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Abstract
BACKGROUND 
Diabetes mellitus (DM) is a serious and growing global health burden. It is 
estimated that 80% of diabetic patients have micturition problems such as poor 
emptying, urinary incontinence, urgency, and urgency incontinence. Patients with 
diabetic bladder dysfunction are often resistant to currently available therapies. It 
is necessary to develop new and effective treatment methods.

AIM 
To examine the therapeutic effect of human amniotic fluid stem cells (hAFSCs) 
therapy on bladder dysfunction in a type 2 diabetic rat model.

METHODS 
Sixty female Sprague-Dawley rats were divided into five groups: Group 1, 
normal-diet control (control); group 2, high-fat diet (HFD); group 3, HFD plus 
streptozotocin-induced DM (DM); group 4, DM plus insulin treatment (DM + 
insulin); group 5, DM plus hAFSCs injection via tail vein (DM + hAFSCs). 
Conscious cystometric studies were done at 4 and 12 wk after insulin or hAFSCs 
treatment to measure peak voiding pressure, voided volume, intercontraction 
interval, bladder capacity, and residual volume. Immunoreactivities and/or 
mRNA expression of muscarinic receptors, nerve growth factor (NGF), and 
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sensory nerve markers in the bladder and insulin, MafA, and pancreatic-duodenal homeobox-1 
(PDX-1) in pancreatic beta cells were studied.

RESULTS 
Compared with DM rats, insulin but not hAFSCs treatment could reduce the bladder weight and 
improve the voided volume, intercontraction interval, bladder capacity, and residual volume (P < 
0.05). However, both insulin and hAFSCs treatment could help to regain the blood glucose and 
bladder functions to the levels near controls (P > 0.05). The immunoreactivities and mRNA 
expression of M2- and M3-muscarinic receptors (M2 and M3) were increased mainly at 4 wk (P < 
0.05), while the number of beta cells in islets and the immunoreactivities and/or mRNA of NGF, 
calcitonin gene-related peptide (CGRP), substance P, insulin, MafA, and PDX-1 were decreased in 
DM rats (P < 0.05). However, insulin and hAFSCs treatment could help to regain the expression of 
M2, M3, NGF, CGRP, substance P, MafA, and PDX-1 to near the levels of controls at 4 and/or 12 
wk (P > 0.05).

CONCLUSION 
Insulin but not hAFSCs therapy can recover the bladder dysfunction caused by DM; however, 
hAFSCs and insulin therapy can help to regain bladder function to near the levels of control.
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Core Tip: Diabetic patients with bladder dysfunction are often resistant to currently available therapies. 
Stem cells demonstrate the efficacy in preclinical studies of diabetic bladder dysfunction. Human amniotic 
fluid stem cells (hAFSCs) can be obtained from amniotic fluid, and phenotypically and genetically stable, 
indicating that hAFSCs can be used as a novel source of cell therapy. Here, we demonstrated that, 
although it is insulin but not hAFSCs therapy that can help recover the bladder dysfunction caused by 
diabetes mellitus (DM), both insulin and hAFSCs treatment can help to regain bladder function to near the 
levels of control. Our study highlights the potential of hAFSCs for cell replacement and regeneration 
therapy for DM.

Citation: Liang CC, Shaw SW, Huang YH, Lee TH. Human amniotic fluid stem cell therapy can help regain 
bladder function in type 2 diabetic rats. World J Stem Cells 2022; 14(5): 330-346
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INTRODUCTION
Diabetes mellitus (DM) is a serious and growing global health burden. During the past few decades, the 
prevalence of DM has increased significantly, mainly due to the continuous rise in the incidence of type 
2 DM[1]. Type 2 DM is characterized by defects in insulin secreted by pancreatic beta cells and 
peripheral insulin resistance[2]. As the disease progresses, insulin deficiency may appear. Exogenous 
insulin has been used to prevent various complications of DM, but almost all patients will eventually 
have complications, including obesity, nephropathy, neuropathy, and cardiovascular disease[3]. This 
may be due to the failure of exogenous insulin to regulate glucose levels as effectively as that provided 
by endogenous insulin from beta cells[4]. Beta cells in the pancreatic islets are the only cell type that 
secretes insulin in response to blood glucose, but how to maintain the physiological function of beta 
cells through insulin transcription factors is not yet fully understood.

Among individuals diagnosed with DM, 80% have micturition problems such as poor emptying, 
urinary incontinence, urgency, and urgency incontinence[5]. Studies have shown that the path-
ophysiology of diabetic bladder dysfunction is multifactorial[6]. In a streptozotocin (STZ)-induced 
diabetic rat model, STZ-induced hyperglycemia like DM may act through an oxidative stress 
mechanism that affects multiple tissues including innervation, ganglia, and urinary tree, and there are 
reduced nerve growth factor (NGF) levels in the bladder and dorsal root ganglia of the lumbar spine 
which are associated with voiding dysfunction caused by defects in A-delta and C fiber bladder afferent 
nerves[6,7]. The antioxidant defense in the median and long time can participate in recovering tissue 
functions, even structural changes. Also, up-regulation of bladder muscarinic receptors can lead to 
bladder overactivity in STZ-induced diabetic rats[8,9].

https://www.wjgnet.com/1948-0210/full/v14/i5/330.htm
https://dx.doi.org/10.4252/wjsc.v14.i5.330


Liang CC et al. Stem cell therapy for diabetic cystopathy

WJSC https://www.wjgnet.com 332 May 26, 2022 Volume 14 Issue 5

Patients with diabetic bladder dysfunction are often resistant to currently available therapies. 
Therefore, it is necessary to develop new and effective treatment methods. Stem cells have recently 
demonstrated efficacy in preclinical studies of diabetic bladder dysfunction[10,11]. Human amniotic 
fluid stem cells (hAFSCs) can be obtained from amniotic fluid, easy to culture, and phenotypically and 
genetically stable, indicating that these stem cells can be used as a novel source of cell therapy[12]. The 
present study aimed to investigate the effect of hAFSCs therapy and whether the therapeutic effect 
could be similar to that of insulin treatment using a type 2 DM rat model.

