | (A) The distal limb model consisting of nine bones and the hoof capsule. Bones with similar colors move rigidly under skeleton articulation. Each bone has

a local orthogonal reference frame (xb, yb, zb) associated with it, which are here represented by, respectively, the red, green, and blue lines. The flexion/extension

rotation axis of bone b is denoted by ab and is positioned at location cb. The flexion/extension around axes a2, a3, and a4 are the major degrees of freedom of the

articulation model. (B) Model with overlayed wireframe, indicating the resolution of the surface model. (C) Definition of the spherical angles (α,β, γ ) between a bone’s

reference frame (xb, yb, zb), and its adjacent parent bone’s reference frame [xp(b), yp(b), zp(b)]. The extension/flexion angle α between two adjacent bones is measured

inside the sagittal plane of the parent bone. The corresponding rotation axis ab coincides with the z-axis of the parent bone zp(b). The abduction/adduction angle β is

measured perpendicular to the sagittal plane of the parent bone. The associated rotation axis is yb × zp(b). The internal rotation γ happens around the bone axis yb
itself.

The articulation model assigns a local reference frame to
each of the four skeleton bones, as depicted in Figure 1A. The
orthogonal reference frame is defined such that its y-axis aligns
with the elongation axis and that its z-axis is perpendicular to
the sagittal plane of the bone. The flexion, abduction and internal

rotation angle are, respectively, identified as the three spherical
coordinates (α,β , γ ) between adjacent reference frames. Their
definition is visualized in Figure 1C. Note that the flexion
rotation axis a of bone b corresponds to the z-axis of its parent
bone p(b).
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To enable articulation of the distal limb bones themselves, we
also define an origin c to each reference frame, which is chosen
as the center of a circle, fitted to the joint surface area of the bone
in its sagittal plane. The local-to-world transformation T ∈ IR4×4

brings the local reference frame of a bone, like the one shown in
Figure 1C, to its position and orientation in world coordinates.
Flexion of a bone b relative to its parent bone p(b) over an
angle θ is obtained by the transformation Tp(b)Rz(θ)T

−1
p(b), where

Rz(θ) ∈ IR4×4 represents a rotation over the z-axis. It should be
noted that the articulation model is a mathematical construction
and is not statistically founded by dynamic data.

2.2.2. Elastic Registration
Initially, each subject Si in the training database is described by its
own set of vertices. To statistically describe the shape variations
in this database, all shapes must be in semantic correspondence
with each other, such that vertices with the same index have the
same anatomical location on all training subjects. In order to do
so, we elastically deform the reference component coordinates
TijT

−1
0j v0j toward its corresponding training subject component

Sij and replace the training subject by the registration result,

TABLE 1 | Number of vertices per component of the reference model.

Bone j N0j

MC2 994

MC3 9,159

MC4 742

PS (lateral) 817

PS (medial) 777

P1 4,226

P2 2,563

P3 2,882

DS 688

Hoof capsule 13,460

without change of notation, such that each training shape is now
described by the same semantic-meaningful mesh (39).

In order to reduce a possible bias toward the chosen reference
model, we repeat the elastic registration with the mean model as
reference. Note that registered shapes are still in their original
position and orientation. Replacing the subject by its registered
result introduces a geometric error of how well the original
surface is approximated by its registered surface. As illustrated in
Figure 3, this geometric error is highly position dependent, but
overall negligible. The average unsigned geometric error over the
entire model equals 0.182± 0.002mm.

2.2.3. Scale and Pose Normalization
As we are interested in the intrinsic shape variability, we want to
normalize all training subjects for their global scale. All models
were scale normalized based on the length of the thirdmetacarpal
of the reference model.

Second, training subjects were originally scanned on their
side in different unloaded poses, which causes unwanted pose
variations in the dataset. The pose normalization of bone b
involves finding the optimal flexion angle θ∗, in a least-square
sense, whichmatches the bone’s geometry with the corresponding
bone of the reference model in the local reference frame of its
parent bone p(b):

θ∗ = argmin
θ

‖T−1
0j v0j − Rz(θ)T

−1
ij vij‖

2, (1)

where the one-to-one correspondences from the previous step
are exploited for the geometry matching. Note that we only
optimize for the extension/flexion angle and not for abduction,
adduction, and internal rotation, which are considered as
remnant posture in the shape analysis.

