
METHODS
published: 03 June 2020

doi: 10.3389/fgene.2020.00445

Frontiers in Genetics | www.frontiersin.org 1 June 2020 | Volume 11 | Article 445

Edited by:

Shizhong Han,

Johns Hopkins Medicine,

United States

Reviewed by:

Cuncong Zhong,

University of Kansas, United States

Guilherme Corrêa De Oliveira,

Vale Technological Institute (ITV), Brazil

*Correspondence:

Qiwei Li

qiwei.li@utdallas.edu

Xiaowei Zhan

xiaowei.zhan@utsouthwestern.edu

Specialty section:

This article was submitted to

Bioinformatics and Computational

Biology,

a section of the journal

Frontiers in Genetics

Received: 16 December 2019

Accepted: 14 April 2020

Published: 03 June 2020

Citation:

Jiang S, Xiao G, Koh AY, Chen Y,

Yao B, Li Q and Zhan X (2020)

HARMONIES: A Hybrid Approach for

Microbiome Networks Inference via

Exploiting Sparsity.

Front. Genet. 11:445.

doi: 10.3389/fgene.2020.00445

HARMONIES: A Hybrid Approach for
Microbiome Networks Inference via
Exploiting Sparsity

Shuang Jiang 1,2, Guanghua Xiao 2, Andrew Y. Koh 3, Yingfei Chen 4, Bo Yao 2, Qiwei Li 5* and

Xiaowei Zhan 2*

1Department of Statistical Science, Southern Methodist University, Dallas, TX, United States, 2Quantitative Biomedical

Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas,

TX, United States, 3Departments of Pediatrics, Departments of Microbiology, University of Texas Southwestern Medical

Center, Dallas, TX, United States, 4 Lyda Hill Department of Bioinformatics, Bioinformatics High Performance Computing,

University of Texas Southwestern Medical Center, Dallas, TX, United States, 5Department of Mathematical Sciences, The

University of Texas at Dallas, Richardson, TX, United States

The human microbiome is a collection of microorganisms. They form complex

communities and collectively affect host health. Recently, the advances in

next-generation sequencing technology enable the high-throughput profiling of the

human microbiome. This calls for a statistical model to construct microbial networks from

the microbiome sequencing count data. As microbiome count data are high-dimensional

and suffer from uneven sampling depth, over-dispersion, and zero-inflation, these

characteristics can bias the network estimation and require specialized analytical

tools. Here we propose a general framework, HARMONIES, Hybrid Approach foR

MicrobiOme Network Inferences via Exploiting Sparsity, to infer a sparse microbiome

network. HARMONIES first utilizes a zero-inflated negative binomial (ZINB) distribution to

model the skewness and excess zeros in the microbiome data, as well as incorporates

a stochastic process prior for sample-wise normalization. This approach infers a sparse

and stable network by imposing non-trivial regularizations based on the Gaussian

graphical model. In comprehensive simulation studies, HARMONIES outperformed

four other commonly used methods. When using published microbiome data from a

colorectal cancer study, it discovered a novel community with disease-enriched bacteria.

In summary, HARMONIES is a novel and useful statistical framework for microbiome

network inference, and it is available at https://github.com/shuangj00/HARMONIES.

Keywords: Bayesian statistics, microbiome network, Gaussian graphical model, Dirichlet process prior,

hierarchical model

1. INTRODUCTION

Microbiota form complex community structures and collectively affect human health. Studying
their relationship as a network can provide key insights into their biological mechanisms.
The exponentially growing large datasets made available by next-generation sequencing (NGS)
technology (Metzker, 2010), such as 16S rRNA gene and metagenomic profiling, motivate the
development of statistic tools to quantitatively study the microbial organisms. While the number
of discovered microbial taxa continues to increase, our knowledge of their interactive relationships
is severely lacking. Understanding the structural organization of the human microbiome plays a
vital role in revealing how the microbial taxa are collaborating or competing with each other under
different physiologic conditions.
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In sequencing-based microbial association studies, the
enormous amount of NGS data can be summarized in a
sample-by-taxon count table where each entry is a proxy to
the underlying true abundance. However, there is no simple
relationship between the true abundances and the observed
counts. Additionally, microbiome sequencing data usually have
an inflated amount of zeros, uneven sequencing depths across
samples, and over-dispersion. Initial attempts at constructing
microbial association networks with this type of data (Ban
et al., 2015; Lo and Marculescu, 2017), first transformed
the microbiome sequencing counts into their compositional
formula. Specifically, a count was normalized to its proportion
in the respective sample. Then, each sample was transformed
by a choice of log-ratio transformations to remove the unit-
sum constraint of the compositional data. While this type of
normalization is simple to implement and preserves the original
ordering of the counts in a sample, it fails to capture the sample
to sample variation and it overlooks the excess zeros in the
microbiome data. Note that these zeros can be attributed to
biological or technical reasons: either certain taxa are not present
among samples, or they are not sequenced due to insufficient
sequencing depths. As the existing logarithmic transformation
neglects the difference between these two types of zeros, it can
lead to a biased estimation of the network structure. Thus, we
propose a model-based normalization strategy for microbiome
count data. Our normalization method simultaneously accounts
for uneven sequencing depth, zero-inflation, over-dispersion,
as well as the two types of zeros. Then we use the normalized
abundances to estimate microbial abundance networks.