MATERIALS AND METHODS
Animal model
Female Sprague-Dawley rats (10-12 wk old) were acclimatized to laboratory conditions (23 °C, 12 h/12 h 
light/dark, 50% humidity, ad libitum access to food and water) for 2 wk prior to experiment. Sixty rats 
were divided into five groups: Group 1, normal-diet control (control) with rodent chow diet (LabDiet 
5001, Richmond, IN, United States) containing 13.6% fat, 28.9% protein, and 57.5% carbohydrate (kcal); 
group 2, high-fat diet (HFD) (D12492, Research Diets, New Brunswick, NJ, United States)[13] containing 
60% fat, 20% protein, and 20% kcal; group 3, HFD plus STZ-induced hyperglycemia like-DM (DM), 
simulating human type 2 DM[14]; group 4, hyperglycemia like-DM plus insulin treatment (DM + 
insulin); group 5, hyperglycemia like-DM plus hAFSCs injection via the tail vein (DM + hAFSCs).

All rats received bladder function test using conscious cystometry at 4 and 12 wk after insulin 
treatment or hAFSCs therapy (n = 6 at each time point). The expression of NGF and M2- and M3-
muscarinic receptors (M2 and M3) was measured by immunohistochemistry and real-time polymerase 
chain reaction (RT-PCR). The expression of calcitonin gene-related peptide (CGRP) and substance P in 
the bladder and the expression of insulin, Maf family of transcription factors (MafA), and pancreatic-
duodenal homeobox-1 (PDX-1) in pancreatic beta cells were measured by immunohistochemistry. The 
experimental procedure is shown in Figure 1. All appropriate measures were taken to minimize animal 
pain or discomfort. All animals were euthanized by barbiturate overdose (intravenous injection, 150 
mg/kg pentobarbital sodium) for tissue collection.

The reasons why the present study used female rats are: First, our previous study[11] examined the 
protective effect of hAFSCs against bladder dysfunction in a rat model of type 1 DM. We found that 
type 1 DM could cause bladder dysfunction, such as more frequent non-voiding bladder contraction, 
longer intercontraction interval, and larger voided and residual volume compared with controls after 
the induction of DM in female rats. In order to investigate if the results of bladder dysfunction in type 2 
DM rats could be similar to those in type 1 DM rats, we used the same female rats for comparison. 
Second, the authors are clinicians and experts in female urology and obstetrics, and the use of female 
rats in animal studies was to understand and solve the similar urological problems in female DM 
patients.

Induction of DM
The DM rats were first fed an HFD (60% kcal fat, D12492, Research Diets, New Brunswick, NJ, United 
States) and water ad libitum. After 4 wk of dietary manipulation, rats were then pretreated with a single 
intraperitoneal dose of 35 mg/kg STZ dissolved in 0.1 M citrate buffer with pH 4.5 to induce experi-
mental DM[14,15], which resembles the condition of human type 2 DM. Fasting blood glucose levels 
were determined 72 h later after STZ injection with a glucometer (ACCU-CHEK Active, Roche 
Diagnostics, Germany) using tail blood. The rats with a fasting blood glucose level of 300 mg/dL or 
greater were considered to be diabetic[14,16]. The HFD group was injected only with citrate buffer 
intraperitoneally. The controls were given a regular diet and did not receive any treatment. The rats 
were allowed to continue feeding on their respective diets until euthanasia.

The DM rats were administered with long-acting glargine insulin (LANTUS, Sanofi-Aventis, 
Germany) at a dose of 3 U/d subcutaneously from 7 d after STZ injection, and the dose was later 
adjusted according to the glycemic level[17]. The DM + insulin rats received insulin injection at a fixed 
time (9:00 AM) every day until euthanasia.

Isolation and characterization of hAFSCs for therapy
hAFSCs were obtained by routine amniocentesis from six healthy pregnant donors in 15-20 gestational 
weeks. Cells were cultured in the StemPro mesenchymal stem cell (MSC) serum free medium supple-
mented with 10% fetal bovine serum (Invitrogen, Carlsbad, CA, United States) and incubated at 37 °C 
with 5% carbon dioxide. The specific surface antigens of hAFSCs were characterized by flow cytometry 
analyses as shown in previous work[18]. The cultured cells were trypsinized and stained with 
phycoerythrin-conjugated antibodies against CD44, CD73, CD90, CD105, CD117, and CD45 (BD 
PharMingen, CA, United States). Thereafter, the cells were analyzed using the Calibur flow cytometer 
(Becton Dickinson, Heidelberg, Germany). hAFSCs at passages 4-6 were collected and prepared to a 
final concentration of 3 × 106 cells/mL phosphate buffered saline. In the DM + hAFSCs group, a single 
dose of 3 × 106 hAFSCs was injected intravenously via the tail vein at 7 d after DM induction. The 
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Figure 1 Schema of experimental procedure. HFD: High-fat diet; IP: Intraperitoneal; STZ: Streptozotocin; ND: Normal diet; DM: Diabetes mellitus; hAFSCs: 
Human amniotic fluid stem cells; RT-PCR: Real-time polymerase chain reaction; M2: Muscarinic receptor 2; M3: Muscarinic receptor 3; NGF: Nerve growth factor; 
CGRP: Calcitonin gene-related peptide; PDX-1: Pancreatic-duodenal homeobox-1.

treatment dose of hAFSCs was determined according to a previous study that used adipose tissue-
derived stem cells to treat bladder dysfunction of STZ-induced diabetic rats[10].

