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Deciphering pore-level 
precipitation mechanisms
N. I. Prasianakis1, E. Curti1, G. Kosakowski1, J. Poonoosamy1 & S. V. Churakov1,2

Mineral precipitation and dissolution in aqueous solutions has a significant effect on solute transport 
and structural properties of porous media. The understanding of the involved physical mechanisms, 
which cover a large range of spatial and temporal scales, plays a key role in several geochemical 
and industrial processes. Here, by coupling pore scale reactive transport simulations with classical 
nucleation theory, we demonstrate how the interplay between homogeneous and heterogeneous 
precipitation kinetics along with the non-linear dependence on solute concentration affects the 
evolution of the system. Such phenomena are usually neglected in pure macroscopic modelling. 
Comprehensive parametric analysis and comparison with laboratory experiments confirm that 
incorporation of detailed microscale physical processes in the models is compulsory. This sheds light on 
the inherent coupling mechanisms and bridges the gap between atomistic processes and macroscopic 
observations.

Interaction between fluids and solids, including the precipitation and the dissolution of minerals from and into 
aqueous solutions in porous media, has a complex feedback to the solute transport in the aqueous phase itself and 
vice versa1,2. There is clear evidence that the macroscopic properties of the medium depend on the physical and 
chemical transformations that occur at the micropore scale in a strongly non-linear way. For example the forma-
tion of nanometer to micrometer-sized precipitate layers around preexisting mineral grains, dramatically reduces 
the permeability of the medium, thus affecting the macroscopic flow through it, although the total porosity does 
not change significantly. Flow alteration has in turn an effect on mineral precipitation-dissolution processes. The 
result is a fully coupled hydro-geochemical reactive transport process. The involved physical mechanisms play a 
key role in geochemical processes and industrial applications that span from geothermal energy and oil industry 
to pharmaceutical products, catalysts and long-term nuclear waste containment3–6. The prediction of the evo-
lution of such systems is very challenging and can be assisted by conducting dedicated laboratory experiments 
along with numerical reactive transport modelling7–10.

Macroscopic modelling and simulations use a simplistic description of the dynamic processes that actually 
take place at the microscale. The true evolution of the reactive surface area as well as the alteration of pore size and 
topology is usually unknown. The change in permeability and diffusivity of a porous medium, due to reactions, 
is correlated to a global change of the bulk porosity, using empirical laws with adjustable parameters11. When a 
relevant experiment is modelled using a pure macroscopic reactive transport code, the major macroscopic exper-
imental observations can only be reproduced after fitting the adjustable parameters using the same experimental 
results that are intended to be modelled9.

In the case of macroscopic solvers the porosity changes are simply modelled by applying mass balance equa-
tions between the inlet and outlet flow rates of the domain of interest. This averaged porosity is then used in the 
parametric Kozeny-Carman equation to derive an overall permeability and in the parametric Archie’s law to 
obtain the effective diffusivity. It is therefore not surprising, that smooth simplified relations frequently fail to pre-
dict accurately the temporal evolution of the system. It is the microscopic pore level physics per se that ultimately 
controls the macroscopic processes. Macroscopic models cannot circumvent the lack of microscopic physical 
description without empirical tuning to the experimental data. Conversely, power laws and correlations, of the 
porosity variation effect on the permeability and diffusivity, can be derived from microscopic simulations12,13 and 
further up-scaled for use in macroscopic algorithms.

Reactive transport laboratory experiment, macroscopic modelling and characterization
In ref.9 we have carried out a reference experiment to elucidate competitive dissolution-precipitation reactions in 
a granular porous medium. This kind of system is relevant to baryte scale formation in industrial applications at 
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large scale geochemical systems14 (hydrocarbon exploration and extraction, geothermal heat extraction, uranium 
mining, and technologically enhanced naturally occurring radioactive materials-TENORM waste). Further, an 
exceptionally complete set of thermodynamic and kinetic data is available. The experimental setup, consisted of a 
strip of reactive celestine (SrSO4) with bimodal grain size distribution (<63 µm and 125–400 µm) embedded in a 
comparatively inert matrix (quartz sand). A barium chloride solution (0.3 M BaCl2) was injected into the flow cell, 
leading to fast dissolution and partial replacement of Celestine (zero ionic strength solubility product constant 