There are two major categories of statistical methods that
are often used to infer microbial abundance networks. The
first type is based on a taxa abundance covariance structure.
For example, Faust and Raes (2016) and Weiss et al. (2016)
used pairwise Pearson correlations to represent edge weights.
This simple inference could be problematic since two variables
(i.e., taxa) may be connected in the network due to their
confounding variables (Gevers et al., 2014). The other type
aims to estimate taxa abundance partial correlations, removing
confounding effects. Kurtz et al. (2015) proposed a statistical
model for inferring microbial ecological network, which is based
on estimating the precision matrix (via exploiting sparsity)
of a Gaussian multivariate model and relies on graphical
lasso (Glasso) (Friedman et al., 2008). However, their data
normalization step needs to be improved to account for unique
characteristics observed in microbiome count data.

In this paper, we propose a general framework, HARMONIES
(Hybrid Approach foR MicrobiOme Network Inferences
via Exploiting Sparsity), to infer the microbiome networks.
It consists of two major steps: (1) normalization of the
microbiome count data by fitting a zero-inflated negative
binomial (ZINB) model with the Dirichlet process prior
(DPP), (2) application of Glasso to ensure sparsity and using
a stability-based approach to select the tuning parameter in
Glasso. The estimated network contains the information of
both the degree and the direction of associations between
taxa, which facilitates the biological interpretation. We
demonstrated that HARMONIES could outperform other

state-of-the-art tools on extensive simulated and synthetic data.
Further, we used HARMONIES to uncover unique associations
between disease-specific genera from microbiome profiling
data generated from a colorectal cancer study. Based on these
results, HARMONIES will be a valuable statistical model to
understand the complex microbial associations in microbiome
studies. The R package HARMONIES is freely available at
https://github.com/shuangj00/HARMONIES.

2. METHODS

2.1. Microbiome Count Data Normalization
Let Y denote the n-by-p taxonomic count matrix obtained from
either the 16S rRNA or the metagenomic shotgun sequencing
(MSS) technology. Each entry yij, i = 1, . . . , n, j = 1, . . . , p
is a non-negative integer, indicating the total reads related to
taxon j observed in sample i. It is recommended that all chosen
taxa should be at the same taxonomic level (e.g., OTU for 16S
rRNA or species for MSS) since that mixing different taxonomic
levels in the proposed model could lead to improper biological
interpretation. As the real microbiome data are characterized
by zero-inflation and over-dispersion, we model yij through a
zero-inflated negative binomial (ZINB) model as

yij ∼ πiI(yij = 0)+ (1− πi)NB(λij,φj). (1)

The first component in the Equation (1) models whether zeros
come from a degenerate distribution with a point mass at zero.
It can be interpreted as the “extra” zeros due to insufficient
sequencing effort. We can assume there exists a true underlying
abundance for the taxon in its sample, but we fail to observe it
with the mixture probability πi representing the proportion of
“extra” zeros in sample i. The second component, NB(λij,φj),
models the “true” zeros and all the nonzero observed counts.
i.e., counts generated from a negative binomial (NB) distribution
with the expectation of λij and dispersion 1/φj. Here, “true” zero
refers to a taxon that is truly absent in the corresponding sample.
The variance of the random variable fromNB distribution, under
the current parameterization, equals to λij+λ2ij/φj. Smaller values

of φj can lead to over-dispersion.
To avoid explicitly fixing the value of πi’s and φj’s, we use

a Bayesian hierarchical model for parameter inference. First,
we rewrite the model (1) by introducing a binary indicator
variable ηij ∼ Bernoulli(πi), such that yij = 0 if ηij = 1,
and yij ∼ NB(λij,φj) if ηij = 0. Then, we formulate a beta-
Bernoulli prior of ηij by assuming πi ∼ Beta(aπ , bπ ), and we
let aπ = bπ = 1 to obtain a non-informative prior on ηij. We
specify independent Gamma prior Ga(aφ , bφ) for each dispersion
parameter φj. Letting aφ = bφ = 0.001 results in a weakly
informative gamma prior.

The mean parameter of the NB distribution, λij, contains
the key information of the true underlying abundance of the
corresponding count. As λij is affected by the varying sequencing
effort across samples, we use a multiplicative characterization of
the NB mean to justify the latent heterogeneity in microbiome
sequencing data. Specifically, we assume λij = siαij. Here,
si is the sample-specific size factor that captures the variation
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in sequencing depth across samples, and αij is the normalized
abundance of taxon j in sample i.

In parameter estimation, one needs to ensure identifiability
between si and αij. For example, si can be the reciprocal of the
total number of reads in sample i. The resulted αij is often called
relative abundance, which represents the proportion of taxon j
in sample i. In this setting, the relative abundances of all the
taxa in one sample always sum up to 1. Similarly, other methods
have been proposed with different constraints for normalizing
the sequencing data (Anders and Huber, 2010; Bullard et al.,
2010; Robinson and Oshlack, 2010; Paulson et al., 2013). Some
normalization methods can perform better than the others in the
downstream analysis (e.g., the differential abundance analysis) in
certain settings. From a Bayesian perspective, fixing the values
of si’s imposes a strongly informative prior in model inference.
Hence, all these methods could bias the estimations of other
model parameters and degrade the performance of downstream
analyses. We thus propose a regularizing prior with a stochastic
constraint for estimating si’s. Our method can simultaneously
infer the size factor and other model parameters. In particular,
we adopt the following mixture model for si,

log si ∼
M

∑

m=1

ψm

[

tmN(νm, σ
2
s )+ (1− tm)N

(

− tmνm

1− tm
, σ 2

s

)]