Cystometric study
All rats received suprapubic tube implantation under 1.5% isoflurane inhalation 2 d prior to 
implementation of cystometry. The animals were placed in special metabolic cages (Med Associates, 
Saint Albans, VT, United States) to perform conscious cystometric studies at 4 and 12 wk after insulin 
treatment or hAFSCs therapy according to our previous study[19]. Five cystometric variables were 
investigated, including peak voiding pressure, voided volume, intercontraction interval, bladder 
capacity, and residual volume[20]. Cystometry Analysis Version 1.05 (Catamount Research and 
Development) was used for cystometric analysis.

Immunohistochemistry
The rats were euthanized immediately after cystometry, and their urinary bladders and pancreases were 
harvested for the histological and microbiological examinations at 4 and 12 wk after insulin treatment or 
hAFSCs therapy. The dissected bladders and pancreases were fixed in optimal cutting temperature 
compound, frozen in powdered dry ice, and stored at -80 °C. Then, they were subjected to cryosections 
at a 12-μm thickness at -20 °C, and the sections were transferred to glass microscope slides coated with 
saline (Muto Pure Chemical, Tokyo, Japan).

The immunostaining against NGF, M2, M3, CGRP, and substance P in bladder sections and against 
insulin, MafA, and PDX-1 in pancreas sections was performed by the avidin-biotin peroxidase method. 
First, the sections were fixed for 10 min in acetone for NGF, CGRP, substance P, and PDX-1, and 10 min 
in 4% paraformaldehyde for M2, M3, insulin, and MafA, air dried, and then rinsed with phosphate 
buffered saline. After blocking with Dako REAL peroxidase blocking solution (S2023, DAKO Corp, 
Carpinteria, CA, United States) for 20 min, the sections were washed and incubated for 18-20 h at 4 °C 
with a rabbit polyclonal antibody against NGF (1:700, OriGene Technologies, Inc., Rockville, MD, 
United States), M2 (1:700, Millipore, Temecula, CA, United States), M3 (1:200, Santa Cruz Biotechnology, 
Santa Cruz, CA, United States), MafA (1:200, Abcam, Cambridge, MA, United States), or PDX-1 (1:100, 
Abcam), a goat polyclonal antibody against CGRP (1:200, Abcam), or a mouse monoclonal antibody 
against substance P (1:75, Abcam) or insulin (1:1200, Thermo Fisher Scientific Inc., Waltham, MA, 
United States). Then, the sections were washed and incubated for 1 h using biotinylated secondary 
antibodies at 1:500 dilution (Vector Laboratories, Burlingame, CA, United States). Staining was 



Liang CC et al. Stem cell therapy for diabetic cystopathy

WJSC https://www.wjgnet.com 334 May 26, 2022 Volume 14 Issue 5

developed with 3,3’-diaminobenzidine plus hydrogen peroxide as the chromogen, and the pancreas 
sections were counterstained with hematoxylin. Negative controls were prepared from the same tissue 
blocks by omitting the specific primary antibodies and using normal, non-immune serum supernatant 
from the same sources.

Tissue slides were examined under an Olympus BX-51 microscope. Immunoreactivities were 
analyzed using Image-Pro Plus Software (Media Cybernetics, Silver Spring, MD, United States). The 
immunoreactivity ratio using the optical density of diabetic rats with or without insulin and hAFSCs 
treatment to that of control rats was determined. The following pancreas parameters were assessed[21]: 
(1) The percentage of areas with a positive anti-insulin antibody reaction in pancreas islets was 
measured in five different microscopic fields per islet and five islets per rat with a total of 150 
microscopic fields measured at each time point (n = 6 at each time point); (2) The percentage of beta cells 
per islet was calculated by counting the number of beta cell nuclei (B) and the total number of islet cell 
nuclei per islet profile (I) to determine the percentage of beta cell per total islet cell (Beta-p) with the 
equation: Beta-p = (B/I) × 100. The Beta-p was calculated in four islets per pancreas in each rat with a 
total of 24 islets at each time point; and (3) Average area was determined in four islets per pancreas in 
each rat with a total of 24 islets at each time point.

RT-PCR
RT-PCR was carried out according to the manufacturer’s protocol. Total RNA was prepared using 
Trizol reagent (Invitrogen, Carlsbad, CA, United States) and incubated in reverse transcription mixture 
at 25 °C for 5 min, 50 °C for 1 h, 70 °C for 15 min, and finally, the tubes were cooled to 4 °C for 5 min. 
The gene expression for NGF, M2, M3, CGRP, and substance P in the bladder tissue was analyzed by RT-
PCR using the inventoried TaqMan assays from Applied Biosystems (Life Technologies, Grand Island, 
NY, United States). The assay codes of NGF, M2, M3, CGRP, and substance P were Rn01533872-m1, 
Rn02532311-s1, Rn00560986-s1, Rn01511353-g1, and Rn01500392-m1, respectively (Applied Biosystems, 
Oster City, CA, United States) (Table 1). GAPDH (Rs99999916-s1, Table 1) was used as an endogenous 
control to allow for semi-quantification of relative gene expression. Thermal cycling and fluorescence 
detection were performed using an ABI Prism 7900HT Sequence Detection System (Applied Biosystems, 
Oster City, CA, United States). PCR conditions were 50 °C for 2 min and 95 °C for 10 min, followed by 
40 cycles of 95 °C for 15 s and 60 °C for 1 min. The data were calculated using the 2[-∆C(T)] method[22]. A 
ratio of the mRNA level of DM rats with or without hAFSCs therapy to that of control rats was 
determined. The values are summated and expressed as the mean ± SD and were compared statistically 
among the control, DM, and DM + hAFSCs groups and among different time points in each group.

