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Objective: Unbiased metabolic profiling has been initiated to identify novel

metabolites. However, it remains a challenge to define reliable biomarkers for

rapid and accurate diagnosis of mild cognitive impairment (MCI). Our study

aimed to evaluate the association of serum metabolites with MCI, attempting

to find new biomarkers and combination models that are distinct for MCI.

Methods: A total of 380 participants were recruited (mean age: 72.5 ± 5.19

years). We performed an untargeted metabolomics analysis on older adults

who underwent the Mini-Mental State Examination (MMSE), the Instrumental

Activities of Daily Living (IADL), and physical performance tests such as hand

grip, Timed Up and Go Test (TUGT), and walking speed. Orthogonal partial

least squares discriminant analysis (OPLS-DA) and heat map were utilized to

distinguish the metabolites that di�er between groups.

Results: Among all the subjects, 47 subjects were diagnosed with MCI, and

methods based on the propensity score are used to match the MCI group with

the normal control (NC) group (n = 47). The final analytic sample comprised

94 participants (mean age: 75.2 years). The data process from the metabolic

profiles identified 1,008 metabolites. A cluster and pathway enrichment

analysis showed that sphingolipid metabolism is involved in the development

of MCI. Combination of metabolite panel and physical performance were

significantly increased discriminating abilities on MCI than a single physical

performance test [model 1: the area under the curve (AUC) = 0.863; model

2: AUC = 0.886; and model 3: AUC = 0.870, P < 0.001].

Conclusion: In our study, untargeted metabolomics was used to detect

the disturbance of metabolism that occurs in MCI. Physical performance

tests combined with phosphatidylcholines (PCs) showed good utility in

discriminating between NC and MCI, which is meaningful for the early

diagnosis of MCI.

KEYWORDS

mild cognitive impairment, untargeted metabolomics, sphingolipid metabolism,

physical performance, phosphatidylcholine
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Introduction

Mild cognitive impairment (MCI) is the most prevailing

neurodegenerative disease, affecting approximately 15.5% of the

population above 60 years (Jia et al., 2020). It is considered

a transition phase between normal cognitive aging and early

dementia and the state is a “window” in which it may be possible

to intervene and delay the progression to dementia (Mufson

et al., 2012). Early detection of those most at risk is necessary

to properly target early treatment and the current diagnosis of

MCI essentially relies on PET neuroimaging and cerebrospinal

fluid (CSF) proteins, but these detections are expensive and

invasive. Neurobiological features of cognitive impairment are

hypometabolism in temporoparietal cortices (Anderson, 2019);

therefore, many studies increasingly emphasize the biomarkers

that may assist the diagnosis of MCI.

Accumulated evidence indicated that MCI is multifactorial;

a combination of age, genetics, and environmental factors

might contribute to its onset and progression (Jia et al.,

2020). Emerging evidence indicated that peripheral alterations

including metabolic dysregulations might precede and

contribute to neurodegeneration (Nho et al., 2019; Weng

et al., 2019). Liquid chromatography-mass spectrometry

(LC-MS)-based metabolomics is the systemic study of small-

molecule metabolite profiles of organisms in a certain state

or phenotype (Kim et al., 2021). By using metabolomics, it

is possible to discriminate antecedent cognitive impairment

before the onset of overt clinical symptoms and epidemiological

evidence supported a link between metabolic disorders and

cognitive impairment (Wang et al., 2020). Several studies have

investigated the role of metabolomics in MCI, Alzheimer’s

disease (AD), and cognitive decline and suggest that cognitive

function is closely accompanied by abnormal bile acid

metabolism (Mahmoudian Dehkordi et al., 2019; Nho et al.,

2019), free fatty acid metabolism (Snowden et al., 2017; Toledo

et al., 2017), and lipid metabolism (Han et al., 2011; Varma

et al., 2018). However, there are still considerable challenges

for blood-based biomarkers, which include a lack of assay

development. In this study, we aimed to utilize an advanced

high-resolution mass spectrometry metabolomics method

capable of capturing the maximum number of spectral features

in human plasma.