,

(2)

whereψm is the weight for outer mixtures of themth component.
The inner mixture of the mth component consists of two
Gaussian distributions with tm and 1−tm as weights, respectively.
It is straightforward to see that the inner mixture has a mean of
zero and thus ensuring the stochastic constraint of E(log si) = 0.
For the outer mixtures, M is an arbitrarily large positive integer.
Letting M → ∞ and defining the weight ψm by the stick-
breaking procedure (i.e.,ψ1 = V1,ψm = Vm

∏m−1
u=1 (1−Vu),m =

1, 2, . . .) makes model (2) a special case of Dirichlet process
mixture models. This class of Bayesian nonparametric infinite
mixtures is widely used in quantifying the model uncertainty
and allowing for flexibility in parameter estimation (Kyung
et al., 2011; Taddy and Kottas, 2012). In particular, this Dirichlet
process prior (DPP) has been used to account for sample
heterogeneity since it is able to capture multi-modality and
skewness in a distribution (Li et al., 2017; Lee and Sison-Mangus,
2018). In practice, we set M to be a large positive integer, and
adopt the following hyper-prior distributions for the parameters
in (2) such that νm ∼ N(0, τν), tm ∼ Beta(at , bt), and Vm ∼
Beta(am, bm). We further set σ 2

s = 1 to complete the parameter
specification in the DPP prior.

In our model, the normalized abundance matrix A = {αij}
represents the true underlying abundance of the original count
matrix. We further assume logαij ∼ N(µj, σ

2
j ). This variance-

stabilizing transformation on each αij not only reduces the
skewness of the normalized abundance, but converts the non-
negative αij to a real number. We apply the following conjugate
setting to specify the priors for µj and σ 2

j , j = 1, . . . , p.

We let µj ∼ N(0, h0σ
2
0 ) and σ 2

j ∼ inverse-gamma(a0, b0).

After integrating out µj and σ
2
j , the prior of the normalized

abundances of taxon j follows a non-standardized Student’s
t-distribution, i.e.,

p(α·j) = (nh0 + 1)−
1
2
Ŵ

(

a0 + n
2

)

Ŵ(a0)

b
a0
0

{

b0 + 1
2

[

∑n
i=1 logα

2
ij −

(
∑n

i=1 logαij)
2

n+ 1
h0

]}a0+ n
2

. (3)

As for the fixed parameters a0, b0, h0, and σ
2
0 , we follow Li et al.

(2019) and set a0 = 2, b0 = 1 to obtain a weakly informative
prior for σ 2

j . We fix σ 2
0 = 1 and let h0 = 10 such that the

normal prior on µj is fairly flat. We adopt the following prior
specification for the rest model parameters. First, we assume an
noninformative prior for each πi by letting aπ = bπ = 1. Next,
we specify aφ = bφ = 0.001 in the Gamma prior distribution for
all φj’s. Then, we apply the following prior setting for the DPP:
M = n/2, σs = 1, τν = 1, at = bt = 1, and am = bm = 1.

The logarithmic scale of A, denoted as Z = logA,
represents the normalized microbiome abundances on the
log scale. We use Markov chain Monte Carlo (MCMC)
algorithm for model parameter estimation (see details in the
Supplementary Material), and calculate the posterior mean of Z
to fit the Gaussian graphical model in the next step. Since the
observed zero counts may not always represent the absence of
taxa in the samples, we treat these zeros differently in the matrix
Z. We categorize the two types of zeros (“extra” and “true” zeros)
based on the estimated ηij for each observed yij = 0 in the data. In
particular, suppose that we observe L zeros in total. We calculate
the marginal posterior probability of being 1 for each ηl, l =
1, . . . , L as pl =

∑B
b=1 I (ηl = 1) /B, where I(·) is the indicator

function, and B is the number of MCMC iteration after burn-in.
This marginal posterior probability pl represents the proportion
of MCMC iterations in which the lth 0 is essentially a missing
value rather than the lowest count in the corresponding sample.
Then, the observed zeros can be dichotomized by thresholding
the L probabilities. The zeros with pl greater than the threshold
are considered as “true" zeros in the data, whereas the rest are
imputed by the corresponding posterior mean of logα

·j. We used
the method proposed by Newton et al. (2004) to determine the
threshold that controls the Bayesian false discovery rate (FDR) to
be smaller than cη. Specifically, we first specify a small number cη,
which is analog to the significance level in the frequentist setting.
Then we compute the threshold following Equation (4), which
guarantees the imputed zeros have a Bayesian FDR to be smaller
than cη,

Bayesian FDR =
∑L

l=1

(

1− pl
)

I
(

1− pl < cη
)

∑L
l=1

(

1− pl < cη
)

. (4)