= − .K 10sp SrSO( )
0 6 63

4
) by the more insoluble baryte ( = − .K 10sp BaSO( )

0 9 97
4

)15 thus modifying the hydraulic and struc-
ture properties of the medium (porosity, permeability, connectivity). A subsequent post mortem analysis of the 
reactor using optical and electron microscopy as well as synchrotron-based micro-X Ray Fluorescence (µ-XRF) 
and micro-X Ray Diffraction (µ-XRD) measurements identified two distinct baryte precipitates: i) 
nano-crystalline baryte filling the pore space and ii) thin baryte overgrowths coating large and medium-sized 
celestine crystals16. The distinction between the two phases was based on the analysis of Debye rings from the 
μ-XRD patterns after integrating over microscopic sample volumes. The formation of complete Debye rings from 
tiny volumes of a few μm3 indicates that these regions contain a multitude of randomly oriented nanometer-size 
baryte particles. It should be noted that the absence of Ba-Sr solid solutions is confirmed by the same XRD anal-
ysis. This finding is in agreement with thermodynamic calculations and experimental observations16 predicting 
stability of nearly pure baryte and celestine phases17 at very low Sr/Ba ratios as used in this experiment. The 
microscopic characterization shows that two different precipitation mechanisms were operating during the 
experiments: homogeneous nucleation (HON - nanoparticle aggregate) and heterogeneous nucleation (HET - 
epitaxially grown rim) both highly dependent on solution metastability (threshold supersaturation). In Fig. 1(a), 
a Back-Scattered Electron (BSE) microscopy image with the major characteristics of the reacted zone is shown. 
Large celestine crystals are covered by epitaxially grown baryte layers (HET). Baryte nano-crystalline phase 
(HON) is also distinguishable and black color corresponds to the remaining open pore-space after passivation of 
the zone.

The modelling of the experiment using a macroscopic approach could reproduce the evolution of the system 
only after fitting the kinetic and transport parameters in order to match the experimental results9. This level of 
modelling is not able to explain the presence and formation of two distinct baryte phases nor can provide detailed 
information of the system evolution, and therefore has limiting predictive capability. This analysis demonstrates 
the importance of pore-scale understanding of new phase precipitation in porous media. It is clear that in order to 
improve the predictive capability of the geochemical computational algorithms, such details and effects that span 
across length and temporal scales have to be incorporated in the modelling.

Figure 1.  Experiment, underlying processes and modelling. (a) BSE-SEM image of the reacted sample with 
highlighted characteristic features (HON - HET). (b) Energy barriers and formation of critical nuclei according 
to CNT. The computational voxel represents a volume in the bulk where conditions for HON precipitation 
are met. (c) Evolution of HON and HET precipitation is affected by the transport of solutes within the porous 
medium and vice versa. Colors represent velocity magnitude and white streamlines the preferential flow paths 
of a generic transport process calculated using the lattice Boltzmann (LB) method. (d) Visualization of a model 
prediction where celestine crystals are depicted in blue and newly formed baryte HON precipitates are in dark 
yellow, HET in light yellow.



www.nature.com/scientificreports/

3SCIENtIfIC REPOrTS | 7: 13765  | DOI:10.1038/s41598-017-14142-0

Cross scale modelling concept
The basis of our modelling is the simultaneous description of nucleation kinetics, a process that occurs at the 
atomic scale and of mass transport through realistic porous media. Pore geometry and topology dynamically 
change due to dissolution and precipitation requiring robust pore-level flow models and solvers. The nucleation 
mechanisms which lead to the precipitation of ionic solids and particularly of baryte are discussed in detail in ref.18  
and can be explained based on the Classical Nucleation Theory (CNT). We apply here this concept, in spite of 
current discussion on the general applicability of CNT19–21. As pointed out by ref.22, CNT cannot, for example, be 
applied to carbonate mineral precipitation due to the formation of amorphous precursor phases in this system. 
CNT is however still a valid concept to explain precipitation of sulfate minerals and particularly baryte, which 
unlike carbonate minerals does not form allotropic precursors.

