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Abstract

Fibrillar aggregates of amyloid-β (Aβ) are the main component of plaques lining the cerebro-

vasculature in cerebral amyloid angiopathy. As the predominant Aβ isoform in vascular

deposits, Aβ40 is a valuable target in cerebral amyloid angiopathy research. However, the

slow process of Aβ40 aggregation in vitro is a bottleneck in the search for Aβ-targeting mole-

cules. In this study, we sought a method to accelerate the aggregation of Aβ40 in vitro, to

improve experimental screening procedures. We evaluated the aggregating ability of bicine,

a biological buffer, using various in vitro methods. Our data suggest that bicine promotes the

aggregation of Aβ40 with high speed and reproducibility, yielding a mixture of aggregates

with significant β-sheet-rich fibril formation and toxicity.

Introduction

In the brain of patients afflicted with cerebral amyloid angiopathy (CAA), depositions of amy-

loid-β (Aβ) are found in the walls of the cortical and leptomeningeal vasculature [1,2]. While

Aβ monomers of various lengths are produced by sequential β- and γ-secretase processing of

membrane-bound amyloid-β protein precursors [3,4], Aβ40 is the predominant isoform in vas-

cular deposits [5]. As increasing vascular accumulations of Aβ40 has shown to reflect the sever-

ity of CAA [6], Aβ40 is a valuable target in CAA diagnosis and disease-modifying therapy.

However, due to the lack of the hydrophobic Ile-Ala residues that facilitates the relatively fast

folding of Aβ42 [7], the process of obtaining Aβ40 aggregates in vitro is time-consuming, hin-

dering the screening process of Aβ40-targeting molecules [8,9]. Thus, biochemical approaches

to promptly and reliably access Aβ40 aggregates can improve the experimental and clinical

investigation of CAA.

Physio-chemical environmental factors, including the pH, temperature, ionic strength, and

the presence of cosolvents, influence the nonpolar interactions involved in the intermolecular

β-sheet assembly characteristic of amyloid fibrils [10]. Buffer ions are known to mediate amy-

loid fibril morphologies through discrete and specific interactions with amino acid side chains

of Aβ, inducing distinct patterns of inter- and intra-residue interactions [11,12]. Optimization

of in vitro incubation conditions can lead to higher yields of Aβ aggregates. In our previous
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study, we observed the differing regulatory effects of organic amino acid compounds and their

derivatives on the in vitro fibrillation process of Aβ40 [8]. Bicine (N,N-Bis(2-hydroxyethyl)gly-

cine) is a zwitterionic buffer from Good’s list, commonly used in biological and biochemical

experiments [13,14]. Here, we report that bicine promotes the formation of β-sheet-rich Aβ40

fibrils in vitro. We investigated the accelerating effect of bicine on the propensity of Aβ40

aggregation in comparison to phosphate buffered saline (PBS), by using thioflavin T (ThT)

fluorescence assays, far-ultraviolet circular dichroism (CD) spectroscopy, and transmission

electron microscopy (TEM). Time-dependent changes in the size composition of Aβ40 species

upon incubation with bicine was monitored via SDS-PAGE followed by photo-induced cross-

linking of unmodified proteins (PICUP) and silver staining. Cell viability assays were con-

ducted to assess the toxicity of the aggregated peptides.

Materials and methods

Materials

Aβ40, H2N-DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVV-COOH, was synthe-

sized and purified using a stepwise solid phase peptide synthesis protocol as previously

reported [15]. Bicine, PBS, 1,1,1,3,3,3-hexafluoro-2-propanesulfonic acid (HFIP), anhydrous

dimethylsulfoxide (DMSO), Tris(2,2’bipyridyl)dichlororuthenium(II) (Ru(Bpy)) and ammo-

nium persulfate (APS) were obtained from Sigma-Aldrich. SDS-PAGE apparatus, 15%

SDS-PAGE gel, and 10X Tris-glycine SDS Buffer were purchased from Bio-Rad. PBS (1X) con-

sists of phosphate buffer concentration of 0.01M and a sodium chloride concentration of

0.154M. Lane marker reducing sample buffer (5X) was from Thermo Scientific and protein

marker was purchased GE Healthcare. Silver staining kit was acquired from Amersham Biosci-

ences. All other reagents, solvents, and chemicals were of the highest purity commercially

available and used as received.

Preparation and aggregation of Aβ40

Lyophilized Aβ40 peptides were dissolved in HFIP to obtain homogenous monomeric peptides

[16]. The amyloid peptide solution (0.5 mM) in pre-chilled HFIP was sonicated and vortexed

gently for 5 and 30 minutes, respectively. After the complete removal of HFIP, the peptides

were dissolved in DMSO to make a stock solution of Aβ (5 mM). Aggregation of Aβ40 (50 μM

final concentration) was initiated by diluting and incubating the stock in bicine or PBS at 37˚C

at different periods: 2, 4, and 7 days. The 0 day Aβ40 sample was dissolved in PBS and immedi-

ately stored at −70˚C.

