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Abstract

Direct recording of neural activity from the human brain using implanted electrodes (iEEG, 

intracranial electroencephalography) is a fast-growing technique in human neuroscience. While 

the ability to record from the human brain with high spatial and temporal resolution has advanced 

our understanding, it generates staggering amounts of data: a single patient can be implanted with 

hundreds of electrodes, each sampled thousands of times a second for hours or days. The difficulty 

of exploring these vast datasets is the rate-limiting step in discovery. To overcome this obstacle, 

we created RAVE (“R Analysis and Visualization of iEEG”). All components of RAVE, including 

the underlying “R” language, are free and open source. User interactions occur through a web 

browser, making it transparent to the user whether the back-end data storage and computation are 

occurring locally, on a lab server, or in the cloud. Without writing a single line of computer code, 

users can create custom analyses, apply them to data from hundreds of iEEG electrodes, and 

instantly visualize the results on cortical surface models. Multiple types of plots are used to 

display analysis results, each of which can be downloaded as publication-ready graphics with a 

single click. RAVE consists of nearly 50,000 lines of code designed to prioritize an interactive user 

experience, reliability and reproducibility.
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1. Introduction

The importance of high-quality software tools in advancing human neuroscience research is 

self-evident. The availability of purpose-built open-source fMRI software packages such as 
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AFNI (Cox, 1996; Saad et al., 2006) and FSL (Smith et al., 2004) allowed thousands of 

neuroscientists and psychologists who were not experts in signal processing to analyze data 

from fMRI experiments. Similarly, while innovations in amplifier electronics slashed the 

cost of scalp encephalography (EEG), the development of comprehensive, freely-available 

analysis packages such as EEGLAB (Delorme and Makeig, 2004; Martinez-Cancino et al., 

2020) played a key role in enabling EEG discoveries.

The last decade has seen an exponential increase in the numbers of studies investigating 

neuroscience questions using invasive recordings from the human brain (reviewed in Parvizi 

and Kastner, 2018). Recordings using grids of electrodes that sit on the cortical surface are 

referred to as electrocorticography (ECoG) while studies using depth electrodes that 

penetrate into the brain with recording contacts spaced at regular intervals along the shaft are 

referred to as sterotactic EEG (sEEG). Taken together, both recording techniques are 

referred to as intracranial EEG (iEEG). Because iEEG electrodes are implanted directly on 

or in the brain, iEEG recordings feature high spatial and temporal resolution, excellent 

signal-to-noise ratio and long continuous recordings without artifacts. Disadvantages of 

iEEG include sparse and variable electrode coverage, the presence of epileptogenic artifacts, 

and challenging experimental conditions in the epilepsy monitoring unit. As a result, iEEG 

datasets differ markedly from fMRI and EEG datasets. The development of RAVE was 

prompted by the limited options for neuroscientists in need of a comprehensive, open-source 

software package that handles all aspects of iEEG data analysis and visualization.

The design philosophy of RAVE is based on five principles. The first principle is rigorous 
statistical methodology. The history of fMRI has been marked by tumult over problematic 

statistics, such as “voodoo correlations” resulting from biased analyses (Simmons et al., 

2007; Vul et al., 2009); treating subjects as fixed vs. random effects (Mumford and Nichols, 

2009); and the “dead salmon” debate over how to correct for multiple comparisons (Bennett 

et al., 2009; Eklund et al., 2016; Cox et al., 2017). To encourage statistical best practices, 

RAVE is developed using “R”, a free, open source statistical language with a rich framework 

of existing packages developed by leading statistical and machine learning researchers 

(Computing, 2013). RAVE implements robust statistical tests, such as linear mixed-effects 

models, in a rigorous and community-vetted fashion (Bates et al., 2015; Kuznetsova et al., 

2017).

The second principle is to keep users close to the data so that users may make discoveries 

about the brain without being misled by artifacts. This necessitates a well-designed 

graphical-user interface (GUI) so that users can explore very large iEEG datasets combined 

with an efficient, vetted algorithm implementation to display analysis results quickly enough 

for real-time, interactive interrogation.

The third principle is to run anywhere. RAVE is designed so that all user interactions can 

take place within a web browser. This makes RAVE platform and processor independent, 

running on tablets, desktops, or clusters. The RAVE front-end experience is the same 

whether data and computing resources are located on the user’s own machine, a lab server, 

or a cloud-based computing service such as Amazon Web Services.
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The fourth principle is to prioritize reliability and reproducibility in all aspects of RAVE 

development. Funding agencies and journals have recognized that data sharing is a key 

ingredient in speeding scientific progress, with all research programs supported by the 

United States National Institutes of Health Brain Research through Advancing Innovative 

Neurotechnologies (BRAIN) required to submit their research data to an approved archive 

(Zhan, 2019). Archive submission often entails a laborious collection and curation process 

on the part of investigators. RAVE simplifies this process by automatically harmonizing all 

iEEG data files from each participant, together with meta-data such as task epoch files, in a 

format acceptable to archives. All processing commands used to generate a particular file or 

analysis can be easily documented for attachment to manuscript figures.

