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Background. As the most aggressive type of skin cancer, cutaneous melanoma (CM) is experiencing a rapidly rising mortality in
recent years. Exploring potential prognostic biomarkers or mechanisms of disease progression therefore has a great significance
for CM. The purpose of this study was to identify genetic markers and prognostic performance of N6-methyladenosine (m6A)
regulators in CM. Method. Gene expression profiles, copy number variation (CNV), and single nucleotide polymorphism (SNP)
data of patients were obtained from The Cancer Genome Atlas (TCGA) database. Results. Genomic variation and association
analysis of gene expressions revealed a high degree of genomic variation in the presence of m6A-regulated genes. m6A patients
with high-frequency genomic variants in the regulatory gene tended to develop a worse prognosis (p < 0:01). Unsupervised
cluster analysis of the expression profiles of m6A-regulated genes identified three clinically distinct molecular subtypes,
including degradation-enhanced subgroup and immune-enhanced subgroup, with significant prognostic differences (p = 0:046).
A novel prognostic signature, which was established according to m6A-related characteristic genes identified through genome-
wide expression spectrum, could effectively identify samples with poor prognosis and enhanced immune infiltration, and the
effectiveness was also verified in the dataset of the chip. Conclusion. We identified genetic changes in the m6A regulatory gene
in CM and related survival outcomes. The findings of this study provide new insights into the epigenetic understanding of m6A
in CM.

1. Introduction

As the most aggressive type of skin cancer, cutaneous mela-
noma (CM) resulted in 287,723 new cases and 60,712 deaths
worldwide in 2018 [1]. Although it accounts for only 4% of
all skin cancer cases, it is far more dangerous than other skin
cancers. The treatment and control of CM still remain less
effective, though great efforts have been devoted to the
improvements in managing advanced regional and metasta-
tic CM [2]. UV exposure is known to be closely associated
with the development of melanoma [3]. The incidence of
CM shows regional variations such as ethnic skin phenotypes
and differences in sun exposure [4]. A study demonstrated
that the mortality of melanoma patients is rapidly increasing

in recent years [5] and also pointed out the management of
melanoma patients remains a complex and evolving subject
[6]. Thus, exploring potential prognostic biomarkers or the
mechanism of disease development is highly necessary for
CM.

RNA methylation has become a common phenomenon
and a key regulator of transcript expressions [7]. N6-
Methyladenosine (m6A), which is methylated at the N6 posi-
tion of adenosine, is considered to be the most common con-
served internal transcriptional modifications of messenger
RNAs (mRNAs), microRNA (miRNAs), and long noncoding
RNAs (lncRNAs) [8]. The deposition of m6A is encoded by a
methyltransferase complex involving three homologous fac-
tors, including methyltransferases (termed as “writers”),
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demethylases (termed as “erasers”), and recognition from
m6A binding proteins (termed as “readers”). The m6A dys-
regulation consists of multiple cellular processes even in
human cancers. It has been demonstrated that m6A mRNA
demethylase FTO could regulate melanoma tumorigenicity
and react to anti-PD-1 blockade [9]. The m6A methyltrans-
ferase METTL3 promotes osteosarcoma progression by regu-
lating the m6A level of LEF1 [10]. Furthermore, METTL3 (an
oncogene) maintains SOX2 expression via the m6A-
IGF2BP2-dependent mechanism in colorectal carcinoma
cells and therefore could serve as a potential biomarker for
cancer prognosis prediction [11].

So far, however, little is known about the relationship
between m6A-related genes and CM. The Cancer Genome
Atlas (TCGA) database allows an easy access to human can-
cer data of gene expressions, copy number variation (CNVs),
and single nucleotide polymorphism (SNPs), which all play
important roles in the development and progression of
human cancers [12]. However, the CNV and SNP of m6A-
related genes remain unknown to us.

This retrospective study developed a novel gene signature
based on m6A regulators in CM with data acquired from
TCGA database and also analyzed the performance of the
signature. By analyzing genomic variations and gene expres-
sion associations, we found that these m6A regulatory genes
showed high genomic variations; interestingly, patients with
m6A regulatory genes of high-frequency genomic variation
tended to develop a worse prognosis (p < 0:01). Three clinical
subtypes with different molecular characteristics and signifi-
cant prognostic differences were identified by performing
unsupervised clustering analysis on the expression profiles
of m6A regulatory genes. m6A-related characteristic genes
were determined based on genome-wide expression profiles.
A new prognostic signature was then built for identifying
subgroups with poor prognosis and enhanced immune infil-
tration, and its performance was validated in the training set
and validation set. In summary, we determined genetic
changes in the m6A regulatory genes in CM and patient sur-
vival outcomes. The findings of this study provide new
insights into the epigenetic understanding of m6A in CM.