In practice, a choice of cη = 0.01 guarantees that the Bayesian
FDR to be at most 0.01. We set cη = 0.05 for the simulation study
and cη = 0.01 for the real data analysis.
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2.2. Graphical Model for Inferring
Taxa-Taxa Association
Based on the normalizedmicrobial abundances, we estimate their
partial correlation matrix in order to construct the microbiome
network under the Gaussian graphical model (GGM) framework.
An undirected graph G = (V ,E) is used to illustrate the
associations among vertices V = {1, . . . , p}, representing the
p microbial taxa. E = {emk} is the collection of (undirected)
edges, which is equivalently represented via a p-by-p adjacency
matrix with emk = 1 or 0 according to whether vertices m and
k are directly connected in G or not. GGM assumes that the
joint distribution of p vertices is multivariate Gaussian N(µ,6),
yielding the following relationship between the dependency
structure and the network: a zero entry in the precision matrix
� = 6−1 indicates the corresponding vertices are conditional
independent, and there is no edge between them in the graph
G. Hence, a GGM can be defined in terms of the pairwise
conditional independence. If X ∼ N(µ,�), then

ωmk = 0 ⇔ Xm ⊥ Xk|XV\{m,k} ⇔ ρmk = 0,

where ρmk = −ωmk/
√
ωmmωkk is the partial correlation

between vertices m and k, representing the degree and direction
of association between two vertices, conditional on the rest
variables. Consequently, learning the network is equivalent to
estimating the precision matrix �. For real microbiome data, we
set the taxa (on the same taxonomic level) as vertices. Hence, a
zero partial correlation in the precision matrix can be interpreted
as no association between the corresponding pair of taxa, while a
nonzero partial correlation can be interpreted as cooperative or
competing associations between that taxa pair.

In biological applications, we often require a sparse and
stable estimation of the precision matrix �. The sparsity can be
achieved by imposing l1-penalized log-likelihood,

�̂ = argmin
�≻0

log det�− trace(S�)− λ ‖�‖1 , (5)

where S is the sample covariance matrix. The coordinate descent
algorithm can iteratively solve p. The estimated precision matrix
is sparsistent (i.e., all the parameters that are zeros would be
estimated as zero with probability one) (Lam and Fan, 2009),
as Glasso theoretically guarantees a consistent recovery of the
sparse graph for the p vertices. When p >> n, the computational
efficiency is often satisfactory, and thus Glasso is widely used
in studying large-scale biological networks (Menéndez et al.,
2010; Oh and Deasy, 2014; Zhao and Duan, 2019). We employ
a stability-based approach to select the tuning parameter in the
Glasso, which is named Stability Approach to Regularization
Selection (StARS) (Liu et al., 2010). This method is an improved
algorithm for estimating the tuning parameter λ in (5). The
StARS selects the optimal sparsity parameter according to the
graph reproducibility under the subsampling of the original data.
In general, for each λ along the sparsity parameter path, we
first obtain random subsamples from the original data. Then we
estimate the graph for each subsample using the Glasso. Next, for
each sparsity parameter, we calculate the overall edge selection

instability from all the graphs constructed by the subsamples.
Finally, the optimal sparsity parameter λ∗ is chosen such that
it corresponds to the smallest amount of regularization and
still results in a graph instability to be lower than the pre-
specified tolerance level. Liu et al. (2010) showed that StARS
could provide the “sparsistent” network estimation that includes
all the true associations with probability one. Further, the StARS
has been widely used in biological network studies (Kurtz et al.,
2015; Tipton et al., 2018; Zhao and Duan, 2019). Due to its
excellent performance, here we adopt the StARS to select the
tuning parameter for Glasso. In summary, we use the normalized
abundances (on the log scale) as inputs, calculate the sparse
estimation of the precision matrix using the Glasso, and use the
StARS method to select λ in problem (5) to obtain the estimated
graph that represents the microbiome network.

2.3. Simulation Scenarios
We compare the performance of the HARMONIES and several
widely used methods for inferring microbiome networks. These
methods include SPIEC-EASI (Kurtz et al., 2015), CClasso (Fang
et al., 2015), and correlation-based network estimation used
in Faust and Raes (2016) and Weiss et al. (2016). While the
proposed model and SPIEC-EASI infer the network structure
from sparse precision matrices, CClasso, and the correlation-
based method utilize sparse correlation matrices to represent the
network. We generated both simulated and synthetic datasets
that mimic the real microbiome sequencing count data. We use
Yn×p to denote the generated count matrix. For a comprehensive
comparison, we varied the sample size and the number of taxa as
n ∈ {60, 100, 200, 500}, and the number of taxa p ∈ {40, 60}.

2.3.1. Generating Simulated Data
We generated the simulated datasets from a Dirichlet-
multinomial (DM) model using the following steps: (1) to
generate the binary adjacency matrix; (2) to simulate the
precision matrix and the corresponding covariance matrix;
(3) to generate n multivariate Gaussian variables based on
the covariance matrix to represent the true n × p underlying
taxonomic abundances, denoted as D; (4) to simulate the count
table Yn×p from a DM model, with its parameters being exp(D);
(5) to mimic the zero-inflation in real microbiome data by
randomly setting part of entries in the count table to zeros.
Note that the data generative scheme is different from the
model assumption, which is given in Equation (1). The detailed
generative models are described below.