Statistical analysis
Data were analyzed with Prism 5 (GraphPad Software Inc., San Diego, CA, United States) and are 
expressed as the median with first and third quartile for continuous variables. First, two-way analysis of 
variance was used for analysis. Then, Kruskal-Wallis test with post hoc Bonferroni test was performed 
for intergroup analysis. Mann-Whitney U test was used for the comparison between 4 wk and 12 wk. P 
< 0.05 were considered statistically significant. The statistical review of the study was performed by a 
biomedical statistician.

RESULTS
hAFSCs therapy does not improve blood glucose and bladder weight
The DM and DM + hAFSCs rats had significantly increased levels of blood glucose at 4 and 12 wk and 
significantly decreased body weight at 12 wk compared with normal controls and HFD controls (P < 
0.05), and significantly increased bladder weight compared with HFD controls at 4 and/or 12 wk (P < 
0.05). The DM + insulin rats had similar levels of blood glucose and similar body and bladder weight 
compared with normal controls and HFD controls at 4 and 12 wk (P > 0.05), but there was significantly 
reduced bladder weight compared with DM rats at 4 and 12 wk (P < 0.05). However, DM + hAFSCs rats 
did not show significantly reduced body weight, blood glucose levels, or bladder weight compared with 
DM rats (P > 0.05), but there was significantly increased bladder weight compared with DM + insulin 
rats (P < 0.05) (Table 2).

Bladder dysfunctions in DM rats are improved after insulin treatment and hAFSCs therapy
Similar to our previous study in type 1 DM rats[11], the type 2 DM rats had a significant increase in 
peak voided volume, intercontraction interval, bladder capacity, and residual volume at 4 and/or 12 wk 
after DM induction when compared with normal diet (ND) and HFD controls (P < 0.05). These bladder 
dysfunctions were improved after insulin treatment (P < 0.05) but not after hAFSCs therapy (P > 0.05). 
The DM + hAFSCs rats had significantly higher peak voided volume, longer intercontraction interval, 
larger bladder capacity, and more residual volume than DM + insulin rats mainly at 4 wk with higher 
peak voided volume also at 12 wk (P < 0.05) (Figure 2). However, both insulin and hAFSCs treatment 
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Table 1 TaqMan probes used for quantitative polymerase chain reaction analysis

Gene symbol Gene name TaqMan assay ID Reference sequence Amplicon size (bp)
Chrm2 M2 Rn02532311_s1 NM_031016.1 127

Chrm3 M3 Rn00560986_s1 NM_012527.2 129

Ngf NGF Rn01533872_m1 NM_001277055.1 114

Calca CGRP Rn01511353_g1 NM_001033955.1 129

Tac1 Substance P Rn01500392_m1 NM_001124768.1 112

Gapdh GAPDH Rn99999916_s1 NM_017008.4 87

Table 2 Blood glucose and body and bladder weight in different groups

Group (n = 6), 
[median (Q1, Q3)]

Body weight 
(initial; gm)

Body weight 
(final; gm)

Blood glucose 
(initial; mg/dL)

Blood glucose 
(final; mg/dL)

Bladder weight 
(mg)

Normal control 244.45 (238.53, 
250.68)

305.30 (290.00, 
312.00)

136.00 (125.00, 137.00) 132.50 (123.00, 141.25) 167.50 (148.75, 
185.00)

HFD control 235.60 (232.90, 
240.65)

339.00 (331.30, 
353.63)

144.00 (132.00, 147.00) 161.00 (146.00, 166.00) 147.50 (141.25, 
152.50)

DM 250.30 (243.40, 
251.43)

288.80 (287.30, 
301.00)

136.50 (131.75, 145.75) 452.50 (434.75, 
466.75)a,b

210.00 (205.00, 
213.75)b

DM + insulin 235.50 (233.95, 
243.95)

325.70 (295.93, 
328.63)

141.50 (130.25, 144.50) 229.00 (213.00, 245.50) 120.00 (120.00, 
135.00)c

DM + hAFSCs 241.00 (228.60, 
244.20)

296.90 (276.00, 
299.90)

140.00 (136.50, 146.50) 409.00 (377.00, 
423.00)a,b

200.00 (192.50, 
206.25)d

4 wk

P value 0.551 0.082 0.881 0.001 0.001

Normal control 255.95 (250.63, 
258.65)

336.00 (326.10, 
364.90)

141.50 (136.25, 143.00) 155.50 (148.75, 161.50) 170.00 (165.00, 
175.00)

HFD control 249.25 (239.35, 
252.25)

380.10 (366.00, 
417.40)

147.00 (129.00, 148.00) 158.50 (150.25, 168.25) 130.00 (115.00, 
140.00)

DM 244.20 (238.50, 
248.90)

278.50 (277.30, 
286.20)a,b

148.00 (115.00, 157.00) 394.00 (378.00, 
408.00)a,b

205.00 (190.00, 
210.00)b

DM + insulin 247.10 (242.03, 
257.65)

333.20 (304.83, 
351.98)

142.50 (133.75, 145.25) 223.50 (210.00, 257.75) 130.00 (126.25, 
133.75)c

DM + hAFSCs 248.40 (239.60, 
253.70)