ThT assay

To examine the propensity of Aβ40 aggregation in bicine, we performed concentration-

and time-dependent ThT assays. For the concentration-dependent assay, Aβ40 (50 μM) was

incubated in serial concentrations of bicine (78.130, 156.25, 312.50, 625.00, 1250.0, 2500.0,

5000.0, 10000, 20000 μM). For the time-dependent assay, Aβ40 (50 μM) was incubated in

bicine or PBS at different periods: 2, 4, and 7 days. Each incubated sample (25 μL) was mixed

with ThT solution (75 μL, 5 μM in pH 8.5 glycine buffer) in a half-area black 96-well plate [17].

The pH of the incubated mixtures was adjusted to pH 5.5 before the addition of ThT solution

due to the pH dependent binding affinity between ThT and Aβ [18]. Shifted fluorescence was

measured on an Envision 2103 multilabel reader (Perkin-Elmer) at 450 nm (ex) and 480 nm

(em).
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CD

Far UV CD spectra diluted samples of 25 μM Aβ40 incubated in bicine for 2 days and in PBS

for 0 and 2 days were recorded with a Jasco J-715 Spectropolarimeter using 1 mm path-length

cells (Hellma). Measurements were carried out from 260 to 190 nm at 37˚C with a data pitch

of 0.1 nm, bandwidth of 2.0 nm, scan sped of 20 nm/minute and response time of 8 seconds.

TEM

Aβ40 (50 μM) incubated for 2 days in PBS and bicine were negatively stained on a cleaned grid

and subsequently visualized via TEM. Samples were prepared as previously described [19].

Imaging analysis was performed using a Philips CM-30 transmission electron microscope.

SDS-PAGE with PICUP

To analyze the size distribution of the incubated amyloid samples in detail, PICUP chemistry

followed by SDS-PAGE was employed [16]. APS (0.7 μL, 20 mM) and Ru(Bpy) (0.7 μL, 1 mM)

in a sodium phosphate buffer (10 mM, pH 7.4) were added to Aβ40 (50 μM) samples incubated

in 12 μL of bicine or PBS. For the cross-linking of peptides, mixtures were irradiated, 3 times

(1 second each), using a 200-watt incandescent lamp and quenched with a reducing sample

buffer. Cross-linked Aβ40 samples were loaded onto a 1.0 mm-thick 10–20% tris-tricine gradi-

ent gel. Electrophoresis was performed at 120 volts for 1 hour and 45 minutes using a tris/tri-

cine/SDS running buffer. After the separation step, Aβ containing gels were stained via the

silver staining kit to visualize peptide bands. Each gel was developed for 10 minutes prior to

the addition of a stop solution.

Cell culture and MTT cell viability assay

The toxicity of Aβ40 incubated in bicine was assessed using the colorimetric MTT cell viability

assay as previously reported [8]. The mouse hippocampal cell line (HT-22) [20] was purchased

from the Korean Cell Line Bank (Seoul National University, Republic of Korea). Cells were

cultured in DMEM supplemented with 10% fetal bovine serum and 1% penicillin-streptomy-

cin at 37˚C in a 5% CO2 incubator. HT-22 cells were seeded into 96-well plates (3×103 cells/

well). Aβ40 (50 μM) incubated in bicine (2, 4, and 7 days) or PBS (0, 2, 4 and 7 days) were

diluted 50 folds with cell starvation medium and then treated to HT-22 cells. Non-treated cells

with starvation media were used as a control. After 20 hours, the MTT assay was performed.

Absorption values at 570 nm were measured using an Envision 2103 multilabel reader (Per-

kin-Elmer).

Results

The concentration- and time-dependent effects of bicine on the fibril formation of Aβ40 pep-

tides were first examined through ThT fluorescence assays. Direct binding of ThT to amyloid

β-sheet structures induces a characteristic change in fluorescence intensity [9]. To analyze the

propensity of amyloid fibril formation in increasing buffer concentrations, we incubated

monomeric Aβ40 peptides (50 μM) in serial concentrations of bicine (78.130 μM to 20.000

mM) at 37˚C for 2 days. Bicine was found to effectively promote the formation of β-sheet-rich

fibrils in a short period of time (EC50 = 837 nM) (Fig 1A). Fluorescence intensity increased in

a concentration-dependent manner. As 20 mM was the highest concentration that did not

show cytotoxicity (S1 Fig), 20 mM of bicine was used in the following experiments. Subse-

quently, time-dependent ThT assays were performed to examine the rate of bicine-induced

fibrillation (Fig 1B). Aβ40 monomers were incubated in either bicine (20 mM) or control PBS
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solutions at 37˚C for 2, 4 and 7 days and ThT fluorescence intensities were scanned. We found

that 2 days of incubation in bicine were enough to effectively form significantly higher levels of

Aβ40 fibrils than those incubated in PBS of the same duration. Bicine was shown to continu-

ously induce fibrillation for 7 days while no substantial increase of fibril levels was observed in

the PBS solution.