Mild cognitive impairment (MCI) is diagnosed based on

subjective complaints of memory loss or impairment by brief

cognitive or neuropsychological tests, and unchanged basic

daily functioning (Tricco et al., 2012). Cognitive function

is related to the prefrontal cortex, the parietal lobe, and

the hippocampus, which affect the physical performance of

individuals (Allali et al., 2014), and our previous study has

found that physical performance is strongly associated withMCI

in older adults (Liu et al., 2021). However, using these tests

alone is not sufficient for the differential diagnosis of MCI.

Herein, we performedmetabolite alteration analysis of plasma in

relation to MCI from older adults via LC-MS-based untargeted

metabolomic technology and established multivariate models

with high specificity and sensitivity to accurately differentiate the

MCI groups.

Materials and methods

Study participants

The research population included residents aged ≥65 years

from Shanghai, China, who had joined China’s national free

physical examination program. A total of 380 subjects were

invited to complete a comprehensive geriatric assessment and

face-to-face interviewing in the local community hospital. This

study was carried out in accordance with the principles of the

Declaration of Helsinki. All the subjects provided informed

consent before participation.

Measures of physical performance

All the participants underwent physical examination,

detailed neurocognitive assessment, and collection of blood

samples. The performance-based assessment consisted of grip

strength, Timed Up and Go Test (TUGT), and a 4-m walking

test. Grip strength was measured using a dynamometer.

Participants were allowed to exert maximum efforts twice using

the dominant hand; then, the average value was calculated and

adjusted with body weight to ensure muscle strength evaluated

was independent of body size. TUGT assessed the seconds of

standing up from a chair, walking 3m at the usual pace past

a line on the floor, turning around, walking back to the chair,

and sitting down on a chair. The walking speed test consists of

participants being timed while walking 4m at their usual pace,

and they were allowed to use a gait assistance device. Participants

completed the test two times, and the mean gait speed (m/s) was

calculated. The detailed test methods have been described in our

previous studies (Song et al., 2021).

Measures of mild cognitive impairment

The assessment of MCI was based on our previous study

(Chen et al., 2021; Liu et al., 2021; Song et al., 2022). The criteria

include: (1) memory complaint by patient, family, or physician;

(2) normal activities of daily living; and (3) absence of dementia.

The classification of MCI and non-MCI was assessed by the

Mini-Mental State Examination (MMSE) and the Instrumental

Activities of Daily Living (IADL) scale (Su et al., 2014). The

cutoff points used for cognitive impairment are as follows: ≤17

for illiterate people, ≤20 for people in primary school, and p 24

for people in middle school or higher (Katzman et al., 1988). The
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IADL includes 8 items, and the score ranges from 0 to 8 points,

with the higher scores indicating better daily living ability. The

IADL score of ≥6 indicates intact or only mildly impaired daily

living ability (Lawton and Brody, 1969).

Sample collection and processing

Among the 380 subjects, 333 were normal older adults and

47 were patients with MCI. We obtained 47 normal control

(NC) subjects matched by age, sex, body mass index (BMI),

and education using propensity score matching. Plasma was

collected in EDTA tubes from individuals after an overnight

fast using standard venipuncture procedures and then separated

and stored at −80◦C until analyses. Before the metabolomics

analysis, 150 µl plasma was added to a new tube with

10 µl of L-2-chlorophenylalanine (0.3 mg/ml) dissolved in

methanol as internal standard, and then 450 µl mixture of

methanol/acetonitrile (2/1) was added and vortexed for 1min.

The whole samples were extracted by ultrasonic for 10min and

stored at −20◦C for 30min and then centrifuged at 13,000 rpm

for 10min at 4◦C. A total of 200 µl of supernatant was dried

in a freeze concentration centrifugal dryer and resolubilized

by 300 µl methanol/water (1/4), then vortexed for 30 s, and

extracted by ultrasonic for 3min. After vigorousmixing, samples

were centrifuged at 4◦C (13,000 rpm) for 10min and 150 µl

supernatants were filtered through 0.22µm microfilters and

transferred to liquid chromatography (LC) vials.