We began with simulating a p-by-p adjacency matrix for
the p taxa in the network. Here, the adjacency matrix was
generated according to an Erdős–Rényi (ER) model. An ER
model ER(p, ρ) generates each edge in a graph G with probability
ρ independently from every other edge. Therefore, all graphs
with p nodes and M edges have an equal probability of

ρM(1− ρ)(
p
2)−M . All the edges in graph G correspond to the 1’s

in the resulted binary adjacency matrix. Next, we simulated the
precision matrix � following Peng et al. (2009). We started by
setting all the diagonal elements of � to be 1. Then, for the rest
elements that correspond to the 1s in the adjacency matrix, we
sampled their values independently from a uniform distribution
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Unif([−0.1, 0] ∪ [0, 0.1]). To ensure positive definiteness of the
precision matrix, we followed Peng et al. (2009) by dividing each
off-diagonal element by 1.5 times the sum of the absolute value
of all the elements in its row. Finally, we averaged the rescaled
precision matrix with its transpose and set the diagonal elements
to 1. This process ensured the preceding matrix was positive
definite and symmetric. The corresponding covariance matrix
was set as 6 = �−1.

Next, we simulated n multivariate Gaussian variables from
MN(µ,6) to represent the true underlying abundances D.
To obtain a count matrix that fully mimics the microbiome
sequencing data, we generated counts from a DM model with
parameter exp(D). Specifically, we first sampled the underlying
fractional abundances for the ith sample from a Dirichlet
distribution. The ith underlying fractional abundance was then
denoted as ψ i ∼ Dirichlet(exp(Di·)). Next, the counts in the
ith sample were generated from Multinomial(Ni,ψ i). Finally,
we randomly selected π0% out of n × p counts and set
them to zeros to mimic the zero-inflation observed in the real
microbiome data. In general, the generative process had different
assumptions from the proposed method. Under the appropriate
choice of parameters, the simulated count data was zero-inflated,
overdispersed, and the total reads varied largely between samples.
In practice, we let ρ = 0.1 in the ER model. The mean
parameter µ of the underlying multivariate Gaussian variable
was randomly sampled from a uniform distribution Unif[0, 10].
The number of total counts across samples Ni, i = 1, . . . , n
was sampled from a discrete uniform distribution with range
[50, 000, 100, 000]. Under each combination of n, p, and π0, we
generated 50 replicated datasets by repeating the process above.

2.3.2. Generating Synthetic Data
We generated synthetic data following the Normal-to-Anything
(NorTA) approach proposed in Kurtz et al. (2015). NorTA was
designed to generate multivariate random variables with an
arbitrary marginal distribution from a pre-specified correlation
structure (Cario and Nelson, 1997). Given the observations of p
taxa from a real microbiome dataset, the NorTA generates the
synthetic data with n samples as follows: (1) to calculate the p-
by-p covariance matrix 60 from the input real dataset; (2) to
generate an n-by-p matrix, denoted by Z0, from a multivariate
Gaussian distribution with a mean of 01×p and the covariance
matrix of60; (3) to use standard normal cumulative distribution
function to scale values in each column of Z0 within [0, 1]; (4) to
apply the quantile function of a ZINB distribution to generate
count data from those scaled values in each column of Z0. In
practice, we used R package SPIEC-EASI to implement the
above data generative scheme, where the real data were from
those healthy control subjects in our case study presented in
section 3.2. Under each combination of n and p, we generated
50 replicated datasets.

2.4. Model Performance
2.4.1. Alternative Methods in Network Learning
We considered the four commonly used network learning
methods. The first twomethods, SPIEC-EASI-Glasso and SPIEC-
EASI-mb, use the transformed microbiome abundances which

are different from the normalized abundances estimated by
HARMONIES. Both infer the microbial network by estimating
a sparse precision matrix. The former method (SPIEC-EASI-
Glasso) measures the dependency among microbiota by their
partial correlation coefficients, and the latter method (SPIEC-
EASI-mb) uses the “neighborhood selection” introduced by
Meinshausen and Bühlmann (2006) to construct the network.
The third method, denoted as Pearson-corr, calculates Pearson’s
correlation coefficients between all pairs of taxa. In its estimated
network, the edges correspond to large correlation coefficients.
To avoid arbitrarily thresholding the correlation coefficients,
the fourth method, CClasso (Fang et al., 2015), directly infers
a sparse correlation matrix with l1 regularization. However, as
discussed in section 1, representing the dependency structure
by the correlation matrix may lead to the detection of
spurious associations.

2.4.2. Evaluation Criteria
We quantified the model performances on the simulated data by
computing their receiver operating characteristic (ROC) curves
and area under the ROC curve (AUC). For the HARMONIES or
SPIEC-EASI, the network inference was based on the precision
matrix. Hence, under each tuning parameter of Glasso, we
calculated the number of edges being true positive (TP) by
directly comparing the estimated precision matrix against the
true one. More specifically, we considered an edge between taxon
m and taxon k to be true positive if ωmk 6= 0, ω̂mk 6= 0, and ω̂mk

shared the same sign with ωmk. We calculated the number of true
negative (TN), false positive (FP), and false negative (FN) in a
similarmanner. Therefore, each tuning parameter defined a point
on a ROC curve. As for the correlation-basedmethods, we started
with ranking the absolute values in the estimated correlation
matrices, denoted as Ĉ. Next, we used each value as a threshold
and set all the entries in Ĉ having their absolute values smaller
than the current threshold to be zeros. Then, the number of TP,
TN, FP, or FNwas obtained by comparing the sparse Ĉ against the
true partial correlation matrix. Therefore, each unique absolute
value in the original estimated correlation matrix defined a point
on the ROC curve.