The final principle is to play well with others. Each laboratory has its own ecosystem of 

software tools and methods with expertise and protocols developed over years of experience. 

Therefore, RAVE is designed to integrate seamlessly with existing workflows, such as 

iELVis (Groppe et al., 2017) and img_pipe (Hamilton et al., 2017) for electrode localization. 

Along with an extensive GUI, RAVE provides a robust application programming interface 

(API) to support integration of RAVE with existing or novel analysis pipelines.

2. Methods and results

RAVE source code and documentation are available at https://openwetware.org/wiki/RAVE. 

Text and video tutorials allow users to quickly learn the essential elements of iEEG analysis 

with the included sample dataset. RAVE consists of interpreted R code and uses the R Shiny 

package (Chang et al., 2019) to create interactive web apps. The user’s interactions with 

these web apps via a web browser constitutes the RAVE graphical user interface (GUI). 

Each element of the GUI shows an information button (“?”) that links to a web page with 

helpful descriptions. RAVE has been tested on Mac, Windows, and Linux platforms. A 

Docker instance is available for easy distribution of RAVE with all dependencies and a demo 

dataset.

2.1. Deployment strategies

The user always interacts with the RAVE GUI using a web browser on a local machine 

(desktop, laptop or tablet). The location of the data repository and the hardware used for 

analysis computations may be independently configured, creating a variety of possible 

deployment strategies (Fig. 1).

In hospital environments, internet access is limited (an investigator preparing a manuscript 

on an airplane is similarly challenged). In these situations, RAVE can run on a local machine 

such as desktop or laptop with the user interactions taking place through a web browser on 

the same machine. Both data storage and computation take place on the local machine.

In laboratory environments, inexpensive shared data storage is often used so that lab 

members may access data from many different projects and subjects (a 20 TB RAID can be 

purchased for less than $1000USD). In this scenario, RAVE runs on each user’s local 

machine, controlled via web browser. Analyses occur locally, but data is stored on the shared 

RAID (typically accessed via a mount point).
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A third type of deployment places analysis at a laboratory level on a shared lab compute 

server, such as a cluster. In this configuration, multiple RAVE sessions are run in parallel on 

the server, controlled by a web browser on each user’s local machine. Analysis and storage 

take place on the central compute server/RAID. This configuration has two advantages. 

First, compute servers can be equipped with dozens of cores and TB of RAM, increasing 

processing speed. Second, large data files are transferred exclusively over fast connections 

between the compute server and the RAID (both of which would often be hosted in a 

university data center) rather than slower desktop connections between the data center and 

the desktop. Network performance for desktop connections can vary, especially for telework 

situations in which the user is connecting via virtual private network (VPN).

Other deployments are also possible. An investigator might upload a large library of iEEG 

data to an online repository (Miller, 2019). Users running RAVE on their local machine 

could set the data location to the online repository, resulting in local analysis with remote 

storage. Alternately, in a multi-lab collaboration, a private data repository could hold all data 

collected across labs, with each lab’s compute server connecting to the repository for 

laboratory-level analysis with remote storage.

A final deployment strategy places both analysis and storage “in the cloud.” This would be 

appropriate for a comprehensive data repository, such as those under construction for the 

NIH BRAIN Initiative including NEMAR (Franklin, 2019) and DABI (Toga et al., 2019). A 

user would run a web browser on their local machine and point it to an instance of RAVE 

running on an academic or commercial cloud computing service, which would also host the 

entire data archive.

3. Software architecture

Fig. 2 shows a flowchart of the components of the RAVE software most relevant to users. 

Using the GUI or command line calls, the user identifies the location of raw iEEG data files. 

For visualization, users can also identify the location of MRI images of the patient’s brain 

and cortical surface models created from the MRI images with FreeSurfer (Dale et al., 1999; 

Fischl et al., 1999a) or other reconstruction tools. If a subject MRI is not available, data can 

be displayed on a standard template brain.