2.2.4. PCA-Based Statistical Shape Modeling
Assuming a database of L registered pose- and scale-normalized
shapes Si, we can define each shape by its shape vector si ∈ IR3F ,
which is a concatenation of its F =

∑M−1
j=0 N0j coordinates.

FIGURE 2 | Distal limb model’s articulation throughout the stance phase. The percentages indicate the completion level of the stance phase. Extension/flexion angles

for the metacarpophalangeal (MCP), proximal interphalangeal (PIP), and distal interphalangeal (DIP) joints were obtained from the literature (36, 37).
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FIGURE 3 | Average signed geometric error of the elastic surface registration to L = 70 subjects. Vertices of the registered reference model that lie inside or outside

the target model have a negative or positive distance, respectively. The average error is a measure of the registration accuracy, while its variance is a measure of the

precision of the registration.

The shape vectors of the L subjects are ordered as columns in
a data-matrix X ∈ IR3F×L.

The goal of principal component analysis (PCA) is to find an
orthogonal transformation that transforms the high-dimensional
shape vectors to a low-dimensional set of linearly uncorrelated
variables, which are called principal components (PCs) (13). The
PCs can efficiently be calculated by first mean-centering the rows
of X and next performing a singular value decomposition (SVD)
on the low-dimensional matrix XTX. The matrix X multiplied by
the left singular vectors of this decomposition are equal to the
principal component vectors ui ∈ IR3F of X, after normalizing
the columns. The singular values of the decomposition are equal
to the variances σ 2

i of those PCs. The PCs are ordered such that
the first PC accounts for the largest variation in the dataset, and
each succeeding PC has the largest variance possible under the
condition that it must be orthogonal to any previous component.
Any shape can now be expressed as a linear combination of those
PCs, weighted by its standard deviations:

s(b) = s̄+

L−1
∑

i=1

biσiui (2)

with s̄ ∈ IR3F the mean shape vector and bi the contribution of
the ith normalized PC ui to the final shape s. In matrix notation,
this reads:

s(b) = s̄+ EDb (3)

where the columns of matrix E ∈ IR3F×L−1 contain the
normalized eigenvectors ui and D = diag(σ1, σ2, . . . , σL−1) ∈

IRL−1×L−1. The PC weights b ∈ IRL−1 allow to generate new
shape instances from the SSM, different from the training data.
Given a new shape s with the same topology as the SSM, the
PC weights that approximate this new shape most closely are
given by:

b = D−1E+(s− s̄), (4)

with E+ the pseudo-inverse of the non-square matrix E.

2.2.5. Articulating Statistical Shape Model

Construction
Applying PCA to the set of registered pose- and scale-normalized
shape coordinates ṽij = Rz(θ∗)T

−1
ij vij, it is important for each

shape vector si to also contain skeleton information besides the
geometry coordinates, because both are intertwined: if the shape
changes, the underlying skeleton will have to be modified as
well in order to maintain proper articulation. The shape vector
is therefore a concatenation of the geometry coordinates of all
components of the model and the position cb and orientation ab
of the rotation axes of the bones in the skeleton model, as shown

Frontiers in Veterinary Science | www.frontiersin.org 5 March 2021 | Volume 8 | Article 623318

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Van Houtte et al. EquiSim: Statistical Equine Limb Model

TABLE 2 | Definition of the biometrics, indicated on the 3D models in Figure 4.

Bone Abbr. Biometrics Description

H
o
o
f
c
a
p
su

le

FL Frog length Perpendicular distance between the frog apex and the palmar hoof line.

FW Frog width Distance between medial and lateral heel buttress.

HA Heel angle Angle between the hoof wall at the heel and the ground surface.

HW Hoof width Distance between the frog apex and outer capsule wall, measured perpendicular to the sagittal plane.

SL Support length Distance between toe and the palmar hoof line along the ground surface.

TA Toe angle Angle between dorsal hoof wall and the ground surface.

TL Toe length Distance between toe and top of capsule, along the dorsal hoof wall.

UR Underrun The heel angle (HA) minus toe angle (TA).

WT Wall thickness Average thickness of the hoof capsule in the cross-section of the capsule.

P
3

CA Coffin angle Angle between dorsal aspect of P 3 and the ground surface.

PA Palmar angle Angle between palmar aspect of P 3 and the ground surface.