278.60 (260.10, 
279.30)a,b,d

138.00 (133.00, 142.75) 374.00 (359.00, 
390.50)a,b

187.50 (183.75, 
190.00)b,d

12 wk

P value 0.756 0.001 0.973 < 0.0001 < 0.0001

aP < 0.05 vs normal control (4 wk and 12 wk).
bP < 0.05 vs high-fat diet control (4 wk and 12 wk).
cP < 0.05 vs diabetes (4 wk and 12 wk).
dP < 0.05 vs diabetes + insulin (4 wk and 12 wk).
Initial body weight: Body weight measured before therapy. Final body weight: Body weight measured at 4 wk and 12 wk after therapy. Initial body 
glucose: Body glucose measured before therapy. Final body glucose: Body glucose measured at 4 wk and 12 wk after therapy. Bladder weight: Bladder 
weight measured at 4 wk and 12 wk after therapy. Statistical methods: Kruskall-Wallis test. P < 0.05 was regarded as significant. DM: Diabetes mellitus; 
hAFSCs: Human amniotic fluid stem cells; HFD: High-fat diet.

could help to regain the bladder functions to the levels near controls (P > 0.05).

Expression of M2, M3, NGF, CGRP, and substance P is improved after insulin treatment and hAFSCs 
therapy
The DM rats had significantly increased expression of M3 mRNA and M2 immunoreactivity at 4 wk 
compared with 12 wk (P < 0.05). Also, there were increased M2 and M3 mRNAs and M3 immunore-
activity at 4 wk and M2 immunoreactivity at 4 and 12 wk compared with ND/HFD controls (P < 0.05). 
However, M3 mRNA and M2 immunoreactivity recovered in DM + insulin rats at 4 wk after DM 
induction (P < 0.05). In contrast, DM rats had significantly decreased mRNA expression of NGF and 
substance P (a sensory nerve marker of C fiber) at 4 and/or 12 wk compared with ND/HFD controls (P 
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Figure 2 Cystometric results in different groups. Compared with the controls, type 2 diabetes (DM) rats had significantly worse voided volume, 
intercontraction interval, bladder capacity, and residual volume after DM induction. These bladder dysfunctions can be improved after insulin treatment but not after 
human amniotic fluid stem cells (hAFSCs) therapy. The DM + hAFSCs rats had significantly higher peak voided volume, longer intercontraction interval, larger 
bladder capacity, and more residual volume than DM + insulin rats mainly at 4 wk (only peak voided volume also at 12 wk). n = 6. Statistics: Median with first and third 
quartile (Q1, Q3) for continuous variables. Two-way analysis of variance was used for initial analysis. Kruskal-Wallis test with post hoc Bonferroni test for intergroup 
analysis. Mann-Whitney U test for the comparison between 4 wk and 12 wk. P values are shown in each comparison. A: Peak voiding pressure; B: Peak voided 
volume; C: Intercontraction interval; D: Bladder capacity; E: Residual volume. ND: Normal diet; DM: Diabetes mellitus; hAFSCs: Human amniotic fluid stem cells; 
HFD: High-fat diet.

< 0.05).
The DM rats had also significantly reduced immunoreactivities for NGF, CGRP (a sensory nerve 

marker of A-delta fiber), and substance P at 4 and 12 wk compared with ND/HFD controls (P < 0.05). 
Insulin treatment could improve the mRNA expression of NGF and substance P and immunoreactivity 
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of CGRP at 4 wk, and hAFSCs treatment could improve both the mRNA expression and immunore-
activity of NGF at 4 wk after DM induction (P < 0.05). However, both insulin and hAFSCs treatment 
could help to regain the expression of M2, M3, NGF, CGRP, and/or substance P to near the levels of 
controls at 4 and/or 12 wk (P > 0.05) (Figure 3 and 4, Supplemental Figures 1-5).

Insulin treatment and hAFSCs therapy can increase insulin, MafA, and PDX-1 expression
STZ-induced degenerative changes in beta cells lead to a decrease in the immunoreactivities for insulin, 
MafA, and PDX-1 in the pancreatic islets at 4 and/or 12 wk (P < 0.05). There were also decreased beta 
cells per total number of islets cells, decreased area of reactive beta cell, and decreased average area of 
islets at 4 and 12 wk in DM rats (P < 0.05). However, insulin treatment could recover MafA immunore-
activity at 4 wk, the average area of islets at 12 wk, and the area of reactive beta cell and PDX-1 
immunoreactivity at 4 and 12 wk (P < 0.05). To a less extent, hAFSCs treatment could only recover PDX-
1 immunoreactivity at 4/12 wk after DM induction (P < 0.05). However, both insulin and hAFSCs 
treatment could help regain the expression of MafA and PDX-1 to near the levels of controls at 4 and/or 
12 wk (P > 0.05) (Figure 5 and 6).

DISCUSSION
In contrast to previous studies that explored bladder hypertrophy mostly using type 1 DM model[23], 
our study investigated bladder dysfunction using a type 2 DM model. A systemic review demonstrated 
that insulin treatment starting early after STZ injection could prevent bladder hypertrophy, assessed by 
bladder weight[24]. Our results indicated that STZ-induced DM rats had increased bladder weight and 
blood glucose levels, but bladder weight could be recovered, and blood sugar could be improved to 
near the levels of controls by daily insulin treatment for 4 and 12 wk starting 1 wk after DM induction.