A typical iEEG patient might perform many different tasks in the course of their 

hospitalization. For instance, in subject 1, some data files might be a speech task, others a 

vision task, and still others a memory task, while in subject 2, the same tasks might be run in 

a different order. RAVE reorganizes all data files into a consistent structure, using a directory 

tree with project (such as speech, vision or memory) at the highest level, followed by 

subject, followed by data files. Data files are stored in the HDF5 format, the same format 

used by Neurodata Without Borders (Teeters et al., 2015) and recent versions of Matlab. As 

detailed below, spectral decomposition is performed by the RAVE pre-processor, then data 

exploration in single subjects with the Power Explorer module and across subjects with the 

Group Analysis module. In 3dViewer, users can click on individual electrodes and view their 

activity profile, localizing them on the cortical surface for ECoG electrodes or on a 3-plane 

view of the MRI volume for sEEG electrodes.
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A variety of output options are available. High-quality PDFs or PNGs of any graph or brain 

image can be exported with a single click from each module for use in figures within 

presentations, manuscripts, and grant proposals. The data underlying any analysis can be 

exported in text or Microsoft Excel format with a single-click to create manuscript tables or 

for analysis outside of RAVE. Animations showing brain activity evolving over time can 

also be generated easily (in .webm format), or even exported as a standalone web app 

complete with all functional and anatomical data (HTML and JavaScript using WebGL).

To further the design principle of playing well with others, there are multiple entry and exit 

points for the processing stream: users are not locked into a sequential analysis that begins 

with raw iEEG data and ends with an activity plot. For instance, a clinician could visually 

inspect the clinical recordings from each electrode and assign an index of epileptiform 

activity to each electrode in a spreadsheet table. The clinician could then import this table 

into RAVE and display it on the cortical surface and 3-plane viewer, completely bypassing 

the preprocessing and analysis of the voltage-by-time data. Alternately, a data scientist could 

use the RAVE data structures and preprocessing modules to quickly and easily generate a 

single value for each condition in each trial in each electrode, then import this data into a 

machine learning toolbox for training and testing with leave-one-out analyses.

3.1. Single subject analysis

The heart of the RAVE user experience is fast and interactive data exploration. While signals 

from neighboring scalp electrodes in EEG (or sensors in MEG) are usually similar, 

neighboring electrodes in iEEG often respond completely differently as the electrode grid 

traverses functional boundaries in cortex (for ECoG) or the electrode shaft penetrates 

different subcortical nuclei (for sEEG). This makes accurate visualization, selection and 

display of individual electrodes a critical step in iEEG analysis. RAVE accomplishes this 

task with the hardware-accelerated 3dViewer for electrode visualization and selection that 

can be embedded in a given module. ECoG electrodes are displayed on a cortical surface 

model of the participant’s cerebral hemispheres created by FreeSurfer or another 

reconstruction tool (Dale et al., 1999; Fischl et al., 1999a). The 3dViewer cortical surface 

model view can be zoomed or rotated with the mouse or keyboard shortcuts Users can view 

the MRI volume in separate panels or overlaid on the cortical surface module, and then 

scroll through the slices (Fig. 3A). Individual electrodes are clickable, which then updates 

the current analysis to focus on that electrode (Fig. 3B).

Power Explorer displays several different kinds of plots to provide an in-depth view of a 

subject’s iEEG data. One set of statistical plots displays data for all electrodes in the subject, 

for a global view. The remaining plots display data for single electrodes or subsets of 

electrodes, selected either with the 3dViewer or by setting anatomical or functional criteria.

The first type of plot is the time-by-frequency plot (Fig. 3C). The x-axis of the plot shows 

time from a given experimental event, such as the beginning of a trial or the onset of a 

stimulus. The y-axis shows frequency range with the power at each time-frequency cell 

mapped to a color scale. Both the color scale range, colors, and units of analysis (such as 

percent amplitude or power change from baseline, z-score of amplitude or power change 

from baseline, or dB from baseline) are user modifiable with a single click. For different 
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analyses, the time-frequency range of interest differs. The range can be changed with sliders 

bars in the GUI, with the selected range shown as a dashed box on the spectrogram.

The iEEG signal-to-noise ratio is large enough that responses can be observed within 

individual trials. So that users can view the variability of the signal across individual trials, 

the GUI plots the response in the selected frequency range over time for each individual trial 

(Fig. 3D). The trials can be sorted by stimulus or experimental condition so that users may 

visually inspect the consistency of the signal and determine differences between stimuli or 

conditions.

The interface uses autofill text boxes so that users can group different trial types into an 

unlimited number of combinations (the default is to group all trials into a single condition). 

Analysis results are instantly updated to reflect any changes. Consider an experiment with 8 

trial types where each trial consists of a recording of one of four single words presented in 

either auditory or audiovisual format. With a few clicks, the user could group all auditory 

words into an “auditory” condition and all audiovisual words into an “audiovisual” 

condition. Alternately, each trial type could be treated as an independent condition. The 

composition of the conditions can be saved to disk and reloaded to avoid having to recreate 

complex groupings for different subjects in the same project.