2. Materials and Methods

2.1. Data Resource and Processing. All CM clinical data, copy
number variation (CNV), single nucleotide polymorphism
(SNP), and mRNA expression data were retrieved from
TCGA-Assembler of the TCGA website [13] and down-
loaded in May 2019. For transcriptome data, we obtained
472 samples and downloaded data of read counts. Data was
normalized by R package DESeq. For SNP data, we obtained
a total of 469 samples, and the downloaded data was proc-
essed by MuTect [14]. For CNV data, there were 940 samples
acquired by R package RTCGA. Here, the “deletion” was
defined as segment_mean < −0:2, and the “amplification”
was defined as the segment_mean > 0:2. For clinical informa-
tion data, initially, there were a total of 389 clinical samples;
after integrating the data and excluding samples with a sur-
vival time shorter than 90 days, a total of 250 CM samples
were finally decided for further analysis.

The expression spectrum dataset GSE65904 [15] with
214 melanoma samples from Illumina HumanHT-12 V4.0
Expression BeadChip platform was downloaded from the
Gene Expression Omnibus (GEO) database. The samples
with a survival time shorter than 90 days were selected,
resulting in a final of 189 samples. Multiple probes corre-
sponding to a gene were retained and shown as the median
of the gene expression level, while probes corresponding to
multiple genes were eliminated. Finally, the expression pro-
file of genes was obtained. The work flow chart is shown in
Figure 1.

2.2. Univariate Cox Survival Analysis. Here, the prognostic
performance of m6A regulatory genes was examined. Based
on the expression profile of m6A regulatory genes and clini-
cal follow-up data of the samples, each m6A regulatory gene
was evaluated using R software package survival, and the for-
est map was plotted applying R software package forestplot.

2.3. Clustering Analysis. For a better classification of the
patients, an unsupervised clustering method was employed
in hierarchical clustering analysis of the expression profile
of CNV-related m6A regulatory genes. The clinical subtypes
were selected according to the minimum intragroup variance
and the maximum intergroup variance of the method.

2.4. Differential Expression Gene Analysis. Gene differences
between each clinical subgroup were analyzed using R soft-
ware package DESeq2, with ∣log 2ðfold changeÞ ∣ >2 and
FDR < 0:05 serving as the thresholds.

2.5. Analysis of Immune Cells and Immune Infiltration. The
ssGSEA (single-sample gene set enrichment analysis) algo-
rithm was applied to quantify the relative abundance of cell
invasion in each tumor microenvironment (TME) of a CM
patient. The gene sets labeled as TME-infiltrating immune
cell type were obtained from Charoentong et al.’s study
[16], which investigated a variety of human immune cell sub-
types, including activated CD8 T cells, activated dendritic
cells, macrophages, natural killer T cells, and regulatory T
cells. The enrichment fraction calculated by ssGSEA was
used to represent the relative abundance of TME-
infiltrating cells in the samples. Patient’s infiltration score
was assessed by the R package Estimate.

2.6. KEGG Pathway Enrichment Analysis of Different Clinical
Subgroups. ssGSEA KEGG pathway analysis was performed
on each sample using R software package GSVA [17] to cal-
culate the difference of enrichment score of each pathway in
different clinical subgroups. Moreover, the relationship
between enrichment scores of each sample pathway and clin-
ical subgroup was analyzed by performing Pearson correla-
tion. p < 0:05 was the threshold value in determining the
KEGG pathway that was the most relevant to the clinical
subgroup.

2.7. Principal Component Analysis. Principal component
analysis was performed according to the expression profile
of m6A-related gene markers, with the first principal compo-
nent being considered the scoring coefficient. A scoring
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model was established to calculate the risk score of each sam-
ple according to the model. Samples scored above 75% were
assigned into the high-risk group with immunorejection phe-
notypes, while those scored below 75% were in the low-risk
group.

2.8. Statistical Analysis. All statistical data were analyzed by
SPSS 23 (IBM, Chicago, USA) and R language. The associa-
tion between CNV and SNP of m6A regulatory genes and
clinicopathological characteristics was examined by the chi-
squared test. The association between three CM key genes
and CNV and SNP of m6A regulatory genes was analyzed
by the chi-squared test. The Kaplan-Meier curve and log-
rank test were applied to evaluate the prognostic perfor-
mance of the alterations in m6A regulatory genes. All statis-
tical results with a p value ≤ 0.05 were considered to be
significant.