In Fig. 1, our cross-scale modelling concept is illustrated. It links the nucleation kinetics and subsequent 
growth of nuclei that occurs at the atomic level, Fig. 1(b), with the solute concentration subjected to advection 
and diffusion through the porous structure, Fig. 1(c). In Fig. 1(b) a schematic plot of the total Gibbs free energy 
(ΔG) for HON and HET is shown as a function of the radius of spherical nuclei. As soon as a critical nucleus is 
formed and the energetic barrier is exceeded (at the maximum of the ΔG curve) further growth of the nucleus 
is more favorable than its disaggregation and precipitation starts. For HON nucleation to occur a higher activa-
tion barrier compared to HET has to be exceeded thus explaining why homogeneous nucleation requires higher 
levels of supersaturation to occur. When critical size nuclei are formed precipitation proceeds as growing spheres 
whose surface area and growth rate is traced throughout the simulation as depicted in the inset of Fig. 1(b). This 
process is controlled by the larger scale flow and solute features and vice versa. In Fig. 1(c) a generic pore-level 
flow simulation is depicted where colors represent the velocity magnitude (top) and signify for example the major 
preferential flow paths which change as the system evolves (the white streamlines in the right-bottom Fig. 1(c)). 
A model prediction for high saturation index is also visualized in Fig. 1(d) where celestine crystals are depicted in 
blue and total baryte precipitates are in yellow.

Mineral precipitation via HON from supersaturated solutions is inhibited in porous media compared to pre-
cipitation in free solutions22,23. This can be explained by a confinement effect of the solution, which makes, 
according to CNT, formation of critical size BaSO4 nuclei more unlikely, the smaller the pore volume22. In larger 
pores the probability of forming supercritical nuclei is higher, and therefore induction times are much shorter. 
Because of variable pore sizes and non-uniform flow rate distributions, the local concentrations vary in the 
micrometer range. A Supersaturation—Nucleation—Time (SNT) diagram for homogeneous (HON) and hetero-
geneous (HET) nucleation optimized for the modelled reactive experiment is plotted in Fig. 2(a) to support the 
interpretation of the results of Fig. 2(b). In our modelling we dynamically assign, at every point of the domain, the 
value of its corresponding pore-size. The dependence of induction time on saturation index (SI), for pore sizes of 
1 µm and 10 µm is also shown. SI is defined as the decimal logarithm of the ratio of ionic activity product in solu-
tion, IAP Ba SO4

2 2α α= + −, to the thermodynamic solubility product of baryte, K0
sp, i.e. SI = log10(IAP/K0

sp). 
Throughout the text and wherever mentioned, the saturation index is calculated with respect to baryte.

Figure 2.  Interplay of precipitation mechanisms. (a) Supersaturation - nucleation time diagram including 
as inset the initial celestine distribution. Saturation index is calculated with respect to baryte. (b) Baryte and 
celestine volumetric fraction after 140 hours of reaction at SI = 4.08, 3.96, 3.8 and 3.6 (top to bottom). Colored 
arrows represent the predicted evolution of the system for the respective SI, highlighting the interplay of the 
precipitation mechanisms.
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For the description of simultaneous transport, dissolution and precipitation processes along with the resulting 
changes of the microscopic pore geometry we applied the lattice Boltzmann method (LB)12,24–27. The LB method 
is a computational technique based on a special discretization of the kinetic Boltzmann equation and provides 
the necessary fluid dynamic framework (See Methods section). The combination of pore-level transport model-
ling with CNT can explain the evolution of the considered system and allows predictions under different condi-
tions. For the present problem the discretization grid (lattice) of the porous domain is of the order of 1–10 μm. 
Sub-micrometer modelling as shown schematically in Fig. 1(b,c), allows to relate the solute transport and con-
centration with the parameters governing the HON and HET precipitation kinetics, such as the size of critical 
nuclei, the reactive surface area, the induction time, the local pore-volume and the growth rate. These quantities 
are locally defined and set the pace for baryte precipitation thus determining the evolution of the system.