CD Capsule deviation Coffin angle (CA) minus toe angle (TA).

TS Toe to heel support Percentage of the hoof’s support length (SL), which is ahead of the center of articulation c4 of P 3, i.e.,: TS=TC/SL.

P
1
,
P
2

CR Joint curvature radius Radius of a circle fitted to distal joint surface (lateral view).

AD Articular surface depth Depth of the proximal articular surface, averaged between medial (ADm) and lateral side (ADl ).

AW Articular surface width Width of the proximal articular surface, averaged between medial (AWm) and lateral side (AWl ).

PL Phalanx length Length, along major axis in sagittal plane

M
C
3

CR Joint curvature radius Radius of a circle fitted to distal joint surface (lateral view).

MW Medio-lateral width Width of the distal joint, measured along flexion rotation axis.

RW Sagittal ridge width Average width of the sagittal ridge.

D
S SA Distal sesamoid angle Angle between the palmar aspect of P 3 and the line connecting the tip of P 3 with the distal sesamoid’s center of mass.

SH Distal sesamoid height Distance between distal and proximal border of the distal sesamoid bone in the sagittal plane.

in Figure 1A:

si = [ṽi,0 ṽi,1 . . . ṽi,M−1
︸ ︷︷ ︸

geometry coordinates

logµ1
ai1 logµ2

ai2 . . . logµNb
aiNb

︸ ︷︷ ︸

axis orientation

ci1 c
i
2 . . . ciNb

︸ ︷︷ ︸

axis position

]T ∈ IR3F , (5)

with F =
∑M−1

j=0 N0j + 2Nb. Note that we take a logarithmic map
of the axis orientation vectors ab around their intrinsic means
µb, because PCA assumes that the data are normally distributed
in an Euclidean (high-dimensional) space. However, the rotation
vectors are constrained to lie on the unit sphere S2, meaning
that their length is always one and they can only vary in their
orientation. Hence, the vectors lie on a curved manifold and one
needs to adopt principal geodesic analysis (PGA) instead of PCA
to describe the data variability (40). In short, it applies PCA on
the tangent space of S2, and one needs to use the logarithmic and
exponential map around the intrinsic mean to move back and
forth between S2 and the Euclidean tangent space.

The reconstruction of a component j from the articulating
SSM is obtained via:

s(b, θj) = (T(b) ◦ Rz(θj))s(b), (6)

where s(b) can be calculated from Equation (3). Note that the
transformation T is also dependent on b as it depends on the
rotation axis and center of the bones.

2.3. Biometrics
Biometrics are linear or angular measures that characterize
a component’s shape and can be expressed in terms of the
variation modes of the SSM. We consider biometrics for the
hoof capsule, the third phalanx (7–11), the third metacarpal, the
first and second phalanx (12), and the distal sesamoid bone. The
definitions of the selected biometrics are tabulated in Table 2.
The metrics were automatically calculated on the 3D geometry
models, instead of on two-dimensional images as is often done
in the literature. Figure 4 shows the biometrics indicated on the
3D models.

2.3.1. Correlation Between Biometrics and PC Modes
In order to change the shape (i.e., changing the PC weights)
as a function of the biometric, we applied a multivariate linear
regression between the set of PC weights b and the biometric
value k:

b(k) =
[

α β
]
[

1
k

]

. (7)

The regression coefficients α, β ∈ IRL−1 represent the offset and
slope, respectively. They are determined from simulated model
instances (N = 1, 000), created from the SSM by using Equation
(6) following its multivariate normal distribution.

Given a biometric value, the linear regression estimates the
PC weights, from which the corresponding SSM’s instance can
be reconstructed by Equation (6). Figure 5 shows a number
of model instances corresponding to the biometric values
µ − 3σ and µ + 3σ . Obviously, changing one biometric
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FIGURE 4 | Biometrics indicated on the 3D models of (A) the third metacarpal, (B) the proximal or middle phalanx, (C) the distal phalanx and distal sesamoid bone,

and (D) the hoof capsule. (E) shows the relative position of the distal and middle phalanx with respect to the hoof capsule. Abbreviations of the metrics are explained

in Table 2.

also changes other biometrics as they are all correlated with
each other. In order to visualize the correlations between
the different biometrics, we show the Pearson’s correlation
coefficients in Table 3.