3. Results

3.1. The m6A Regulatory Genes Showed a High Frequency of
Genomic Variation in CM Patients. A total of 17 m6A regu-
latory genes were recruited in this study. 136 out of the 242
SNP of m6A regulatory genes with sequencing data appeared
as independent samples (Table 1). Among them, the “writer”
gene KIAA1429 in 44 samples and the “reader” gene
IGF2BP1 in 41 samples demonstrated a higher SNP, with
all the “reader” genes showing a higher SNP frequency than
that of the “writer” or “eraser” genes; noticeably, the fre-
quency of SNP of the “eraser” gene was the lowest
(Figure 2(a)). We also observed that in all 469 CM samples
with CNV data, the m6A regulatory genes had a high fre-
quency of CNV (Figure 2(b)). For example, the “writer” gene
WTAP showed the highest frequency of 57.08% of its CNV
events, and the frequency of the “reader” gene IGF2BP3
was 52.1% (Table 2). These results indicated a high frequency
of genomic SNP in the m6A regulatory gene in CM, and

these abnormalities may affect gene expression and lead to
different clinical outcomes in CM patients.

3.2. CNV of m6A Regulatory Genes Was Associated with
Adverse Clinical Outcomes. Considering that changes in
CNV can affect gene expression levels through dosage com-
pensation effects, to this end, the effect of m6A-regulated
gene changes on mRNA expression was evaluated. In 472
KM samples, mRNA expression levels showed a significant
correlation with CNV patterns. For all 17 regulatory genes,
except for IGF2BP3 and IGF2BP1, increased CNV of the rest
15 genes was related to a higher mRNA expression and dele-
tion in mRNAs with decreased expression (Figure 3(a)). Fur-
thermore, the prognostic differences between samples of
m6A regulatory genes with the high-frequency and low-
frequency CNV abnormalities were analyzed. We observed
that patients with a high CNV tended to show worse clinical
outcomes (p < 0:001), directly indicating that abnormal copy
number of m6A regulatory genes was related to poor clinical
outcomes (Figure 3(b)). Finally, by analyzing the relationship
between the expressions of m6A regulatory genes and
patients’ prognosis, we observed that RBM15, YTHDF1,
WTAP, and METTL14 genes were significantly associated
with CM prognosis (Figure 3(c)). Specifically, high-
expressed YTHDF1 was indicative of a poor prognosis and
could therefore be considered a risk factor, at the same time,
low-expressed RBM15, WTAP, and METTL14 were also
related to a poor prognosis and were all seen as protective
factors. In order to further determine the prognostic value
of m6A regulators, a risk score model (m6AScore) was estab-
lished based on a multivariate regression method to calculate
the risk score of each patient in TCGA cohort, and the prog-
nostic value of m6AScore was determined by univariate and
multivariate Cox survival analyses. The results of univariate
analysis demonstrated that m6AScore and a variety of clini-
cal features such as T, N, and stages were strongly correlated
with CM patients’ prognosis (Figure 3(d)), while multivariate
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Figure 2: SNP and CNVs of m6A regulatory genes in CM patients: (a) frequency of SNP of different m6A regulatory genes in CM samples;
(b) the CNV data of m6A regulatory genes in CM samples.
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analysis showed that only m6AScore, N3, N2, and T4 had a
significant prognostic correlation (Figure 3(e)). In addition,
HR of N3, N2, and T4 was abnormally high. These results
indicated that m6AScore has a more stable prognostic per-
formance than T, N, M, and stage or other clinical features.

3.3. Different Molecular Subgroups Identified by Unsupervised
Cluster Analysis Based on Expressions of m6A Genes. Given
that m6A regulatory genes are associated with CM prognosis,
unsupervised hierarchical cluster analysis was conducted
based on the expression profiles of 15 CNV-related m6A reg-
ulatory genes. We observed that these 15 genes were divided
into three main categories (Figure 4(a)) with different expres-
sion patterns of m6A genes. Further analysis showed that 12
genes (80%) out of the 15 genes in the three subtypes had sig-
nificant expression differences (Figure 4(b)). Subsequently,
prognostic differences among the three types of samples were
examined, and the data demonstrated that m6A Cluster3 was
related to a significantly better prognosis than m6A Cluster1
and m6A Cluster2 (Figures 4(c) and 4(d)). These results sug-
gest that the three m6A Clusters have different molecular
characteristics, which will lead to different clinical outcomes.