We further used the Matthew’s correlation coefficient (MCC)
to evaluate results from the simulated data. The MCC is
defined as

(TP× TN− FP× FN)√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

.

Here, the MCC was particularly suitable for evaluating network
models. As the number of conditionally independent taxa pairs
was assumed to be much greater than the number of dependent
pairs in a sparse network, MCC was preferable to quantify the
performances under such an imbalanced situation. Note that
MCC ranges from [−1, 1], with a value close to 1 suggesting
a better performance. Since each value of MCC was calculated
using a given set of TP, TN, FP, and FN, we adopted the optimal
choice of tuning parameter for the HARMONIES or SPIEC-
EASI (with either Glasso or MB for network inference), given by
StARS. As for the correlation-based methods, CClasso outputted
a sparse correlation matrix. We used the result to calculate TP,
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TN, FP, and FN directly. For Pearson-corr, we set the threshold
such that the resulted number of nonzero entries in the sparse
correlation matrix was the same as the number of non-zero
entries in the true sparse partial correlation matrix. In fact, this
choice could favor the performance of Pearson-corr for larger
sample size, as shown in section 3.1.

To assess model performances on the synthetic datasets, we
followed Kurtz et al. (2015) to use a metric called area under
the precision-recall (AUPR) curves, in addition to AUC. Briefly
speaking, the AUPR and AUC were calculated as follows: (1)
to rank all possible edges according to their confidence values;
(2) to generate the precision-recall curve and the ROC curve
by comparing edge inclusions against the true sparse precision
matrix; (3) to calculate the area under the precision-recall curve
or the ROC curve. Note that the confidence values were chosen
as the edge stabilities under the optimal choice of the tuning
parameter selected by StARS for HARMONIES, SPIEC-EASI-
Glasso, and SPIEC-EASI-mb, while for CClasso and Pearson-
corr, p-values were used.

3. RESULTS

3.1. Simulation Results
Figures 1, 2 compare the AUCs andMCCs on the simulated data
under various scenarios, including varying sample sizes (n =
60, 100, 200, or 500), total numbers of taxa (p = 40 or 60), extra
percentages of zeros added (π0 = 10, or 20%). In each subfigure,
the HARMONIES outperformed the alternative methods in
terms of both AUC and MCC, and it maintained this advantage
even with the number of sample size greatly increases. Further,
a smaller sample size, a larger proportion of extra zeros added
(π0 = 20%), as well as a larger number of taxa in the network
(p = 60), would hamper the performance of all the methods,
as we expected. Two modes of SPIEC-EASI, SPIEC-EASI-Glasso,
and SPIEC-EASI-mb, showed very similar performances under
all the scenarios, with SPIEC-EASI-Glasso having only amarginal
advantage over the other. Further, we observed that the Pearson-
corr method yielded higher AUCs even than the precision matrix
based methods, especially when there was a lager proportion of
extra zeros or larger number of taxa in the network. This result
suggested that the Pearson-corr could capture the overall rank
of the signal strength in the actual network. However, under
a fixed cut-off value that gave a sparse correlation network,
the MCCs from the Pearson-corr were always smaller than the
precision matrix based methods. Note that the cut-off value
we specified for Pearson’s correlation method indeed favored
its performance. In general, the alternative methods considered
here were able to reflect the overall rank of the signal strength
by showing reasonable AUCs. However, they failed to give an
accurate estimation of the network under a fixed cut-off value.

Figure 3 demonstrates that ourmodel outperformed all others
on the synthetic datasets. The performances in terms of AUC
under different scenarios are summarized in Figures 3A,B,
while those in terms of AUPR are displayed in (Figures 3C,D).
As we can see, either increasing the sample size n or
decreasing the number of features p would improve the
performance of all methods and lead to greater disparity between

partial and pairwise correlation-based methods. In general,
our HARMONIES maintained the best in all simulation and
evaluation settings except for one case, where the SPIEC-EASI-
mb only showed a marginal advantage (see n = 60 in Figure 3C).
Interestingly, our observation confirmed a finding mentioned by
Kurtz et al. (2015), that is, the SPIEC-EASI-mb was slightly better
than SPIEC-EASI-Glasso in terms of AUPR under the optimal
choice of the tuning parameter. As for the two correlation-based
methods, we found that Pearson-corr outperformed CClasso in
most of the scenarios.

3.2. Analysis of Microbiome Data From
Colorectal Cancer Patients
Colorectal cancer (CRC) is the third most common cancer
diagnosed in both men and women in the United States
(Arnold et al., 2017). Increasing evidence from recent studies
highlights a vital role for the intestinal microbiota in malignant
gastrointestinal diseases including CRC (Louis et al., 2014; Sears
and Garrett, 2014; Drewes et al., 2016). In particular, studies
have reported that dysbiosis of specific microbiota is directly
associated with CRC (Marchesi et al., 2011; Kostic et al., 2013;
Flynn et al., 2016). The current microbiome research interests
have gone beyond the discovery of disease-related microbiota,
with a growing number of studies investigating the interactive
associations among the microbial taxa. Using the proposed
model, we interrogated the microbiome profiling data of a CRC
study to determine the microbiome network structures.