In addition to lowering blood glucose level, the immediate insulin treatment after STZ injection is 
reported to improve bladder dysfunction, including micturition frequency, voided volume, and bladder 
capacity[25,26]. In Zucker diabetic fatty rats, a hereditary type 2 DM model, the cystometric studies 
exhibited a high voided volume with an increased bladder capacity and residual volume[27,28]. Christ 
et al[29] used a rat model with low-dose STZ treatment plus no HFD and found insulin treatment could 
improve several cystometric variables including micturition volume, bladder capacity, residual volume, 
and micturition pressure in diabetic bladder dysfunction. In the present study, we adopted a rat model 
that combined HFD and low-dose STZ treatment simulating the human type 2 DM[14]. Our cystometric 
studies demonstrated that DM rats had a significant increase in the peak voided volume, intercon-
traction interval, bladder capacity, and residual volume at 4 and/or 12 wk after DM induction, and 
these bladder dysfunctions could be recovered after insulin treatment but not hAFSCs therapy. 
However, both insulin and hAFSCs treatment could help regain the bladder functions to the levels near 
controls.

The present study further demonstrated that although both insulin treatment and hAFSCs therapy 
could help regain bladder function (Figure 2-5), the effect of insulin treatment was better than that of 
hAFSCs therapy. As shown in Table 2, compared with hAFSCs therapy, insulin treatment could reach a 
better bladder weight recovery at 4 and 12 wk which could be helpful to improve bladder dysfunction. 
As to stem cells, previous study had demonstrated that human umbilical cord blood-derived cell 
therapy in DM mice did not lead to improvement in hyperglycemia[30]. Also, adipose tissue-derived 
stem cell therapy in STZ-induced DM rats could ameliorate diabetic bladder dysfunctions without 
changing the hyperglycemia in DM mice[10]. Our previous studies have also shown that bladder 
dysfunction can be improved by hAFSCs transplantation into the bladder in STZ-induced DM rats[11] 
and at the nerve injury site in rats with pelvic nerve transection[31]. Although stem cell therapy is 
reported to be effective in treating type 2 DM through the effect by reducing insulin dose and HbA1c 
levels[32], single injection of hAFSCs in the present study could be not effective enough compared with 
daily regular insulin injection to induce an adequate reduction of blood glucose level.

The age-related changes in bladder function have revealed significant inter-individual variability and 
sex-related disparity. Aged mice were prone to demonstrate voiding and storage dysfunctions 
resembling to detrusor hyperactivity with impaired contractility, which were more common and severe 
in males[33]. The mRNA expression of M3 muscarinic receptor was found to be reduced in the bladder 
tissue of aged males and the β2-adrenoceptors in aged females[33]. A previous study suggested that the 
transition from compensated to decompensated bladder dysfunction occurs 9-12 wk after DM induction 
in mice by STZ[34]. However, Xiao et al[4] found that there was no significant difference in voided 
volume or bladder capacity at 3 and 11 wk in STZ-induced DM rats. The present study showed that the 
peak voiding pressure, peak voided volume, intercontraction interval, bladder capacity, and residual 
volume did not show difference between 4 and 12 wk after DM induction. However, the M3 mRNA and 
M2 immunoreactivity were significantly reduced at 12 wk compared with that at 4 wk in DM rats but 
not in DM + insulin and DM + hAFSCs rats. It is possible that the present study period could be too 
short to show the significant difference of bladder dysfunction related to age. Future study may be 
needed to investigate the influence of age on diabetic bladder dysfunction.

https://f6publishing.blob.core.windows.net/bc90a710-a88a-46f4-b85f-5ac0234c9f2a/WJSC-14-330-supplementary-material.pdf
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Figure 3 Relative mRNA expression. In diabetes (DM) rats, the M3 mRNA expression was increased at 4 wk compared with 12 wk and the M2/M3 mRNA 
expression at 4 wk was increased compared with normal diet (ND)/high-fat diet (HFD) control groups. The M3 mRNA recovered at 4 wk after insulin treatment. The 
DM rats had significantly decreased mRNA expression of nerve growth factor (NGF) at 4 and 12 wk and substance P at 4 wk compared with ND/HFD controls. Insulin 
treatment can recover the mRNA expression of NGF and substance P, and hAFSCs treatment can recover the mRNA expression of NGF at 4 wk after DM induction. 
n = 6. Statistics: Median with first and third quartile (Q1, Q3) for continuous variables. Two-way analysis of variance was used for initial analysis. Kruskal-Wallis test 
with post hoc Bonferroni test for intergroup analysis. Mann-Whitney U test for the comparison between 4 wk and 12 wk. P values are shown in each comparison. A: 
M2-muscarinic receptor; B: M3-muscarinic receptor; C: Nerve growth factor; D: Calcitonin gene-related peptide; E: Substance P in the bladder of rats of different 
groups. ND: Normal diet; DM: Diabetes mellitus; hAFSCs: Human amniotic fluid stem cells; HFD: High-fat diet.

In addition to bladder smooth muscle cell and urothelial dysfunction, diabetic bladder dysfunction 
can also be associated with the physiological changes in neuronal degeneration[6]. It has been reported 
that DM decreases the activity of A-delta and C fiber of bladder afferent pathways, which is related to 
the reduction of NGF production in the bladder[7]. In the present study, immunoreactivity to CGRP, a 
sensory nerve marker of A-delta fiber, at 4 and 12 wk and immunoreactivity/mRNA expression of 
substance P, a sensory nerve marker of C fiber, at 4 and/or 12 wk were decreased, reflecting the 
presence of peripheral neuropathy in DM rats. These neuropathic changes may lead to the loss of 
neurotrophic support and detrusor contraction dysfunction. At 4 wk after insulin treatment or hAFSCs 
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Figure 4 Immunoreactivities. In diabetes (DM) rats, the M2 immunoreactivity was increased at 4 wk compared with 12 wk. The M2 immunoreactivity was 
increased at 4 and 12 wk and M3 immunoreactivity was increased at 4 wk compared with normal diet (ND)/high-fat diet (HFD) control groups. The M2 
immunoreactivity recovered at 4 wk after insulin treatment. The DM rats had significantly reduced immunoreactivities to nerve growth factor (NGF), calcitonin gene-
related peptide (CGRP), and substance P at 4 and 12 wk compared with ND/HFD control groups. Insulin treatment can recover CGRP immunoreactivity and human 
amniotic fluid stem cells treatment can recover NGF immunoreactivity at 4 wk after DM induction. n = 6. Statistics: Median with first and third quartile (Q1, Q3) for 
continuous variables. Two-way analysis of variance was used for initial analysis. Kruskal-Wallis test with post hoc Bonferroni test for intergroup analysis. Mann-
Whitney U test for the comparison between 4 wk and 12 wk. P values are shown in each comparison. A: M2-muscarinic receptor; B: M3-muscarinic receptor; C: 
Nerve growth factor; D: Calcitonin gene-related peptide; E: Substance P in the bladder of rats of different groups. ND: Normal diet; DM: Diabetes mellitus; hAFSCs: 
Human amniotic fluid stem cells; HFD: High-fat diet.