3.4. The Regulatory Characteristics of m6A Cluster. To
explore the relationship between the biological behaviors of
CM and m6A Cluster, the enrichment scores of each sample
in the KEGG pathway were calculated by ssGSEA to further
determine the differences of the enrichment scores
(Figure 5(a)). Significant differences in 44 KEGG pathways
can be observed; interestingly, 40 pathways showed signifi-
cant positive correlations with m6A Cluster2, and they were
mainly important signaling pathways involved in tumor
development, for example, VEGF_signaling_pathway,
basal_cell_carcinoma, and drug_metabolism_cytochrome.

In addition, the remaining 4 KEGG pathways, namely, ubiq-
uitin_mediated_proteolysis, non_homologous_end_joining,
basal_transcription_factors, and RNA_degradation, were
significantly upregulated in m6A Cluster3 and are mainly
related to the degradation process. 28 immune cell compo-
nents were calculated for each patient by the ssGSEA, and a
significant difference in the distribution of 19 immune cells
(67.9%) was detected (Figure 5(b)). Among these significant
immune cells, memory B cell and type 2 T helper cell showed
the highest scores in m6A Cluster1, while the remaining 17
immune cells all had the highest scores in m6A Cluster2.
These results suggested that m6A Cluster3 is related to
immune processes and a better CM prognosis, while m6A
Cluster2 is related to a stable immune microenvironment
and a worse prognosis. We also compared the relationships
between the 3 m6A-related molecular subtypes and the pre-
viously reported genomic subtypes (BRAF, RAS, NF1, and
triple-WT) [18]). The data showed that m6A Cluster3 had
the largest intersection with the RAS subtype, whereas m6A
Cluster1 and m6A Cluster2 had the largest intersection with
triple_WT (Figure 5(c)). In our study, the results that m6A
Cluster1 and m6A Cluster2 were indicative of a poorer prog-
nosis and higher frequency of m6A copy number are consis-
tent with triple-WT with significantly more copy number
fragments.

3.5. Identification of m6A Gene Markers and Molecular
Characteristics. To determine the gene expression differences
among the m6A cluster samples, we identified 5,533 differen-
tially expressed genes based on the gene expression profile. It
has been found that m6A Cluster2 and m6A Cluste1/m6A
Cluster3 had the most differentially expressed genes, as com-
pared with m6A Cluster1 (Figure 6(a)). Gene expression pro-
files of these 5533 genes were extracted for cluster analysis,

Table 2: Different CNV patterns occur in CM patients.

Types Genes Diploid Deletion Amplification CNV sum Amplification (%) Deletion (%) Percentage