We analyzed the gut microbiome dataset of a CRC study
published by Feng et al. (2015). We extracted from the original
cohort1 the 43 CRC patients and the 58 healthy controls. The
original sequencing data at the genus level were quantified using
curatedMetagenomicData (Pasolli et al., 2017). We had p = 187
genera for both the 43 CRC patients and the 58 healthy controls.
We implemented the HARMONIES as follows. For the CRC
group, we first applied the ZINB model to obtain the normalized
abundance matrix A, utilizing the specifications detailed in
section 2.1. We then took the logarithmic transformation of the
normalized abundance and imputed the missing values. Before
implementing the proposed method, we filtered out the low
abundant genera with zeros occurring more than half samples.
Removing low abundant taxa is a common step in microbiome
research (see e.g., Qin et al., 2014; Zeller et al., 2014; Kostic
et al., 2015; Kurtz et al., 2015; Wadsworth et al., 2017; Yilmaz
et al., 2019). The rationale being that these “zero-abundant” taxa
may be less important in a network, which was also confirmed
by our simulation study. This filtering process left 51 and 36
genera in the CRC and control group, respectively. The result
from using a more relaxed filtering threshold is available in the
supplement, where we kept the genera that had at least 10%
nonzero observations across the samples.

Figures 4A,B display the estimated networks for the CRC
and the control group, respectively. Each node, corresponding
to a genus, was named after its phylum level. All the genera

1The original metagenomic shotgun sequencing data from the fecal samples

are available in the European Bioinformatics Institute Database (accession

number ERP008729).
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FIGURE 1 | Simulated data: (A,B) area under the ROC curves (AUCs) and (C,D) Matthew’s correlation coefficient (MCCs) achieved by different methods under the

number of taxa p = 40 and different sample sizes and zero proportions, averaged over 50 replicates.

shown in Figure 4 belong to six phyla in total. By using their
phylum name to further categorize these distinct genera, we
aimed at exploring interesting patterns among them at a higher
taxonomic level. Figure S1 displays the same network using
the actual genus name on each node. The node sizes are
proportional to its normalized abundances in the logarithmic
scale. The green or red edge indicates a positive or a negative
partial correlation, respectively. And the width of an edge is
proportional to the absolute value of the partial correlation
coefficient. To make a clear comparison, we intentionally kept
the nodes and their positions to be consistent between the
two subfigures. In either of the two groups, we included a
node in the current plot if there exists an edge between it
with any nodes in at least one group. In general, the two
groups share several edges with the same direction of partial
correlations, but the majority of edges are unique within
each group.

Network estimation of the CRC group demonstrated
several microbial communities. For example, three genera:
Fusobacterium, Peptostreptococcus, and Parvimonas consisted of
a unique subnetwork as highlighted in Figure 4A. These three
genera were isolated in the control group’s network, as shown
in Figure 4B. Interestingly, specific species under these three
genera have been reported as enriched taxa in CRC and related
to worse clinical outcome (Mima et al., 2016; Yu et al., 2017;
Long et al., 2019). A previous CRC study by Kostic et al. (2013)
supported the causal role of species Fusobacterium nucleatum

by showing that F. nucleatum promotes tumor progression
by increasing both tumor multiplicity and tumor-infiltrating
myeloid cells in a preclinical CRC model. Further, a recent
study (Long et al., 2019) demonstrated that Peptostreptococcus
anaerobius accelerated colorectal tumorigenesis in a murine
CRC model. This study suggested that P. anaerobius directly
interacted with colonic epithelial cells and also promoted
CRC by modifying the tumor immune microenvironment.
While the causal role of the species Parvimonas micra has not
been biologically validated, multiple clinical studies reported
an elevated level of P. micra in CRC patients (Purcell et al.,
2017; Yu et al., 2017; Dai et al., 2018). Of interest, Parvimonas
were closely associated with animal-based diets, which have
previously been shown to be significantly associated with
increased risk for CRC (Chan et al., 2011). The previous
studies only investigated those CRC-related taxa individually,
whereas a novel finding by HARMONIES analysis suggested
that all the three genera were co-aggregating in CRC patients
as their pairwise associations are all positive. Interestingly, in a
prior study direct positive associations between Fusobacterium
and Peptostreptococcus, as well as Peptostreptococcus and
Parvimonas, were identified (Hibberd et al., 2017). However,
there was no direct association between Fusobacterium and
Parvimonas. Similarly, another study (Drewes et al., 2017)
found a direct co-occurrence pattern between two species: F.
nucleatum and P. micra. Using HARMONIES, we could jointly
identify the relationship among each pair of the three genera,
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FIGURE 2 | Simulated data: (A,B) area under the ROC curves (AUCs) and (C,D) Matthew’s correlation coefficient (MCCs) achieved by different methods under the

number of taxa p = 60 and different sample sizes and zero proportions, averaged over 50 replicates.

conditional on all other genera. This novel subcommunity of
three CRC-enriched genera formulated a recurring module
and may function as a cooperative group in CRC patients.
A closer investigation of their co-occurrence pattern could
potentially elucidate both their contributions to CRC and
the basic biology under their relationships. Two additional
novel taxa interactions were identified by HARMONIES
analysis: Streptococcus and Veillonella, and Streptococcus and
Haemophilus. In fact, previous CRC studies showed enrichment
of these three genera or their species in CRC patients (see
e.g., Geng et al., 2014; Ugai et al., 2014; Kumar et al., 2017;
Koliarakis et al., 2019), but had not detected these novel
interactions. In conclusion, HARMONIES may reveal how
multiple CRC-related taxa could potentially promote disease
progression together.