Untargeted liquid chromatography-mass
spectrometry analysis

The analytical instrument was a liquid mass spectrometer

system consisting of an ACQUITY ultra-performance liquid

chromatography (UPLC) I-Class tandem VION IMS Q-

Tof high-resolution mass spectrometer (Waters Corporation,

Milford, USA). The samples were separated on the ACQUITY

UPLC BEH C18 column (Waters Corporation; 1.7µm, 100

× 2.1mm) at a flow rate of 0.4 ml/min. The column was

maintained at 45◦C, the sample chamber was set at 4◦C,

and the injection volume was set to 1 µl. The mobile phases

were water containing 0.1% formic acid (solution A) and

acetonitrile/methanol (2/3, vol/vol) containing 0.1% formic acid

(solution B). The gradient was 0–1min, 30% B; 1–2.5min, 30–

60% B; 2.5–6.5min, 60–90% B; 6.5–8.5min, 90–100% B; 8.5–

10.7min, 100% B; 10.7–10.8min, 100–1% B, 10.8–13min, 1%

B. The ion source was electrospray ionization (ESI) and the

sample mass spectrometry signal acquisition was performed in

positive and negative ion scanning mode, respectively. Mass

spectrometric tuning parameters for LC-MS analysis employed

optimized settings as follows: ion source temperature, 150◦C;

capillary voltages, 2.5 kV; desolvation gas flow, 900 L/h;

declustering potential, 40V; collision energy, 4 eV; mass scan

range, m/z 50–1,000; and scan time, 0.2 s.

Statistical analyses

We used the software Progenesis QI version 2.3 (Nonlinear,

Dynamics, Newcastle, UK) for meaningful data mining,

performing peak alignment, picking, normalization, and

retention time (RT) correction. The resulting matrix of features

included information on the mass-to-charge ratio (m/z), RT,

and peak intensities. Metabolites were identified by Progenesis

QI data processing software based on precise m/z, secondary

fragments, and isotopic distribution using the Human

Metabolome Database (HMDB) (http://www.hmdb.ca/), lipid

maps (version 2.3) (http://www.lipidmaps.org/), METLIN

(http://metlin.scripps.edu/), and self-built databases (EMDB) to

do qualitative analysis. Comprehensive procedures, including

precursor ion alignment and ion fusion, database searching,

and scoring, were applied to remove the artifacts and

background noise (Zhao et al., 2018). A total of 1,008 compound

identifications were automatically linked to the compounds.

Orthogonal partial least squares discriminant analysis (OPLS-

DA) was performed on the identified metabolites after filtering

to distinguish the differences in metabolic profiles between the

control and MCI groups. A total of 200 response permutation

testing (RPT), including parameters, such as R2 and Q2, were

conducted to assess the quality and reliability of established

models. The model is considered an excellent fitness and

predictive capability when these parameters are close to 1.0.

Differential metabolites between groups were selected using a

multidimensional couple with single-dimensional analysis. The

variable importance in projection (VIP) generated in OPLS-DA

analysis represented differential metabolites with biological

significance. Furthermore, the significance of differential

metabolites was further verified by Student’s t-test. Variables

with the VIP > 1.0 and P < 0.05 were considered to be

differential metabolites.

To reveal the mechanism of metabolic pathway variation in

different samples, the differential metabolites were carried out

with metabolic pathway enrichment analysis based on the Kyoto

Encyclopedia of Genes and Genomes (KEGG) database (http://

www.kegg.jp/kegg/pathway.html). Their KEGG ID and pathway

were found, and then the number of metabolites enriched in the

corresponding pathway was calculated. The pathway with a p ≤

0.05 was selected as an enriched pathway; its calculation formula

is given as:

P =1−

m−1
∑

i = 0

(

M
i

) (

N−M
n−i

)

N
n

where, N: the total number of metabolites, n: the number of

differential metabolites, M: the number of metabolites annotated
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as a specific pathway, and m: the number of differential

metabolites annotated as a specific pathway.

Baseline sociodemographic characteristics between the NC

and MCI groups used an independent t-test for numerical

variables and the chi-squared test for categorical variables. Data

with a normal distribution were expressed as the mean ±

SD and categorical variables were expressed as proportions.

Statistical analyses were performed using SPSS version 26.0

(SPSS Incorporation, Chicago, IL, USA), and P < 0.05 was

considered statistically significant. The predictive performance

of the model was assessed by estimating the area under

the receiver operating characteristic (ROC) curve (AUC). We

further determined all the significant functional models toward

MCI using C-statistics to determine whether combined models

improved discrimination ability. The comparison of the area

under the ROC curve (AUC) was performed using the MedCalc

version 20.0.4 software.