Writers

METTL3 338 93 40 133 30.08% 69.92% 28.24%

METTL14 354 76 41 117 35.04% 64.96% 24.84%

WTAP 203 246 24 270 8.89% 91.11% 57.08%

KIAA1429 268 10 194 204 95.10% 4.90% 43.22%

RBM15 236 70 75 145 51.72% 48.28% 38.06%

ZC3H13 303 76 92 168 54.76% 45.24% 35.67%

Readers

YTHDC1 361 68 52 120 43.33% 56.67% 24.95%

YTHDC2 324 100 47 147 31.97% 68.03% 31.21%

YTHDF3 282 14 175 189 92.59% 7.41% 40.13%

YTHDF1 271 3 198 201 98.51% 1.49% 42.58%

YTHDF2 346 55 70 125 56.00% 44.00% 26.54%

HNRNPC 338 93 40 133 30.08% 69.92% 28.24%

IGF2BP1 3342 43 90 133 67.67% 32.33% 3.83%

IGF2BP2 358 51 62 113 54.87% 45.13% 23.99%

IGF2BP3 228 18 230 248 92.74% 7.26% 52.10%

Erasers
FTO 329 116 36 152 23.68% 76.32% 31.60%

ALKBH5 336 209 26 235 11.06% 88.94% 41.16%

Total 8217 1341 1492 2833 52.67% 47.33% 25.64%
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Figure 3: Relationship between m6A regulatory genes and CNV: (a) the relationships between CNV and expression levels of m6A regulatory
genes. Kruskal test was used to detect the differences between different groups; (b) the Kaplan-Meier curves of CNV and prognosis in SCKM
patients; (c) relationship between m6A regulatory genes and prognosis; (d) survival analysis by univariate Cox analysis on m6Ascore and
clinical features; (e) survival analysis by multivariate survival Cox on m6Ascore and clinical features.
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and the data demonstrated that these genes divided the sam-
ples into two categories (Cluster1 and Cluster2). Specifically,
Cluster2 mainly consisted of m6A Cluster2 samples and a
small part of m6A Cluster3 samples, Cluster1 contained
almost all the m6A Cluster1 samples, and Cluster1 contained
most of the m6A Cluster3 samples (Figure 6(b)). Further
analysis demonstrated that Cluster2 was related to a signifi-
cantly worse prognosis than Cluster1 (Figure 6(c)). More-
over, we also detected the expression differences of 15 m6A
regulatory genes with CNV abnormalities in Cluster1 and
Cluster2 (Figure 6(d)), and 12 (80%) out of the 15 genes
showed significant expression differences, and among the
12 genes, ALKBH5 and YTHDF1 were significantly highly
expressed in Cluster2, while the remaining 10 genes were sig-
nificantly highly expressed in Cluster1. These results indi-
cated that a class of molecular subgroups (m6A
Cluster1/Cluster2) with unfavorable prognosis which
resulted from abnormalities of immune microenvironment
could be identified by m6A regulatory genes or m6A-
related gene markers.

3.6. Establishment and Verification of Prognostic Signature
Based on m6A Regulatory Genes. The subgroup of immune-
related prognosis was determined by performing the princi-
pal component analysis based on the expression profiles of
m6A-related gene markers to divide the samples into a
high-risk group and low-risk group. A careful analysis of
the prognostic differences between the two groups showed
that the prognosis in the high-risk group was significantly
worse than the low-risk group (Figure 7(a)). Moreover, a
higher immune score was observed in the high-risk group,
as compared with the low-risk group (Figure 7(b)). Further-

more, the patients were accordingly group based on the chip
platform GSE65904. Here, the data showed that patients’
prognosis in the high-risk group sample was greatly more
unfavorable than that in the low-risk group (Figure 7(c)).
Immunomicroenvironment analysis demonstrated that the
samples from the high-risk group had higher immune micro-
environment scores (Figure 7(d)). In addition, the Swegene
Center for Integrative Biology at Lund University melanoma
cohort (GSE22153) was introduced for verification. It has
been found that the prognosis of the high-risk group was sig-
nificantly worse than that of the low-risk group samples
(Figure 7(e)). Immunomicroenvironment analysis showed
that the high-risk group samples had a higher immune
microenvironment score (Figure 7(f)). These results sug-
gested that the expression profiles of m6A-related gene
markers could serve as prognostic markers to evaluate the
prognosis of CM patients.

4. Discussion

The present study developed a novel gene signature based on
m6A regulators to CM using TCGA database and also
assessed its predictive performance. Genetic alterations of
the m6A regulatory genes have been found to be closely
related to CM patients’ survival outcomes. Our findings pro-
vide new insights into the epigenetic understanding of m6A
in CM.

As the most common internal chemical modification of
mRNA, m6A is widely involved in many pathological pro-
cesses of cancer development. The deposition of m6A is
encoded by a methyltransferase complex involving three
homologous factors including methyltransferases (such as
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Figure 4: Different molecular subgroups identified by unsupervised cluster analysis based on m6A gene expression: (a) identification of
molecular subtypes; (b) heat map of differentially expressed genes; (c) KM prognosis curve of m6ACluster2 and m6ACluster3; (d) KM
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METTL3/14, WTAP, RBM15/15B, and KIAA1429, termed
as “writers”), demethylases (such as FTO and ALKBH5,
termed as “erasers”) and recognition from m6A binding pro-

teins (such as YTHDF1/2/3, IGF2BP1 and HNRNPA2B1,
termed as “readers”) [8]. Specifically, METTL3 silencing
reduces m6A methylation and downregulates the total
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mRNA level of lymphoid enhancer binding factor 1 (LEF1),
thereby inhibiting the activity of theWnt/β-catenin signaling
pathway. Moreover, METTL3 promotes osteosarcoma cell
progression by regulating the m6A level of LEF1 and activat-
ing the Wnt/β-catenin signaling pathway [10]. Previously,
upregulated expression of METTL3 has been observed in
human hepatocellular carcinoma and multiple solid tumors
[19]. Knockdown of METTL3 can reduce hepatocellular car-
cinoma cell proliferation, migration, and colony formation,
and more interestingly, knockout of METTL3 remarkably
suppresses tumorigenicity and lung metastasis. In colorectal
cancer, METTL3 acts as a tumor suppressor on cell prolifer-
ation, migration, and invasion via the p38/ERK pathway
[20]. In addition, reducing m6A methylation could activate
oncogenic Wnt/PI3K-Akt signaling and promote malignant
phenotypes of gastric cancer cells [21]; moreover, METTL3
knockdown could inhibit the level of total RNA methylation
of m6A, cell proliferation, and migration of gastric cancer
cells [22]. Noticeably, m6A methylation has also been
reported in bladder cancer [23], renal cancer [24], acute mye-
loid leukemia [25], breast cancer [26], and hepatocellular
cancer [27].