3. RESULTS

3.1. Model Performance
The statistical shape model’s performance was evaluated in terms
of compactness, generalizability, and specificity (41, 42) and are
shown in Figure 6 as a function of number of PC modes. The
compactness shows the cumulative variance explained by the
statistical modes. Figure 6A indicates that the first 20 modes
describe 95% of the variability in the training dataset. Themodel’s
specificity, shown in Figure 6B, is the extent to which the model
can generate instances of the object that are close to those of
the training set. To calculate this measure, random samples of
the SSM have been generated by using Equation (6), according
to its multivariate normal distribution. Each model instance has
been compared to its closest training shape in the shape space,

in terms of the root mean square error of the distance between
corresponding vertices.

The generalizability indicates how well the model can be
generalized to new subjects. A leave-one-out test has been
performed for calculating this measure. The SSM has been rebuilt
for L − 1 subjects and Equation (4) has been used to fit the
obtained model to the subject being left out. Figure 6C shows
the root mean square error between the subject being left out
and the fitted result. We also show the reconstruction error when
fitting to the same subject with the complete model, i.e., when the
subject to which has been fitted is included in the training data.
The discrepancy between both curves is the effect of fitting to
unknown subjects. When using the model to fit to new instances,
one might expect an average geometric error of 2.0 ± 0.3mm
when using the first 20 PC modes, as can be concluded from
Figure 6C.

3.2. Biometrics
The generation of model instances based on a biometric value,
as illustrated in Figure 5, exploits the multivariate regression

Frontiers in Veterinary Science | www.frontiersin.org 7 March 2021 | Volume 8 | Article 623318

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Van Houtte et al. EquiSim: Statistical Equine Limb Model

FIGURE 5 | Instances of the statistical shape model (SSM) for different biometric values. For each biometric k, the models are shown that correspond to k = µ − 3σ

and k = µ+ 3σ , with µ and σ the average and standard deviation of the biometric in our dataset. Clipped models are shown to draw the reader’s attention to the hoof

area. In case of the curvature radius (H), one can notice the global scaling of the phalanges and hoof capsule with respect to the third metacarpal. (A) Heel angle, (B)

toe angle, (C) palmar angle, (D) capsule deviation, (E) frog width, (F) hoof wall thickness, (G) distal sesamoid angle, (H) P1: joint curvature radius.
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FIGURE 6 | Evaluation metrics of the statistical shape model, as a function of number of principal component (PC) modes. (A) The compactness shows the

cumulative variance explained by the statistical shape model (SSM). (B) The specificity indicates how similar randomly generated instances are to the training shapes.

(C) Geometric error when fitting the SSM to unseen shapes (generalizability, blue) and to training shapes on which the SSM was built (reconstruction error, black). The

faint lines show the geometric error per subject. The solid lines show the average of all subjects.

relation given in section 2.3.1. The linear assumption of this
regression has been evaluated by recalculating the biometric

value k̃ on the model instance s(b(k), θj), created with the
biometric value k. The absolute difference between the value k
used to generate the model and the recomputed value k̃ on this
model results in a confidence interval on k, which is reported in
Table 4 and gives a measure for the nonlinearity of the relation
between PC weights and the biometric.

Nonlinear effects have dominantly been observed for the
angle biometrics, especially for the heel angle and the under-
run. Despite the nonlinearity, the accuracy of the other angular
biometrics is less than two degrees for the full range of [µ −

3σ ,µ + 3σ ]. Most linear biometrics are sub-millimeter accurate.
Only the frog width, frog length, capsule deviation, and the
support length of the hoof capsule have a larger difference
between the expected and measured biometric.

4. DISCUSSION

In this paper, a workflow has been presented to build an
articulating SSM of the left equine distal limb based on principal
component analysis in a pose-normalized coordinate system. As
a proof of concept, the workflow has been illustrated on a dataset
of 70 cadaver limbs. The resultingmodel describesmorphological
variations, while it can be articulated toward any possible pose.
We found that 20 modes were sufficient to describe 95% of
the population’s variability and that it can be registered to new,

unseen limbs with a registration accuracy of 2.0 ± 0.3mm. To
ease the morphological interpretation of the resulting statistical
modes and to facilitate future research, we have explained the
modes in terms of common biometrics and made the model
publicly available through a graphical user interface (GUI)1, as
shown in Figure 7. The source code of the GUI is developed in
C++ on Linux.