Results

Characteristics of the study population

Among the 380 participants (161 men) who were available

to be analyzed, 47 (12.4%) met the diagnostic criteria and

were defined as having MCI. We matched the MCI group

(n = 47) with the normal control (NC) group (n = 47)

in case the differences in metabolic levels owing to age,

gender, degree of education, and disease conditions. Totally,

94 participants (mean age 75.2 years, age range 66–87 years)

had complete clinical and metabolomics data. Table 1 displays

the demographic and clinical characteristics of the participants.

Compared with the NC group, participants with MCI had

lower physical performance (slower walking speed and poorer

mobility) and a lower MMSE score (P < 0.05). There was no

significant difference in age distribution, gender composition,

and the remaining indicators between the groups, which

indicated that the subjects in each group were comparable.

Alterations in serum metabolites profiling
of the NC and MCI groups

To illustrate the metabolic alterations, we performed an

untargeted metabolomics approach using plasma samples.

Totally, 4,488 features in ESI+mode and 3,045 ion signatures in

ESI- mode were detected, and 1,008 metabolites were identified.

As shown in Figure 1A, the quality control (QC) samples

clustered in the center of the principal component analysis

(PCA) score plots suggesting that the analyses were repeatable

and robust. Then, we further analyzed the relative SD (RSD)

of metabolites in QC samples; 99.5% of the metabolites had

RSD values of <30%, which further confirmed the reliability

TABLE 1 Baseline sociodemographic variables of the matched groups

(N = 94).

Characteristic NC (n= 47) MCI (n= 47) P value

Age (years) 74.85± 5.09 75.64± 5.83 0.488

Sex 0.658

Male (%) 16 (34.04) 14 (29.79)

Female (%) 31 (65.96) 33 (70.21)

BMI (kg/m2) 24.62± 4.13 24.21± 3.42 0.598

Education level (%) 0.826

Illiteracy 18 (38.30) 19 (40.42)

Primary school 22 (46.81) 23 (48.94)

Secondary school 7 (14.89) 5 (10.64)

Smoking 4 (8.5) 3 (6.4) 0.694

Drinking 12 (25.5) 13 (27.7) 0.815

Living alone 38 (80.9) 34 (72.3) 0.330

Grip/weight 0.33± 0.15 0.33± 0.11 0.896

Walking speed 1.08± 0.28 0.89± 0.26 0.001

TUGT 11.38± 3.87 14.23± 6.61 0.013

MMSE 23.89± 3.14 16.66± 3.52 <0.001

Sleep duration 8.76± 1.26 8.82± 1.68 0.859

IPAQ 5,162.2± 4,663.2 4,646.5± 5,133.7 0.611

Total cholesterol 5.21± 1.13 5.27± 1.16 0.798

Triglycerides 1.29± 0.63 1.40± 0.75 0.433

HDL 1.46± 0.37 1.44± 0.41 0.842

LDL 3.35± 0.92 3.34± 0.96 0.960

Number of diseases

Diabetes (%) 13 (27.7) 13 (27.7) 1.000

Hypertension (%) 29 (61.7) 37 (78.7) 0.071

Hyperlipidemia (%) 9 (19.1) 9 (19.1) 1.000

Stroke (%) 22 (46.8) 20 (42.6) 0.678

Heart disease (%) 20 (42.6) 25 (53.2) 0.302

Osteoarthritis (%) 9 (19.1) 12 (25.5) 0.458

Peptic ulcer (%) 9 (19.1) 6 (12.8) 0.398

NC, normal ctrl; MCI, mild cognitive impairment; BMI, body mass index; TUGT,

Timed Up and Go Test; MMSE, the Mini-Mental State Examination; IPAQ,

International Physical Activity Questionnaire; HDL, high-density lipoprotein; LDL,

low-density lipoprotein.

of the data (Figure 1B). To maximize the identification of

differential metabolites between MCI and the matched NC

groups, we constructed an OPLS-DA analysis on the metabolic

spectrum and a tendency for separation can be observed

(Figure 1C). The model was confirmed to not be overfitted

following 200 permutation tests (Figure 1D). Among all the

identified metabolites, 67 metabolites contributed significantly

to the distinction of NC and MCI with VIP values of >1 and p-

values of <0.05 (Figure 1E). The classification of the metabolites

is shown in Figure 1F.
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FIGURE 1