To confirm whether 2 days of incubation in bicine gives rise to sufficient formation of

mature fibrils, we performed far-ultraviolet CD and TEM. Far-ultraviolet CD was used to

assess the secondary structure of bicine-induced Aβ aggregates under non-denaturing aqueous

conditions. In PBS, Aβ40 samples at 0 days and 2 days of incubation showed a residue ellipticity

minimum at about 200 nm, indicating prevalent random-coil structures (Fig 2A). In contrast,

in the presence of bicine (20 mM), Aβ40 after 2 days of incubation exhibited a single negative

band with minimum at 216 nm, a typical CD spectrum of the well-defined β-sheet structure

[21]. Furthermore, substantial amounts of elongated amyloid fibrils were observed via TEM in

Fig 1. Fibrillation kinetics of Aβ(1–40) aggregation in bicine solution. ThT fluorescence assay was used to examine

the propensity of fibril formation affected by bicine concentration (a) and incubation time (b). (a) Aβ(1–40) (50 μM)

peptides were dissolved and incubated in serial concentrations of bicine (78.130, 156.25, 312.50, 625.00, 1250.0, 2500.0,

5000.0, 10000, 20000 μM, presenting ln concentration) for 2 days at 37˚C. (b) Aβ(1–40) (50 μM) peptides were

dissolved and incubated in bicine (20 mM) or PBS (1X) at 3 time points: 2, 4 and 7 days. ThT fluorescence intensity

was normalized to the Aβ(1–40) sample incubated in bicine for 7 days (100%). These experiments were performed in

triplicate independently. Error bars indicate the standard deviation. Statistical analysis was performed using one-way

ANOVA followed by Tukey’s multiple comparison test. ���P� 0.001, ����P� 0.0001. ThT: thioflavin T, A.U.:

arbitrary unit, Conc.: concentration, d: day.

https://doi.org/10.1371/journal.pone.0240608.g001

Fig 2. Analysis of Aβ(1–40) peptides in bicine and PBS via (a) structural analysis by CD spectra and (b) TEM imaging.

(a) Aβ(1–40) (25 μM) peptides were dissolved and incubated in bicine (20 mM) for 2 days or PBS (1X) for 0 and 2

days. (b) Aβ(1−40) (50 μM) incubated for 2 days in bicine (20 mM) and PBS. TEM imagery scale bar indicates 100 nm

of size. These experiments were performed in triplicate independently. CD: circular dichroism, TEM: transmission

electron microscopy, d: day.

https://doi.org/10.1371/journal.pone.0240608.g002
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Aβ40 samples incubated in bicine, while fibril formation was sparser in PBS (Fig 2B). Overall,

these results show that 2 days of incubation in bicine sufficiently promoted the formation of β-

sheet-rich Aβ40 fibrils with elongated morphology in vitro.

As soluble Aβ oligomers and protofibrils have been identified as the pathogenic culprits of

toxicity in AD brains [22,23], we further examined the effect of bicine on the formation and

toxicity of oligomeric Aβ40. SDS-PAGE with PICUP chemistry and silver-staining was used to

visualize the time-dependent changes in the size distribution of amyloid aggregates treated

with bicine (Fig 3A). Monomeric Aβ40 peptides were incubated with bicine (20 mM) or PBS

for 2, 4 and 7 days. While similar amounts of Aβ40 dimers and trimers were formed in both

PBS and bicine, higher size oligomers (above 17 kDa) were notably increased in samples incu-

bated in bicine. These oligomer bands did not change visibly throughout increasing incubation

periods. However, we observed significant time-dependent development of high molecular

weight aggregates (above 200 kDa) in bicine. These high molecular weight aggregates were not

detected in PBS. Next, in order to assess the toxicity of Aβ40 incubated in bicine, colorimetric

MTT assay was performed using HT-22 cells (Fig 3B) [8]. Upon treatment of preincubated

Aβ40 samples to HT-22 cells, we found that bicine had significantly increased Aβ40 cytotoxicity

within 2 days. Interestingly, we found that Aβ40 in bicine for 7 days was not significantly differ-

ent than the control, indicating a decrease in amyloid toxicity. As SDS-PAGE results show that

prolonged bicine-treatment induced a proportional increase of fibrils, the reduced toxicity

may be due to the conversion of toxic Aβ oligomers into relatively less toxic fibrils. These

results indicate that the fibril-to-oligomer composition as well as the toxicity of Aβ40 in bicine

can be controlled through modulation of the incubation period.