Results and Discussion
The computational domain is setup using the BSE-SEM image of Fig. 1 as a template for the large celestine grains 
and filling the rest of the space stochastically with small celestine grains, until the initial porosity of the exper-
iment was reached (ε = 0.33) as depicted in the inset of Fig. 2(a). The open pores were flooded uniformly with 
a specified concentration of BaCl2 [0.5 M; 0.3 M; 10−2 M; 2 × 10−3 M] and the solution was instantly replenished 
yielding a uniform and fixed SI [4.08; 3.96; 3.8; 3.6].

The second case mimics the actual conditions of the experiment where 0.3 M BaCl2 solution was constantly 
supplied via advection9. Simulations results are depicted on Fig. 2(b). For SI = 4.08 and SI = 3.96 baryte is pre-
cipitating mostly via the HON mechanism and the majority of the dissolved sulfate ions precipitate during the 
production of the nanocrystalline phase. All small celestine crystals are consumed. Further reduction of the SI 
increases the induction time of HON and thus favors the epitaxial growth of baryte rims (HET). The system 
then evolves at a slower pace since there is much less surface available compared to the HON case. In the plot 
of SI = 3.8 HON precipitation is more pronounced at the regions where larger pore-spaces exist (>50 μm). For 
SI = 3.6 nucleation proceeds strictly via the HET mechanism for the given reaction time.

The evolution of the system after 140 hours of reaction depends non-linearly on the SI and is depicted in 
Fig. 3(a). The black curves represent the four aforementioned cases. The plotted curves represent the percentage 
of conversion of small celestine crystals to baryte as a function of reaction time. The complexity of interconnected 
physical and chemical processes that take place at the pore scale as well as the effect of the degree of suspersatu-
ration on the precipitation pathway is analyzed in Fig. 3(b), in terms of the relative amounts of HON and HET 
precipitation. We note that porosity changes are proportional to baryte precipitation. Macroscopic models that 
implement simple analytical relations would fail to predict the effect of these underlying processes.

Precipitation rates measured in the lab in batch experiments often greatly deviate from observations in the 
field. Reactive surface area, eventual pore topology and flow properties can only partially explain this deviation10,  
thus effects related to the size of the pores must be invoked. The importance and sensitivity of pore size depend-
ent kinetics is illustrated with the dashed colored lines in Fig. 3(a). For the conditions of the experiment where 
SI = 3.96 we conduct an analysis to highlight the sensitivity of nucleation kinetics with relation to the pore sizes. 
We perform two additional calculations by keeping all parameters fixed and identical, except for the probabil-
ity of forming critical nuclei with respect to the pore-size. For that, we increase the probability of forming the 
critical nuclei in all pores in such a way, that it corresponds to the probability associated to ten times larger 
(SI = 3.96(10x)- red curve) or ten times smaller pores (SI = 3.96(/10)- green curve). For example, in a 10 μm pore 

Figure 3.  Evolution of precipitation versus time during 140 h. (a) Conversion of small celestine crystals to 
baryte as a function of reaction time (in black) including a nucleation kinetics sensitivity analysis (color), (b) 
partitioning of amounts of epitaxially grown- and nano-crystalline- baryte after 140 h for the different cases.
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the induction time for the onset of precipitation is tuned as if the respective pore were 100 μm in the first case 
(10x), and 1μm in the second case (/10). This alteration of the induction times results in a completely different 
global reaction rate and distinct evolution paths. It demonstrates that kinetic parameters derived from batch 
experiments cannot always be transferred directly to reactive transport models of porous systems, especially 
when the average pore size is at the micrometer level. Thermodynamic data acquisition from laboratory experi-
ments must be carefully correlated to the respective pore size distribution.