The regulators of m6A RNA methylation function criti-
cally in the malignant progression of glioma and may be use-

ful for the development of prognostic stratification and
therapeutic strategies [28]. In this study, 15 m6A regulatory
genes with abnormal copies of the genome were identified
based on TCGA gene expression data and CNV data. Our
analysis showed that a higher frequency of the CNV of
m6A regulatory genes was related to a worse the prognosis
of CM patients. Three clinical subgroups with different
molecular characteristics were detected after performing
unsupervised cluster analysis. Here, m6aCluster2 was associ-
ated with abnormal immune microenvironment and poor
prognosis. A risk assessment model was established with
the m6A-related gene markers, and subgroups with high
immune scores and poor prognosis were identified in both
sequencing data and chip data. Our results indicated that
m6A regulatory genes play an important role in CM, as they
could influence immune-related processes during tumor
development. Zhou et al. [29] proved that a low expression
of the writer gene METTL3 is related to activations of adipo-
genesis and mTOR pathways. However, m6A regulators in
CM have not been reported before.

Some cancer-related pathways are dysregulated during
CM development. In this study, We determined a molecular
subgroup with favorable prognosis based on m6A regulatory
genes and found that degradation pathways such as ubiquitin
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Figure 7: Establishment and validation of risk scores based on m6A-related genetic markers: (a) KM curves for prognostic differences
between high-risk and low-risk groups; (b) differences in immune microenvironment scores between high-risk and low-risk groups; (c)
KM curves for prognostic differences between high-risk and low-risk groups in the GSE65904 dataset; (d) differences in immune
microenvironment scores between high-risk and low-risk groups in the GSE65904 dataset; (e) KM curves for prognostic differences
between high-risk and low-risk groups in the GSE22153 dataset; (f) differences in immune microenvironment scores between high-risk
and low-risk groups in the GSE22153 dataset.
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pathways, mediated_proteolysis, and RNA_degradation
were active in the subgroups, and interestingly, these path-
ways play critical roles in regulating cell growth and prolifer-
ation by controlling the abundance of key cyclins [30].
Evidences increasingly showed that abnormal proteolysis of
cell cycle regulators significantly promotes tumorigenesis,
while enhanced degradation of cell cycle regulators (i.e., pro-
tooncoproteins) can inhibit tumor metastasis. The driving
force of the cell cycle is the activation of cyclin-dependent
kinases (CDKs), whose activity is controlled by the proteoly-
sis of ubiquitin-mediated key regulators (such as cyclins and
CDK inhibitors), and disorder of proteolytic systemmay lead
to uncontrolled proliferation, genomic instability, and cancer
initiation [31]. Selective RNA degradation has been shown to
be able to strongly resist disease development and is therefore
believed to have the potential to treat cancer [32]. In antioral
tumor therapy, activation of peroxisomal proliferator activa-
tor (PPAR) upregulates RNA degradation pathways, leading
to reprogramming of tumor metabolism [33]. These results
suggest that degradation-enhancing molecular subgroup
identified by the m6A regulatory genes could be explored as
a novel effective strategy for CM treatment.

5. Conclusion

In summary, this study first detected the genetic alterations
of m6A regulatory genes in CM and identified molecular sub-
sets with enhanced degradation and immune enhancement
based on genomic mutagenesis of m6A regulatory genes. A
m6A signature with a high predictive accuracy in predicting
the prognosis of CM patients was constructed in this study.
Our findings provide new insights into the epigenetic under-
standing of m6A in CM.
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Conflicts of Interest

The authors stated they have no conflicts of interest.

References

[1] F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre,
and A. Jemal, “Global cancer statistics 2018: GLOBOCAN esti-
mates of incidence and mortality worldwide for 36 cancers in
185 countries,” CA: A Cancer Journal for Clinicians, vol. 68,
no. 6, pp. 394–424, 2018.

[2] P. Gorayski, B. Burmeister, and M. Foote, “Radiotherapy for
cutaneous melanoma: current and future applications,” Future
Oncology, vol. 11, no. 3, pp. 525–534, 2015.

[3] A. Sample and Y. Y. He, “Mechanisms and prevention of UV-
induced melanoma,” Photodermatology, Photoimmunology &
Photomedicine, vol. 34, no. 1, pp. 13–24, 2018.