Discussion

Many endeavours to regulate the Aβ misfolding in vitro indicate that biochemical environ-

ments highly influence the degree and morphology of protein aggregation [8,24]. Due to the

versatile roles of buffer ions in amyloid fibrillogenesis [8–11], adequate buffer selection is

Fig 3. Assessing Aβ oligomeric aggregates via (a) electrophoresis and (b) MTT cell viability assay. Aβ(1–40) (50 μM)

peptides were dissolved and incubated in bicine (20 mM) or PBS (1X) at 3 time points: 2, 4 and 7 days. The 0 day Aβ
(1–40) sample was dissolved in PBS and immediately stored at −70˚C before use. (a) Aβ aggregates were visualized by

silver staining after SDS-PAGE with PICUP. Aβ samples in bicine and PBS were run on separate gels; original

uncropped and unadjusted images of gels are provided in Supporting Information (S1 Fig). (b) Aβ aggregates were

treated to HT-22 cells. Non-treated cells were used as a control. These experiments were performed in triplicate

independently. Error bars indicate the standard deviation. Statistical analysis was performed using one-way ANOVA

followed by Tukey’s multiple comparison test. �P� 0.05, ��P� 0.01, ���P� 0.001. SDS-PAGE: sodium dodecyl

sulfate-polyacrylamide gel electrophoresis, PICUP: photo-induced cross-linking of unmodified proteins, Ctrl: control,

d: day.

https://doi.org/10.1371/journal.pone.0240608.g003

PLOS ONE Bicine promotes amyloid-β fibrillation

PLOS ONE | https://doi.org/10.1371/journal.pone.0240608 October 13, 2020 5 / 8

https://doi.org/10.1371/journal.pone.0240608.g003
https://doi.org/10.1371/journal.pone.0240608


crucial for in vitro experiments. In this study, we demonstrate that bicine accelerates the for-

mation of β-sheet-rich fibrils of Aβ40 in vitro. Fibrillation kinetic assays of bicine-treated Aβ40

show that aggregation occurs in a time- and concentration-dependent manner with high

reproducibility. Sufficient β-sheet formation during an incubation period of 2 days in 20 mM

of bicine was confirmed via CD spectroscopy and TEM imaging. Furthermore, prolonged

incubation in bicine was found to increase fibrillar forms of Aβ40 and also reverse the trend of

toxicity. By adjusting the incubation period of Aβ40 in bicine, the fibril-to-oligomer composi-

tion as well as the cytotoxicity of the aggregates can be regulated.

Modifying environmental factors can vastly change the propensity of amyloid aggregation.

Slow acquisition of fibrillar Aβ40 due to long aggregation periods can be overcome by taking

advantage of buffer ions that facilitate fibrillation. Our results show that aggregation condi-

tions with bicine buffer can rapidly acquire β-sheet-rich Aβ40 aggregates that possess toxicity.

Although we did not observe any side effects by bicine during the acquirement of Aβ40 fibrils

in this study, there is a need to consider the possibility of unwanted side effects before applicat-

ing bicine to different protocols.

Supporting information

S1 Fig. Full images of SDS-PAGE gels. Aβ(1–40) (50 μM) peptides were dissolved and incu-

bated in 6 different buffers, including bicine (20 mM), PBS (1X) and 4 unreported compounds

(1, 3, 4, and 6), at 3 time points: 2, 4 and 7 days. The 0 day Aβ(1–40) samples were dissolved in

the same buffers and immediately stored at −70˚C before use. Aβ aggregates were visualized by

silver staining after SDS-PAGE with PICUP. These experiments were performed in triplicate

independently. SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis,

PICUP: photo-induced cross-linking of unmodified proteins, d: day.

(TIF)

S2 Fig. Concentration-dependent MTT assay. Assessing bicine-induced cytotoxicity via

MTT cell viability assay. Increasing concentrations of bicine was treated to HT-22 cells. Non-

treated cells were used as a control. These experiments were performed in triplicate indepen-

dently. Error bars indicate the standard deviation. Statistical analysis was performed using

one-way ANOVA followed by Tukey’s multiple comparison test. ��P� 0.01. Conc.: concentra-

tion, d: day, Ctrl: control, d: day.

(TIF)
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