therapy, the immunoreactivities and/or mRNA expression of NGF, CGRP, and substance P improved 
significantly in the diabetic bladder, indicating the possibility that the production of NGF in the bladder 
and/or the transport of NGF to bladder afferent pathway were restored.

The motor and sensory functions of bladder muscarinic mechanism are thought to be involved in the 
alternation of bladder function in STZ-induced DM rats[9,35]. Previous studies demonstrated that 8 wk 
of STZ-induced DM could result in an increased density of muscarinic receptors in the bladder of rats, 
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Figure 5 Insulin immunoreactivity in different groups. Insulin immunoreactivity was decreased in the pancreatic islets of diabetes (DM) rat at 4 and 12 wk. 
There were also decreased beta cells per total number of islets cells, decreased area of reactive beta cell, and decreased average area of islets at 4 and 12 wk in DM 
rats. Insulin treatment can recover the area of reactive beta cells at 4 and 12 wk and the average area of islets at 12 wk. However, human amniotic fluid stem cells 
therapy did not show any effect after DM induction. n = 6. Statistics: Median with first and third quartile (Q1, Q3) for continuous variables. Two-way analysis of 
variance was used for initial analysis. Kruskal-Wallis test with post hoc Bonferroni test for intergroup analysis. Mann-Whitney U test for the comparison between 4 wk 
and 12 wk. P values are shown in each comparison. A: Insulin immunoreactivity in the pancreas; B: Immunoreactivity ratio of insulin using optical density; C: 
Percentage of beta cells per total number of islets cells; D: Area percentage of reactive beta cells; E: Average area of islets. ND: Normal diet; DM: Diabetes mellitus; 
hAFSCs: Human amniotic fluid stem cells; HFD: High-fat diet.
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Figure 6 Immunoreactivity to Maf family of transcription factors and pancreatic transcription factor in the bladder of rats of different 
groups. The immunoreactivity to MafA and pancreatic transcription factor (PDX-1) in the pancreatic islets was decreased at 4 and/or 12 wk after DM induction. 
Insulin treatment can recover MafA immunoreactivity at 4 wk and PDX-1 immunoreactivity at 4 and 12 wk. However, human amniotic fluid stem cells treatment can 
only recover PDX-1 immunoreactivity at 4 and 12 wk after diabetes induction. n = 6. Statistics: Median with first and third quartile (Q1, Q3) for continuous variables. 
Two-way analysis of variance was used for initial analysis. Kruskal-Wallis test with post hoc Bonferroni test for intergroup analysis. Mann-Whitney U test for the 
comparison between 4 wk and 12 wk. P values are shown in each comparison. A: Maf and pancreatic transcription factor (PDX-1) immunoreactivity in the pancreas; 
B: Immunoreactivity ratio of Maf using optical density; C: Immunoreactivity ratio of PDX-1 using optical density. ND: Normal diet; DM: Diabetes mellitus; hAFSCs: 
Human amniotic fluid stem cells; HFD: High-fat diet; PDX-1: Pancreatic transcription factor 1.

and insulin treatment starting early after DM induction could prevent the up-regulation of muscarinic 
receptors[36]. The present results showed that the M2/M3 mRNA expression at 4 wk and M2/M3 
immunoreactivities at 4 and/or 12 wk increased significantly in DM rats. However, M3 mRNA and M2 
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immunoreactivity could be recovered in DM + insulin rats at 4 wk after DM induction, and both insulin 
and hAFSCs treatment could help regain the expression of M2 and M3 to near the levels of controls at 4 
and/or 12 wk.

In normal condition, elevated glucose levels can stimulate pancreatic beta cells to secrete insulin. 
However, the number of beta cells is reduced with insufficient insulin secretion in DM, and the glucose-
beta cell reaction will be impaired[37]. A previous study has shown that using a high-dose STZ-induced 
DM rat model, STZ-induced degenerative changes could cause insulin resistance development, chronic 
glucose and lipid metabolism changes, multi-organ deterioration, and, finally, beta-cell exhausting, 
which would result in a reduced number of beta cells and insulin immunoreactivity in pancreatic islets
[21]. The present study demonstrated that the significant reduction in the size of pancreatic islets and 
the number of beta cells might lead to a decrease in the immunoreactivity to insulin in the pancreatic 
islets of DM rats.