[4] G. C. Leonardi, L. Falzone, R. Salemi et al., “Cutaneous mela-
noma: from pathogenesis to therapy (review),” International
Journal of Oncology, vol. 52, no. 4, pp. 1071–1080, 2018.

[5] A. M. Eggermont, A. Spatz, and C. Robert, “Cutaneous mela-
noma,” The Lancet, vol. 383, no. 9919, pp. 816–827, 2014.

[6] S. N. Pavri, J. Clune, S. Ariyan, and D. Narayan, “Malignant
melanoma: beyond the basics,” Plastic and Reconstructive Sur-
gery, vol. 138, no. 2, pp. 330e–340e, 2016.

[7] Q. Lan, P. Y. Liu, J. Haase, J. L. Bell, S. Huttelmaier, and T. Liu,
“The critical role of RNA m6A methylation in cancer,” Cancer
Research, vol. 79, no. 7, pp. 1285–1292, 2019.

[8] X. Y. Chen, J. Zhang, and J. S. Zhu, “The role of m6A RNA
methylation in human cancer,” Molecular Cancer, vol. 18,
no. 1, p. 103, 2019.

[9] S. Yang, J. Wei, Y. H. Cui et al., “m(6)A mRNA demethylase
FTO regulates melanoma tumorigenicity and response to
anti-PD-1 blockade,” Nature Communications, vol. 10, no. 1,
article 2782, 2019.

[10] W. Miao, J. Chen, L. Jia, J. Ma, and D. Song, “The m6A meth-
yltransferase METTL3 promotes osteosarcoma progression by
regulating the m6A level of LEF1,” Biochemical and Biophysi-
cal Research Communications, vol. 516, no. 3, pp. 719–725,
2019.

[11] T. Li, P. S. Hu, Z. Zuo et al., “METTL3 facilitates tumor pro-
gression via an m6A-IGF2BP2-dependent mechanism in colo-
rectal carcinoma,” Molecular Cancer, vol. 18, no. 1, p. 112,
2019.

[12] C. O. Gigek, D. Q. Calcagno, L. T. Rasmussen et al., “Genetic
variants in gastric cancer: risks and clinical implications,”
Experimental and Molecular Pathology, vol. 103, no. 1,
pp. 101–111, 2017.

[13] J. N. Weinstein, The Cancer Genome Atlas Research Network,
E. A. Collisson et al., “The Cancer Genome Atlas pan-cancer
analysis project,” Nature Genetics, vol. 45, no. 10, pp. 1113–
1120, 2013.

[14] K. Cibulskis, M. S. Lawrence, S. L. Carter et al., “Sensitive
detection of somatic point mutations in impure and heteroge-
neous cancer samples,” Nature Biotechnology, vol. 31, no. 3,
pp. 213–219, 2013.

[15] R. Cabrita, M. Lauss, A. Sanna et al., “Tertiary lymphoid struc-
tures improve immunotherapy and survival in melanoma,”
Nature, vol. 577, no. 7791, pp. 561–565, 2020.

[16] P. Charoentong, F. Finotello, M. Angelova et al., “Pan-cancer
immunogenomic analyses reveal genotype-
immunophenotype relationships and predictors of response
to checkpoint blockade,” Cell Reports, vol. 18, no. 1, pp. 248–
262, 2017.

[17] S. Hanzelmann, R. Castelo, and J. Guinney, “GSVA: gene set
variation analysis for microarray and RNA-seq data,” BMC
Bioinformatics, vol. 14, no. 1, p. 7, 2013.

[18] R. Akbani, K. C. Akdemir, B. A. Aksoy et al., “Genomic classi-
fication of cutaneous melanoma,” Cell, vol. 161, no. 7,
pp. 1681–1696, 2015.

[19] M. Chen, L. Wei, C. T. Law et al., “RNA N6-methyladenosine
methyltransferase-like 3 promotes liver cancer progression
through YTHDF2-dependent posttranscriptional silencing of
SOCS2,” Hepatology, vol. 67, no. 6, pp. 2254–2270, 2018.

[20] R. Deng, Y. Cheng, S. Ye et al., “m(6)A methyltransferase
METTL3 suppresses colorectal cancer proliferation and
migration through p38/ERK pathways,” Oncotargets and
Therapy, vol. 12, pp. 4391–4402, 2019.

[21] C. Zhang, M. Zhang, S. Ge et al., “Reduced m6A modification
predicts malignant phenotypes and augmented Wnt/PI3K-

18 BioMed Research International

https://www.ncbi.nlm.nih.gov/geo/


Akt signaling in gastric cancer,” Cancer Medicine, vol. 8,
no. 10, pp. 4766–4781, 2019.