Altered metabolic profiles in MCI compared with NC. (A) Score plot of PCA in the cohort. (B) RSD distribution of metabolites in QC samples. (C)

OPLS-DA score plot of MCI and the matched NC groups. (D) Statistical validation of the OPLS-DA model by permutation testing with 200

iterations. (E) Volcano plot of the di�erential metabolites filtered by the univariate analysis between the NC and MCI groups. (F) The pie chart

shows the classification and number of significantly disturbed metabolites.
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FIGURE 2

Heat map and metabolic pathway analysis based on the di�erentiated plasma metabolites. (A) The heat map showed the important di�erential

metabolites profiling in serum samples of the NC and MCI groups. The blue color indicates a decreased level, and the red color indicates an

increased level. (B) Pathway analysis indicates sphingolipid metabolism is the most statistically enriched pathway. (C) Plasma metabolite-based

metabolic pathway analysis.

Dysregulation of metabolic pathways in
MCI

The levels of these metabolites were visualized by

a heat map (Figure 2A), in which colors represent

increased (red) or decreased (blue) abundance, with the

intensity reflecting the corresponding concentration. Of

these, levels of 54 metabolites were decreased in the

MCI group (refers to the ratio of MCI/NC), including

Phosphatidylcholines (PCs), Lysophosphatidylcholines

(LysoPCs), Phosphatidylethanolamines (PEs), Phosphatidic

Acids (PAs), Sphingomyelin (SM), Sphingosine-1-phosphate

(S1P), Sa, fatty acids, fatty acid esters, fatty amides, and

amino acids. Conversely, levels of 13 metabolites, including

PS (18:2/22:6), PC (25:0/18:0), 5(S)-Hydroxy Eicosatetraenoic

Acid (5S-HETE), purine nucleotides, and organic acids,

were significantly increased in MCI. Next, we investigated

which metabolic pathways may be behind the observed

metabolic profile changes found to be associated with MCI.

We performed pathway enrichment analysis and showed that

sphingolipid metabolism, sphingolipid signaling pathway,

choline metabolism in cancer, and purine metabolism
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were the most significantly perturbed pathways in MCI

(Figures 2B,C). The characteristics indicated that dysregulation

of sphingolipid metabolism may contribute to the occurrence

of MCI.

Evaluation of metabolites panel and
combined with physical performance for
the diagnosis of MCI

The VIP score identified the metabolites that contributed

the most to the difference in metabolic profiles, and the

top 20 metabolites are shown in Table 2. The result showed

that PC levels in patients with MCI significantly contributed

the most to the difference between the two groups and the

significant changes in metabolite levels of the first five PCs are

shown in Figure 3A. The ROC curves of classification models

distinguishing MCI from NC using the 5 metabolites were

plotted and the AUC values for each metabolite were 0.742,

0.734, 0.700, 0.699, and 0.660, respectively. The discriminant

power was improved by combining the 5 metabolites using

binary logistic regression analysis with the AUC value reaching

0.841 (Table 3 and Figure 3B). Then, the ROC curves using

the metabolite panel and physical performance were plotted.

The AUC values were as follows: metabolite panel, AUC =

0.841; grip/weight, AUC = 0.531; walking speed, AUC =

0.689; and TUGT, AUC = 0.654 (Table 3). These combined

metabolite panels showed satisfactory diagnostic performance

for distinguishing MCI from NC with the AUC value reaching

0.863, 0.886, and 0.870 (model 1 includes grip/weight plus

metabolites, AUC = 0.863; model 2 includes walking speed

plus metabolites, AUC = 0.886; model 3 includes TUGT

plus metabolites, AUC = 0.870) (Figure 3C). Noticeably, these

models were superior to that of each physical performance test

alone in discriminating MCI (P < 0.05) (Table 4).