Having shared edges between the two networks suggests
that the HARMONIES is robust to the edge selection. We
observed that the shared edges tended to appear for those
more abundant genera. For example, we circled eight genera in
Figure 4B, and the HARMONIES suggested multiple positive
partial correlations among them. For these eight genera, we
observed six shared edges between the CRC and healthy control
networks. Notice that all the shared edges were consistent in
the association directions, and they also corresponded to the
relatively stronger association in both networks (wider in the
edge width). We found these shared edges tend to connect
those more abundant genera (node with larger size). Indeed,

the eight genera considered here belong to phyla Bacteroidetes
and Firmicutes, both were in the top three most abundant phyla
for CRC patients and healthy controls reported by Gao et al.
(2015) and Mori et al. (2018). Therefore, it was more likely that
the highly abundant genera shared similar association patterns
between the two groups, and the HARMONIES demonstrated
its robustness by preserving these relatively stronger partial
correlations among these genera. On the other hand, the network
of the control group contained more negative partial correlations
as shown in Figure 4B. Furthermore, the two edges linked
to Streptococcus were different from the CRC group. Here,
Streptococcus had a negative association with Subdoligranulum
and a positive association with Rothia. There has been no
evidence suggesting these two genera are CRC-related. Hence
a further investigation is merited. Additionally, the CRC group
has another distinct small subnetwork formed by the four
genera, two from Firmicutes, one from Proteobacteria, and one
from Verrucomicrobia. These group-specific associations were
never reported. Lastly, we observed several interesting patterns
between the two groups when summarizing the genera to
their phylum levels. Genera in Firmicutes (labeled as “Fm” in
Figure 4) showed more positive associations in the case group
than in the control group, whereas negative associations between
Firmicutes and Bacteroidetes (labeled as “Ba” in Figure 4)
were more common in the control group. Again, these novel
patterns still need further biological validations to elucidate
their functions.
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FIGURE 3 | Synthetic data: (A,B) area under the ROC curves (AUCs) and (C,D) area under the precision-recall curves (AUPRs) achieved by different methods under

different sample sizes and taxa numbers, averaged over 50 replicates.

FIGURE 4 | CRC case study: The estimated networks by HARMONIES for (A) CRC patients and (B) healthy controls. Increased abundances of species under the

three genera (Fusobacterium, Peptostreptococcus, Parvimonas) in the dashed rectangular box in (A) were reported to be associated with the disease. CRC patients

and healthy controls shared a similar subnetwork (composed of eight genera) circled in (B). Each node here represents a genus labeled by its phylum name. The

version with distinct genus names is available in Figure S1 in the supplement.
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4. DISCUSSION

With the advent of next-generation sequencing technology,
microbiome research now has the opportunity to explore
microbial community structure and to characterize the microbial
ecological association for different populations or physiology
conditions (Kurtz et al., 2015). In this paper, we introduce
HARMONIES as a statistical framework to infer sparse networks
using microbiome sequencing data. It models the original count
data by a zero-inflated negative binomial distribution to capture
the large amount for zeros and over-dispersion, and it further
implements Dirichlet process priors to account for sample
heterogeneity. In contrast, current methods for microbiome
network analyses rely on the compositional data, which could
cause information loss due to ignoring the unique characteristics
of the microbiome sequencing count data. Following the
data normalization step, the HARMONIES explores the direct
connections in the network by estimating the partial correlations.
The results from the simulation study have demonstrated the
advantage of the HARMONIES over alternative approaches
under various conditions.When applied to an actual microbiome
dataset, the HARMONIES suggests all the nodes to be taxa
at the same taxonomic level, such as species, genus, family,
etc. This ensures proper biologically interpretations of those
detected associations. When applied to a real CRC study, the
HARMONIES revealed an intriguing community among three
CRC-enriched genera. Further, shared patterns between the
CRC and the control networks suggest a common community
pattern of disease neutral genera. Additional studies validating
the biological relevance of these microbial associations, however,
will need to be conducted.

Both the simulated and synthetic data showed that a larger
sample size improved the performance of all the network
learning methods. In practice, many disease-related microbiome
studies, especially those studying rare diseases, always have small
sample sizes. This limitation directly affects the estimation of the
normalized matrix A from the ZINB model. Notice that for a
taxon j, a small sample size could result in a large variance in the
posterior distribution of logα

·j. However, many disease studies
include reference groups where the measurements on the same
taxonomic features are available. The additional information
from the subjects in the reference group can potentially help
improve the posterior inference of the normalized abundances.
We generalized the proposed ZINB model to handle two groups,
with the goal of borrowing information between groups in
estimating the normalized abundances. These detailed model
formula and implementation were included in the supplement
(see Supplementary Material: section 2).

Our hybrid approach for microbiome network inference
can be extended. One future direction is to incorporate the
differential network analysis into the existing framework. It

jointly considers the association strengths between each pair
of taxa from different groups, and it compares the estimated
individual networks to capture the significantly different
connectivities. Our current method can infer the normalized
abundances for two groups, and we provided the details steps
in the supplement. However, an integrated differential network
can be expected to better study the differential microbial
community structure and link the communities to human
health status.
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