[22] T. Liu, S. Yang, J. Sui et al., “Dysregulated N6-
methyladenosine methylation writer METTL3 contributes to
the proliferation and migration of gastric cancer,” Journal of
Cellular Physiology, vol. 235, no. 1, pp. 548–562, 2019.

[23] J. Han, J. Z. Wang, X. Yang et al., “METTL3 promote tumor
proliferation of bladder cancer by accelerating pri-
miR221/222 maturation in m6A-dependent manner,”Molecu-
lar Cancer, vol. 18, no. 1, p. 110, 2019.

[24] D. Gong, J. Zhang, Y. Chen et al., “The m6A-suppressed
P2RX6 activation promotes renal cancer cells migration and
invasion through ATP-induced Ca2+ influx modulating
ERK1/2 phosphorylation and MMP9 signaling pathway,”
Journal of Experimental & Clinical Cancer Research, vol. 38,
no. 1, p. 233, 2019.

[25] Z. Ianniello, A. Paiardini, and A. Fatica, “N6-Methyladenosine
(m6A): a promising new molecular target in acute myeloid
leukemia,” Frontiers in Oncology, vol. 9, p. 251, 2019.

[26] L. Wu, D. Wu, J. Ning, W. Liu, and D. Zhang, “Changes of N6-
methyladenosine modulators promote breast cancer progres-
sion,” BMC Cancer, vol. 19, no. 1, p. 326, 2019.

[27] X. Cheng, M. Li, X. Rao et al., “KIAA1429 regulates the migra-
tion and invasion of hepatocellular carcinoma by altering m6A
modification of ID2 mRNA,” Oncotargets and Therapy,
vol. 12, pp. 3421–3428, 2019.

[28] R. C. Chai, F. Wu, Q. X. Wang et al., “m6A RNA methylation
regulators contribute to malignant progression and have clin-
ical prognostic impact in gliomas,” Aging (Albany NY), vol. 11,
no. 4, pp. 1204–1225, 2019.

[29] J. Zhou, J. Wang, B. Hong et al., “Gene signatures and prog-
nostic values of m6A regulators in clear cell renal cell carci-
noma - a retrospective study using TCGA database,” Aging
(Albany NY), vol. 11, no. 6, pp. 1633–1647, 2019.

[30] T. Bashir andM. Pagano, “Aberrant ubiquitin-mediated prote-
olysis of cell cycle regulatory proteins and oncogenesis,”
Advances in Cancer Research, vol. 88, pp. 101–144, 2003.

[31] K. I. Nakayama and K. Nakayama, “Ubiquitin ligases: cell-
cycle control and cancer,” Nature Reviews Cancer, vol. 6,
no. 5, pp. 369–381, 2006.

[32] S. K. Dey and S. R. Jaffrey, “RIBOTACs: small molecules target
RNA for degradation,” Cell Chemical Biology, vol. 26, no. 8,
pp. 1047–1049, 2019.

[33] N. W. Chang and Y. P. Huang, “The RNA degradation path-
way is involved in PPARα-modulated anti-oral tumorigene-
sis,” Biomedicine, vol. 9, no. 4, p. 27, 2019.

19BioMed Research International


	Identification and Verification of Molecular Subtypes with Enhanced Immune Infiltration Based on m6A Regulators in Cutaneous Melanoma
	1. Introduction
	2. Materials and Methods
	2.1. Data Resource and Processing
	2.2. Univariate Cox Survival Analysis
	2.3. Clustering Analysis
	2.4. Differential Expression Gene Analysis
	2.5. Analysis of Immune Cells and Immune Infiltration
	2.6. KEGG Pathway Enrichment Analysis of Different Clinical Subgroups
	2.7. Principal Component Analysis
	2.8. Statistical Analysis

	3. Results
	3.1. The m6A Regulatory Genes Showed a High Frequency of Genomic Variation in CM Patients
	3.2. CNV of m6A Regulatory Genes Was Associated with Adverse Clinical Outcomes
	3.3. Different Molecular Subgroups Identified by Unsupervised Cluster Analysis Based on Expressions of m6A Genes
	3.4. The Regulatory Characteristics of m6A Cluster
	3.5. Identification of m6A Gene Markers and Molecular Characteristics
	3.6. Establishment and Verification of Prognostic Signature Based on m6A Regulatory Genes

	4. Discussion
	5. Conclusion
	Data Availability
	Conflicts of Interest