Discussion

Our study presented a comprehensive metabolomic

evaluation for MCI in Chinese community-dwelling older

adults. We performed untargeted metabolomics of 1,008

identified metabolites on plasma samples from 380 participants

who underwent physical performance tests and obtained 47

normal subjects who were matched by age, sex, BMI, and

education to exclude the effect of confounding factors. We

found that a series of metabolites were associated with MCI,

and the dysregulation of sphingolipid metabolism was mostly

related to the occurrence of MCI. Besides, we developed a

discriminant model consisting of PCs to assist in the diagnosis

of MCI. Based on the relationship we previously found between

physical performance and MCI (Liu et al., 2021), we combined

physical performance tests with these metabolites and found

that the models significantly improved their distinguished

ability for MCI.

Lipids are a major chemical group that contributes

significantly to the functioning of the brain. Previous work

has documented altered phospholipids concentrations in the

brain in aging, cognitive decline, MCI and dementia (Grimm

et al., 2011). Mapstone et al. (2014) reported a panel of plasma

phospholipids, namely, lysoPCs and PCs, from peripheral blood

that identified cognitively normal adults who would progress

to either aMCI or AD within 2–3 years from those who

remained cognitively normal. Their untargeted metabolomic

and lipidomic profiling yielded 2,700 positive-mode features and

1,900 negative-mode features and revealed lower plasma levels

of amino acids and PCs in converter participants who later

converted to aMCI/AD. Our results have similarities to theirs;

in our study, we used untargeted metabolomics, including 7,533

features in ESI+ mode and ESI- mode, and 1,008 metabolites

were identified. We found that 67 metabolites, including PCs,

LysoPCs, PEs, PSs, PAs, SMs, S1P, Sa, fatty acids, fatty acid

esters, fatty amides, and amino acids, were different between

groups. Among them, 54 metabolites, including PCs, LysoPCs,

PEs, PAs, SM, S1P, Sa, fatty acids, fatty acid esters, fatty

amides, and amino acids, were significantly decreased in MCI

(Figure 2A). However, one study showed that phospholipids and

metabolites were altered in MCI and dementia, but this cross-

sectional association was relatively weak and did not improve

the detection of MCI and dementia (Li et al., 2016). Our results

reinforce the role of LysoPCs and PCs in the early identification

of cognitive impairment.

Phosphatidylcholines (PCs), a fundamental brain

phospholipid, are synthesized through the Kennedy pathway

from three precursors: choline, pyrimidine, and polyunsaturated

fatty acids (Moessinger et al., 2014; Zhang et al., 2021).

Phospholipids are altered with dementia and some studies

suggest their plasma levels may be useful in the detection

of cognitive impairment. A decrease in PCs and lysoPCs in

peripheral blood samples from patients with Alzheimer’s disease

has been previously reported (Gonzalez-Dominguez et al., 2014;

Mapstone et al., 2014; Whiley et al., 2014). The reduced levels of

PCs might be linked with the aberrant activity of phospholipase

A2 (PLA2), which are enzymes that catalyze the cleavage of fatty

acids from the sn-2 position of phospholipids, producing free

fatty acids and LysoPCs. It has been reported that β-amyloid42

peptides that aggregate in the brain of patients with cognitive

impairment increase the activity of PLA2 (Hicks et al., 2008).

Some studies also reported altered LysoPC levels in Alzheimer’s

patient plasma (Li et al., 2010; Gonzalez-Dominguez et al.,

2014). LysoPCs are the products of PLA2-catalyzed reactions

that rapidly acylate with acetyl-CoA to maintain normal

neuronal membrane composition. Several LysoPCs (including

lysoPC a C18:1 and LysoPC a C18:2) have been reported to

be increased (Grimm et al., 2011), but there was also a partial

decrease in LysoPCs levels. The reasons may be that LysoPCs
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FIGURE 3

Box plots and the ROC curves for the most significantly varied di�erential metabolites. (A) Box plots show the significant changes in metabolite

levels of the first five PCs. Data were expressed as means ± SE. ** indicates p < 0.01, *** indicates p < 0.001. (B) The ROC curves of the

metabolite panel and each metabolite to discriminate MCI from the NC groups. (C) Comparison of the ROC curves for physical performance

combined with metabolites with single physical performance tests. These combined metabolite panels showed satisfactory diagnostic

performance for distinguishing MCI from NC. Model 1 includes grip/weight plus metabolites, the AUC = 0.863; model 2 includes walking speed

plus metabolites, the AUC = 0.886; and model 3 includes TUGT plus metabolites, the AUC = 0.870. ROC, the receiver operating characteristic;