Our modelling allows monitoring also the evolution of the baryte rim thickness and its growth rate which is 
also strongly dependent on the SI as depicted in Fig. 4. At high SI, the HON mechanism is producing nanocrys-
talline precipitates at a much faster rate compared to the time needed for sulfate ions to diffuse and reach the 
growing rims, resulting in thinner baryte layers. Colored lines represent the state of the evolved system after the 
respective reaction time in hours. In order to compare our predictions with the actual experimental results we 
compare the epitaxially grown baryte rim thickness after the same reaction time (140 hours). The sample of the 
BSE-SEM image of Fig. 1(a) was analyzed digitally and the average rim thickness was calculated. The average rim 
thickness for SI = 3.96 is predicted from our model to be Lsim = 4.5 μm and is in very good agreement with the 
microscopic post-mortem analysis of the experiment which measured Lexp = 4.2 µm.

Summary and Outlook
Dissolution and precipitation processes and mass transport phenomena in porous media are coupled at pore 
level in a complex non-linear way. Macroscopic modelling approaches do not capture microscopic details of this 
process and therefore face a great difficulty in predicting evolution of such systems9. We introduced a cross-scale 
modelling approach that couples nucleation kinetics based on classical nucleation theory and pore level mass 
transport on the lattice Boltzmann framework. This coupled description of transport, dissolution and precipita-
tion allows the simulation of complex systems, with a large amount of degrees of freedom at an unprecedented 
physical detail, provided the necessary parameters are known as in the case of baryte. Quantities such as the size 
of critical nuclei, the reactive surface area, the induction time, the local pore-volume and the local growth rate 
have been considered and a good agreement with experimental observations demonstrate the potential of this 
approach. Moreover, this improves the predictions of the evolution of systems where experiments are too difficult 
or even impossible, due to limitations in space and time. At the same time it can support and enhance the inter-
pretation of experimental results.

The proposed method has a broad area of industrial and natural sciences applications that range from radioac-
tive scale formation during exploitation of underground energy resources to pollutant dispersion and purification 
of water28. A feature challenge would be to apply this methodology in more complex geochemical systems includ-
ing solid solutions. Further development would be needed to describe systems where precipitation proceeds along 
non-classical nucleation pathways.

Methods
Classical Nucleation Theory modelling (CNT).  The model developed by Prieto22 was used to calcu-
late the Supersaturation-Nucleation-Time (SNT) dynamics for homogeneous (HON) and heterogeneous (HET) 
nucleation. This model has been integrated in the numerical algorithm in order to calculate the induction time 
and the kinetics of precipitation at every computational node and at every time step of the simulation. The nucle-
ation rate, J [m−3 s−1] varies exponentially with the free energy change ∆Gc associated with the formation of a 
nucleus of critical size22:

Figure 4.  Temporal evolution of the epitaxially grown baryte rim. Higher values of SI result in thinner and 
slower growth of baryte rims (HET) due to accelerated nano-crystalline formation (HON). Different colors 
represent the temporal evolution in hours. For SI = 3.96 the average baryte rim thickness is predicted to be 
Lsim = 4.5 μm and is in very good agreement with the post-mortem analysis of the reactive experiment which 
measures Lexp = 4.2 μm.



www.nature.com/scientificreports/

6SCIENtIfIC REPOrTS | 7: 13765  | DOI:10.1038/s41598-017-14142-0

J G
kT

exp
(1)

c= Γ



−

∆ 



where k is the Boltzmann constant, T is the absolute temperature and Γ a pre-exponential factor. The nucleation 
energy barrier is highly dependent upon the interfacial tension σ and saturation index SI. This barrier is higher 
for HON compared to HET as shown schematically in the lower part of Fig. 1 of the main text. This explains why 
HON appears only at relative high values of SI. The exact relation reads:

βν σ
∆ =G

kT( ln(SI)) (2)c

2 3

2

where β is a geometry factor, set to 16.8 for a sphere, σ is set to 0.134 J m−2 for HON according to29, ν is the volume 
of a single spherical BaSO4 monomer, and is set to 8.60 × 10−29 m3 22. For HET, the interfacial tension σHET, was 
calculated as a function of the contact angle θ between the substrate and the growing mineral, according to18:

σ σ= . + Θ − Θ ⋅(0 25(2 cos( ))(1 cos( )) ) (3)HET HON
2 1

3

The pre-exponential factor in Eq. 1 represents the rate of attachment of monomers controlled by diffusion and is 
given as Γ = 2πZDN1N0dc, where D is the diffusion coefficient of monomers set to 9.3 × 10−9 m2 s−1 and dc = 4σv/
kTln(SI).

Parameters N0 and N1 are concentrations that represent the numbers of monomers per unit volume of fluid 
and the number of nucleation sites respectively. After22 these parameters were set to N0(HON) = 3.33 · 1028 m−3 and 
N0(HET) = 2.50 · 1013 m−3. Parameter N1 depends on the supersaturation which has been evaluated using the Gibbs 

Energy Minimization Software - GEMS30. Z is the Zeldovich factor given as ( )Z G
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of monomers in the critical nucleus, nc, is given as: ( )n a
c
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= σ  where a is the surface area of a single nucleus. 

The appearance of many nuclei and their growth are responsible for the breakdown of the solution metastability. 
This is quantified as the induction time ti

18,31:
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where Vp is the volume of the local pore under consideration. Note that the implemented algorithm measures 
and updates the size of the respective pores at every time step, which changes due to dissolution (size increase) or 
precipitation (size decrease). This is necessary for the correct calculation of the necessary the local induction time 
needed to pass before the onset of precipitation.

Baryte precipitation rates are calculated according to the empirical kinetic law proposed in ref.32. This law was 
derived from systematic precipitation experiments both in the presence and absence of precipitation inhibitors:

( )d Ba
dt

A k K[ ] 10 1
(5)sp

0 (SI)
2

− = × −⁎

where ⁎k K 8 6 10 mol m ssp
0 9 2 1= . × − − − , and A [m2 m−3] is the relative surface area per unit volume. For HON, a 

sublattice model with respect to the transport solver is implemented as discussed in the main text. The sum of 
molecules that form the first nucleation clusters are converted to equivalent spheres. The resulting reactive surface 
area is calculated based on the evolving area of these virtual spherical objects. More than one critical nuclei are 
allowed to be simultaneously formed, and their growth is traced throughout the simulation (See Fig. 1(b) of main 
text).

Lattice Boltzmann modelling details (LB).  Pore-level processes can be simulated with a vari-
ety of numerical methods33–35. For the modelling of the advection-diffusion and precipitation processes 
a multi-component LB model is used. The model is composed of a basis fluid medium that recovers the 
Navier-Stokes equations at the macroscopic limit, plus several passive scalar coupled population sets that simulate 
the diffusion of ions. The isothermal guided equilibrium nine-velocity model (D2Q9 lattice) of ref.36 is selected as 
the basis model. The discrete velocities of populations fi for i = 0–8, are ci = (0, 0) for i = 0, ci = (±1, 0) and (0, ±1) 
for i = 1–4, and ci = (±1, ±1) for i = 5–837.

The following population-moments correspond to the density of the solution ρ and the momentum ja in the 
direction a = x, y:

∑ ∑ρ= =
= =

f c f j,
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i
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The guided equilibrium populations fi
eq are given in a closed form, where T0 = 1/3:
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The Boltzmann BGK equation is solved: ∂ + ∂ = − −
τ

f c f f f( )t i ia a i i i
eq1 , where τ is the relaxation parameter 

and T0µ τρ=  is the resulting macroscopic dynamic viscosity. BGK stands for the Bhatnagar-Gross-Krook colli-
sion model as depicted in the right hand side of the aforementioned equation and describes the relaxation of 
populations fi to their equilibrium state fi

eq with relaxation time τ. For the advection-diffusion reaction equations 
of the reactive species a D2Q9 model is also implemented. Although the option of a D2Q5 model would be com-
putationally more efficient, the D2Q9 lattice is preferred since the extra diagonal velocities offer a more physical 
description at the nodes where dissolution and precipitation take place.