The present study showed that the immunoreactivities to MafA and PDX-1 in pancreatic islets of type 
2 DM rats were decreased. However, both insulin treatment and hAFSCs therapy could recover PDX-1 
immunoreactivity at 4 and 12 wk and insulin treatment could recover MafA immunoreactivity at 4 wk 
after DM induction. Also, both insulin and hAFSCs treatment could help regain the expression of MafA 
and PDX-1 to near the levels of controls at 4 and/or 12 wk. It has been reported that MafA is a beta cell-
specific transcription factor and a key regulator of glucose stimulated insulin secretion[38,39]. PDX-1 
plays a crucial role in the differentiation of pancreatic beta cells and the regulation of insulin and several 
beta cell-related genes to maintain cellular function[38]. The expression of PDX-1 is suggested to be 
regulated by MafA in beta cells[40]. Under the diabetic conditions, high glucose levels may reduce the 
DNA binding activities of PDX-1 and MafA by triggering oxidative stress, which results in the 
suppression of insulin biosynthesis and secretion[41]. It is possible that MafA and PDX-1 may also act as 
important regulators of glucose-stimulated insulin secretion in the pancreas of our type 2 DM model.

It is well known that long-term medication to reduce blood glucose is costly and lacks satisfactory 
effect, and there is a low life expectancy in DM patients[42]. Although there are many antidiabetic 
agents for type 2 DM, medications including insulin usually result in some side-effects such as weight 
gain and gastrointestinal distress[43]. Stem cell treatment is found to significantly reduce insulin dose in 
DM patients studied[32], so it can act as a substitute for DM patients who had islet cell dysfunction with 
failure in ideal blood glucose control, despite the use of high dose of insulin[32]. A previous study has 
shown that amniotic fluid-derived MSCs could secret NGF and brain-derived neurotrophic factor[44]. 
The present study showed that hAFSCs therapy could improve the immunoreactivity and mRNA 
expression of NGF mainly at 4 wk after DM induction. It is possible the NGF secreted by hAFSCs may 
help enhance the neurotrophic effect to improve tissue cell regeneration[32,45] by inhibiting bladder cell 
apoptosis in diabetic rats and that hAFSCs could be a potential cell source for cell replacement and 
regeneration therapy for DM.

This study has some limitations. First, we only used a single dose at a single time point to investigate 
the effect of hAFSCs on diabetic bladder dysfunction. It is possible that different doses and different 
time points of stem cell therapy may have better effects on diabetic bladder function. Second, we 
examined the functional and morphological alterations of diabetic bladder at 4 and 12 wk after DM 
induction. It is possible to obtain better results if the effects at longer time points were examined. Third, 
we did not directly examine the cellular differentiation of hAFSCs in the bladder and pancreas. Further 
studies are needed to investigate the mechanisms of hAFSCs therapy to improve bladder dysfunction in 
type 2 DM.

CONCLUSION
The present results show that although insulin treatment is more effective than hAFSCs therapy, both 
may help regain the bladder function to near the levels of control in STZ-induced diabetes.
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ARTICLE HIGHLIGHTS
Research background
Diabetes mellitus (DM) is a serious and growing global health burden. It is estimated that 80% of 
diabetic patients have micturition problems such as poor emptying, urinary incontinence, urgency, and 
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urgency incontinence. Patients with diabetic bladder dysfunction are often resistant to currently 
available therapies. It is necessary to develop new and effective treatment methods.

Research motivation
Exogenous insulin has been used to prevent various complications of DM, but almost all patients will 
eventually have complications. Stem cells have recently demonstrated efficacy in preclinical studies of 
diabetic bladder dysfunction. Human amniotic fluid stem cells (hAFSCs) can be obtained from amniotic 
fluid, easy to culture, and phenotypically and genetically stable, suggesting that these stem cells can be 
used as a novel source of cell therapy.

Research objectives
The present study aimed to investigate the effect of hAFSCs therapy and whether the therapeutic effect 
could be similar to that of insulin treatment on bladder dysfunction using a type 2 DM rat model.

Research methods
Sixty female Sprague-Dawley rats were divided into five groups: Group 1, normal-diet control (control); 
group 2, high-fat diet (HFD); group 3, HFD plus streptozotocin (STZ)-induced hyperglycemia like-DM 
(DM); group 4, DM plus insulin treatment (DM + insulin); group 5, DM plus hAFSCs injection via the 
tail vein (DM + hAFSCs). Conscious cystometric studies were done at 4 and 12 wk after insulin 
treatment or 3 × 106 hAFSCs therapy. Immunoreactivities and mRNA expression of bladder muscarinic 
receptors, nerve growth factor (NGF), sensory nerve markers, insulin, MafA, and pancreatic-duodenal 
homeobox-1 (PDX-1) in pancreatic beta cells were studied.

Research results
Compared with DM rats, insulin but not hAFSCs treatment could reduce the bladder weight and 
improve the voided volume, intercontraction interval, bladder capacity, and residual volume. However, 
both insulin and hAFSCs treatment could help regain the blood glucose and bladder functions to the 
levels near controls. The immunoreactivities and mRNA expression of M2- and M3-muscarinic receptor 
(M2 and M3) were increased mainly at 4 wk, while the number of beta cells in islets and the immunore-
activities and/or mRNA expression of NGF, calcitonin gene-related peptide (CGRP), substance P, 
insulin, MafA, and PDX-1 were decreased in DM rats. However, both insulin and hAFSCs treatment 
could help regain the expression of M2, M3, NGF, CGRP, substance P, MafA, and PDX-1 to near the 
levels of controls at 4 and/or 12 wk.

Research conclusions
Although insulin but not hAFSCs therapy can recover the bladder dysfunction caused by type 2 DM, 
both insulin and hAFSCs therapy can help regain the bladder function to near the levels of control.

Research perspectives
In the STZ-induced diabetic rat model, hAFSCs therapy could help regain bladder function and may 
serve as an alternative treatment for diabetic bladder dysfunction. Our study highlights the potential of 
hAFSCs for cell replacement and regeneration therapy for DM.
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