TUGT, Timed Up and Go Test; MCI, mild cognitive impairment.
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TABLE 2 The top 20 metabolites contributed most to the di�erence in metabolic profiles.

m/z Ion mode Metabolites kegg VIP log2 (FC)

564.330 neg PC (18:2(9Z,12Z)/0:0) 12.73 0.38

768.588 pos PC (P-18:0/16:0) 11.10 0.32

510.355 pos LysoPC (17:0) C04230 9.30 0.19

794.604 pos PC [P-18:0/20:4(5Z,8Z,11Z,14Z)] 8.86 0.24

480.309 neg LysoPC (15:0) C04230 8.67 0.20

566.346 neg LysoPC (18:1(11Z)) C04230 8.26 0.44

504.309 neg PC (17:2(9Z,12Z)/0:0) 8.20 0.36

235.092 pos L-2-Amino-3-oxobutanoic acid C03508 7.97 0.27

850.560 neg PC [22:5(4Z,7Z,10Z,13Z,16Z)/16:1(9Z)] C00157 7.68 0.19

540.330 neg LysoPC (16:0) C04230 5.84 0.36

857.675 neg SM [d18:1/24:1(15Z)] C00550 5.66 0.37

792.586 pos PC [18:1(9Z)/P-18:1(9Z)] C00157 5.64 0.30

506.325 neg PC (17:1(10Z)/0:0) 5.13 0.42

588.331 neg LysoPC [20:4(5Z,8Z,11Z,14Z)] C04230 4.21 0.32

568.362 neg LysoPC (18:0) C04230 3.89 0.26

538.315 neg LysoPC (16:1(9Z)/0:0) C04230 3.77 0.41

818.602 pos PC [P-18:0/20:3(8Z,11Z,14Z)] 3.55 0.21

612.331 neg LysoPC [22:6(4Z,7Z,10Z,13Z,16Z,19Z)] C04230 3.14 0.38

274.274 pos Palmitic acid C00249 3.04 0.23

476.278 neg PE (18:2(9Z,12Z)/0:0) 2.99 0.29

PC, Phosphatidylcholine; SM, Sphingomyelin; PE, Phosphatidylethanolamine; VIP, Variable Importance in the Projection; FC, Fold change.

are not only glycerophospholipid metabolism intermediates but

also serve as mediators in multiple neuronal pathways (Frisardi

et al., 2011).

Besides, sphingolipids used to be recognized as the

components of biological membrane and it is also associated

with cognitive function. A study found a significant association

of sphingomyelin (SM) with the prevalence of MCI and

dementia (Li et al., 2016). Higher concentrations of SM(OH)

C24:1 was significantly associated with a lower prevalence of

dementia, and our results are consistent with literature findings

on the link between cognitive impairment and decreased SM

(d18:1/24:1) level. There is now clear evidence that sphingolipid

catabolism is directly linked to neurodegenerative disorders in

the brain (Haughey et al., 2010), and findings have identified

pathways of the sphingolipid metabolism and decreased SM

levels that contribute to Alzheimer’s pathology (He et al., 2010;

Mielke and Lyketsos, 2010). In our study, we observed that

SM (d18:1/24:1) was significantly decreased in plasma of MCI,

which indicates that this lipid metabolite might be useful as an

additional diagnostic biomarker in MCI.

TheNational Institute onAging andAlzheimer’s Association

has proposed a research framework in which cerebrospinal

fluid (CSF) and imaging (magnetic resonance and PET)-based

measures of Aβ (A), tau (T), and neurodegeneration (N) are

incorporated into the ATN system. It can be used to reliably

diagnose AD and identify MCI, with high diagnostic accuracy

TABLE 3 The AUC values for individual or combined metabolites and

physical performance tests.