The equilibrium populations ξi
eq for the reactive species iξ  are given:

C c c c u T(1 2 )
2

( 1 ),
(8)

i
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i
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i
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where Ci is the concentration of [Ba+2],[Sr+2], [Cl−1] and [SO−2
4] ions and αu  is obtained from the basis model. 

The relevant population moment that corresponds to the concentration is:

∑ξ =
=

C
(9)i

i i
0

8

Experimental setup.  The dissolution-precipitation experiments and post-mortem analysis and interpretation 
are described in detail in refs9,16, we therefore give only a summary of the work with details relevant for understand-
ing the modeling. An acrylic flow cell of internal dimensions 10 cm × 10 cm × 1 cm was filled with a reactive porous 
medium sandwiched between two layers of an inert granular porous media as depicted in Fig. 5. The inert granular 
medium was a commercial acid washed and calcined quartz sand (SiO2) of 99.1% purity. The reactive porous medium 
was created of naturally occurring celestine from Madagascar which comes in form of polished stones. The natural 
celestine was analyzed by X-ray diffraction which revealed a celestine content of 99.7% with 0.3% of anhydrous cal-
cium sulfate. The stones were crushed and sieved to give batches of different grain size. The reactive medium was a 
mixture of grains: 30 wt. % with a size of less than 63 µm and 70 wt. % with a size of 125–400 µm. After compaction of 
the mixture a porosity of 0.33 ± 0.01 was measured. A stationary flow field was established by injection of a solution 
saturated with strontium sulphate to prevent strong dissolution of Celestine. This initial flow field, as well as flow field 
changes during the subsequent reaction experiments were visualized by injection of dye tracers.

For the reactive experiment a solution of 0.3 M barium chloride was injected at a constant flow rate of 
20 µL min−1, The initial strontium sulfate saturated solution has a lower density as the injected barium chloride 
solution; therefore at the start of the experiment the density differences enforced a transient flow and transport 
regime while the injected solution moved along the bottom of the tank. As the barium chloride solution reached 
the celestine region, the dissolution of celestine and the precipitation of baryte occurred, inducing changes in 
the pore space topology. We observed a strong decrease in permeability of the reactive layer. These changes were 
reflected in a rising level of barium chloride on the injection side of the tank which causes the ingress of bar-
ium chloride into increasingly higher parts of the reactive layer. The chemical composition of the effluents was 
measured (Cl−1, SO4

2−, Ba2+ and Sr2+) using ion chromatography. At the end of each experiment, but before 
dismantling the flow cell, isopropanol was injected in order to stop further chemical reactions. The reacted 
celestine was found to be solidified into a rectangular block. The reacted medium was dried and impregnated 
under vacuum with araldite XW936/XW397. An extensive post-mortem analysis of the reacted celestine layer 

Figure 5.  Schematic of the laboratory experiment. A zone of celestine grains (SrSO4) is positioned between 
two layers of quartz (SiO2). Barium chloride BaCl2 rich solution is injected from the inlet on the left side and 
causes the dissolution of celestine. Baryte precipitation changes the topology and hydrodynamic properties of 
the former celestine zone. Post mortem microscopic characterization the reacted zone allows identifying the 
involved precipitation mechanisms.
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was performed with different techniques including scanning electron microscopy, and synchrotron based X-ray 
micro-diffraction/micro fluorescence performed at the XAS beamline (Swiss light source).

The governing reaction describes the dissolution of solid celestine crystals and the precipitation of solid bar-
yte. Baryte precipitates via two distinct mechanisms producing nano-crystalline (HON) and epitaxially grown 
rims (HET):

BaCl SrSO SrCl BaSO (10)aq s aq s2( ) 4( ) 2( ) 4( )+ → +

A schematic of the experimental setup can be seen in Fig. 5
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