Although the resulting model has been shown to be a compact
representation of the population, there are still some limitations
that can be a starting point for future research. First, the dataset
of equine limbs collected for this proof-of-concept study was
ill-controlled, combining different breeds, ages, levels of hoof
conditions, etc. This maximized the sample size, but at the same
time, made it less relevant for morphological studies. Depending
on the target application, it would be beneficial to build a model
from a specific dataset.

Second, the authors recommend basic hoof trimming and
cleaning prior to the data acquisition. The poor hoof conditions
in our collection of limbs caused ambiguities in the data
segmentation and most likely also affected the segmentation
accuracy, besides the reported registration accuracy. This
subsequently can lead to irrelevant variation modes in the
SSM. Similarly, bone ossification between MC3 and MC2 or
between MC3 and MC4 (splints) also posed difficulties in the
segmentation of both metacarpals in some cases.

1https://github.com/jvhoutte/equisim
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TABLE 4 | Confidence intervals for the biometrics.

Biometric Min Max

FL [mm] −1.26 1.41

FW [mm] −4.46 2.84

HA [◦] −3.34 0.780

HW [mm] −0.415 −0.224

SL [mm] −1.27 1.18

TA [◦] −0.502 2.00

TL [mm] −0.897 0.196

UR [◦] −5.25 1.02

WT [mm] −0.298 0.156

CD [◦] −1.74 0.882

CA [◦] −0.150 1.37

PA [◦] −0.628 1.04

TS [%] −0.0231 0.00745

CRP1 [mm] −0.0812 0.0225

ADP1 [mm] −0.0925 0.213

AWP1 [mm] −0.0593 0.0726

PLP1 [mm] −0.0201 0.00

CRP2 [mm] −0.00163 0.0131

ADP2 [mm] −0.0929 −0.0189

AWP2 [mm] −0.170 0.151

PLP2 [mm] −0.0220 −0.0153

CR [mm] −0.000740 0.0430

MW [mm] −0.150 0.119

RW [mm] −0.166 0.116

SA [◦] −0.455 0.443

SH [mm] −0.0457 0.0211

Besides the data preparation, the model has some more
theoretical limitations. The model is not a statistical shape
and pose model, in the sense that the pose variations are not
statistically described. In this paper, the pose of the model is
altered based on a mathematical model, which does not correlate
with the shape instance. Changing PC weights does not affect the
range of motion. This limitation is due to the difficulty to acquire
geometry data in different poses, preferably in vivo.

Furthermore, the model is a surface model and not a
volumetric model. In order to apply our model for finite element
analyses (43), one still needs to extend the model to a voxelized or
tetrahedral model and assign material properties to its cells. The
shape variability of our model would enable easy repetitions of
the FE analysis for different shape instances. Changing only one
biometric allows to study the effect of it on a particular FE result.
For kinematical studies, the model can possibly be extended to
a musculoskeletal model by transferring muscle, tendon, and
ligament attachments from the 3D Horse Anatomy of Biosphera
software (3, 44).

The main purpose of the model, as presented in this paper,
lies in the compact description of the bones statistical variability.
This geometric information can be exploited in CAD of different
types of orthopaedic implants, suiting different classes of bone
shapes. The ability to create different instances of the SSM also
enables the generation of extensive training databases for deep
learning applications. Digital or after 3D printing, the model can
potentially have educational purposes as well.

5. CONCLUSION

In this paper, we presented a workflow to build an articulating
statistical shape model of the equine distal limb, as a

FIGURE 7 | Screenshot of the graphical user interface “Equisim,” which allows the user to interact easily with the model, by either changing the biometric values (A)

or by directly changing the PC weights (B).

Frontiers in Veterinary Science | www.frontiersin.org 11 March 2021 | Volume 8 | Article 623318

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Van Houtte et al. EquiSim: Statistical Equine Limb Model

way to describe its morphological variations in a compact
representation. 3D shape variations have been related to common
one-dimensional biometrics. We thereby bridged the gap
between current morphology studies and future digitalizations
in veterinary research. Being available through an open-source
application, our model can be an added value in veterinary
anatomy classes and can potentially support future research in
CADs, finite element analyses, and deep learning-based solutions
for image processing tasks.
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