Model AUC 95%CI SE

PC(18:2(9Z,12Z)/0:0) 0.742 0.641–0.826 0.0516

PC(17:2(9Z,12Z)/0:0) 0.734 0.633–0.820 0.0520

PC[P-18:0/20:4(5Z,8Z,11Z,14Z)] 0.700 0.597–0.790 0.0541

PC(P-18:0/16:0) 0.699 0.596–0.790 0.0536

PC[22:5(4Z,7Z,10Z,13Z,16Z)/16:1(9Z)] 0.660 0.555–0.754 0.0573

Metabolite panel 0.841 0.794–0.904 0.0380

Grip/weight 0.531 0.425–0.635 0.0616

Walking speed 0.689 0.585–0.781 0.0549

TUGT 0.654 0.548–0.750 0.0578

Model 1 0.863 0.776–0.926 0.0386

Model 2 0.886 0.804–0.943 0.0343

Model 3 0.870 0.784–0.931 0.0364

Model 1: Grip/weight, plus metabolite panel.

Model 2: Walking speed, plus metabolite panel.

Model 3: TUGT, plus metabolite panel.

(Blennow et al., 2010; Olsson et al., 2016). Although the

clinical diagnosis of MCI and AD is currently based on CSF or

neuroimaging biomarkers, noninvasive and inexpensive blood-

based biomarkers deserve to be investigated for initial screening

of large sample populations. Kwangsik Nho et al. assessed
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TABLE 4 Pairwise comparison of the ROC curves.

Model Difference between areas 95%CI SE Z statistic P-value

Model 1 vs. Grip/weight 0.332 0.192–0.472 0.072 4.642 <0.001

Model 2 vs. Walking speed 0.197 0.094–0.300 0.053 3.742 <0.001

Model 3 vs. TUGT 0.216 0.102–0.329 0.058 3.719 <0.001

Model 1: Grip/weight, plus metabolite panel.

Model 2: Walking speed, plus metabolite panel.

Model 3: TUGT, plus metabolite panel.

the association of bile acid metabolites with the “A/T/N”

(amyloid, tau, and neurodegeneration) biomarkers of AD and

MCI, which was very enlightening (Nho et al., 2019). The

correlation of serum PC levels and their relevant ratios with

biomarkers of AD pathophysiology, including neuroimaging

(MRI and PET) and CSF, may be a direction for our future

research. In addition, our previous studies have reported that

poor physical performance is significantly associated with MCI

in community-dwelling older adults (Chen et al., 2021; Wu

et al., 2021). Based on this, we expected to increase the

ability to diagnose MCI early using physical performance

tests combined with changes in plasma metabolites, and we

developed a discriminant model consisting of PCs. Although

previous studies have reported a few discriminant models

derived from plasma, CSF, and urine (Kim et al., 2019; Weng

et al., 2019; Zhang et al., 2019; Yilmaz et al., 2020), the

advantage of our study is that the discriminant ability of the

metabolites combined with walking speed model is as high as

0.886, which may have great potential for clinical applications in

the future.

Our study has several advantages: (1) we have used an

advanced high-resolution mass spectrometry metabolomics

approach to capture up to seven thousand spectral signatures in

human plasma and identify more than a thousand metabolites,

which is unprecedented for most studies; (2) we used propensity

score matching when selecting the control population for MCI,

excluding the effects of confounders age, gender, BMI, and

education; and (3) the AUC of screened metabolite panel of

PCs was as high as 0.841 and the diagnostic ability of early

screening MCI was further enhanced on the basis of physical

performance tests, which is of great reference value for clinical

application. There are some limitations of this study. First,

although we matched age, sex, BMI, and education level in the

NC and MCI groups, we did not consider diet and nutrition,

which might influence cognitive function. Second, although our

untargetedmetabolomics can detect and identify 1,008 products,

the sample size is limited, and we only test these metabolomes

at one point; further prospective study will be more helpful in

certifying the association of thesemetabolites withMCI dynamic

changes. Third, the precise molecular mechanisms underlying

the results are still unknown, we were unable to evaluate the

role of metabolites such as PCs in cognitive function, and

mechanistic studies are needed to clarify the exact role of these

metabolites in MCI. Finally, this study is based on a cross-

sectional design. Future studies will need to increase the sample

size and perform follow-ups in this population to further verify

the models.

Conclusion

In conclusion, our results suggest that several sphingolipid

metabolites are associated with MCI and that a panel of

metabolites of PCs might be highly useful as a novel

plasma biomarker for the diagnosis of MCI. Physical

performance tests combined with metabolites tend to

be more sensitive for the identification of MCI; further

longitudinal studies and reproduction will be necessary

to introduce metabolomic markers of PCs into clinical

applications.
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