The activity for each defined condition is displayed in its own time-frequency plot. To 

display all conditions in a single plot, the data is collapsed across the time window of 

interest to generate a single value for each trial. Each trial is then plotted as a single point, 

with one column of points per condition (Fig. 3E). If the user has selected more than one 

condition, a statistical test is automatically performed between the conditions with the 

results displayed above the trial plot. To compare the temporal profile of the response across 

conditions, the spectral signal is collapsed across the frequency range of interest and 

displayed, with one trace of power over time per condition (Fig. 3F).

The results of the analysis across electrodes are visualized by coloring each electrode (Fig. 

3G). A pull-down menu permits users to select the values used for coloring from all 

available values for single conditions and contrasts between conditions, including raw beta-

weights, t-statistics, p-values, and false-discovery-rate (FDR) corrected p-values.

3.2. Group analysis

Discoveries made at the single subject level must be confirmed across subjects, requiring the 

creation of a common anatomical space. RAVE offers several choices. For electrodes located 

near the cerebral cortex, the most accurate approach is to use the surface-based coordinate 

system generated by FreeSurfer (Fischl et al., 1999b; Argall et al., 2006). For subcortical 

electrodes, RAVE uses the MNI-305 volumetric standard space generated by FreeSurfer; 

MNI-305 space can also be used for cortical electrodes if desired. A coarse-grained 

approach is provided by the FreeSurfer cortical and subcortical parcellation schemes (Fischl 

et al., 2004) in which electrodes are grouped by region-of-interest rather than co-ordinates.

The first step in the RAVE group analysis workflow is to identify the electrodes from each 

individual subject that are to be included in the group analysis, analogous to the voxel 
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selection step in BOLD fMRI (a study of the fusiform face area might select voxels in each 

subject that are located in the fusiform gyrus and show a significant response to faces). In 

RAVE, up to three functional and two anatomical criteria can be combined to winnow down 

hundreds or thousands of iEEG electrodes into an appropriate subset. Anatomical labels 

from each electrode are taken from the electrode meta-data file, and functional criteria can 

be any of the statistical values generated by Power Explorer or other modules. For example, 

in a study of speech perception, electrodes in each subject might be selected using the 

anatomical criterion of “location on the superior temporal gyrus” and the functional criterion 

of “significant response to speech (p < 0.01, FDR corrected).”

An important analysis decision is the choice of the statistical threshold. To aid in this choice, 

RAVE displays a plot of the statistical value for each electrode along with a red dashed line 

showing the currently selected threshold (Fig. 4A). 3dViewer can be updated to display only 

the selected electrodes (Fig. 4B). The entire power-by-time information for each individual 

trial for all selected electrodes is exported from Power Explorer with a single click. After 

this process is completed for each individual subject, the Group Analysis module is loaded 

with data from all subjects’ selected electrodes. The number and location of the electrode 

contributed by each subject can be visualized by coloring each electrode according to the 

source subject (Fig. 4C).

Because all information for all selected electrodes is loaded, the Group Analysis module lets 

users explore different analysis windows and condition contrasts for all electrodes in a study, 

in the same way as is possible for individual subjects in Power Explorer. Group contrasts 

and analysis windows are automatically prepopulated based on the single-subject analysis 

settings but can be changed.

Next, a linear mixed effect (LME) model is used to perform statistical tests across all 

electrodes and subjects. The default for the dependent variable is the unit of analysis (e.g. 
power change from baseline). The model defaults to treating electrode and subject as 

random effects, with electrode nested within subject in a multi-level fashion. Users can 

easily select which variables should serve as random or fixed effects, such as adding 

stimulus exemplar as a random effect (Westfall et al., 2016). The formula provided to the 

LME package is displayed, e.g. for a model without a fixed effect and the default random 

effect structure: Power ~ 1 + (1|Subject/Electrode).

The results of the group analysis are shown in a variety of tables and plots. The tabular 

output includes: random effect counts and variances; parameter estimates, standard errors, 

degrees of freedom and hypothesis tests for the fixed effects; the omnibus fixed effects test 

(equivalent to the main effect of condition); the comparison of all fixed effects against zero; 

and all pairwise comparisons between the fixed effects.

There is also a sortable and searchable table showing univariate statistical tests for each 

electrode included in the group analysis. Rows and columns from this table can be selected 

in the GUI and plotted. This is important for quick examinations of response differences 

between regions, subjects, and any other experimental variable.
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The plots available in Group Analysis are similar to those available in Power Explorer, 
except they are created at the group level. The power-by-time plot shows one trace per 

condition, but estimates of variance are calculated across all electrodes included in the 

analysis to provide a graphical representation of the uncertainty in the mean (Fig. 4D). To 

examine the consistency of the effect across electrodes, the value in each condition for each 

electrode is plotted (Fig. 4E). An anatomical representation of the analysis results is created 

by coloring each electrode by the results of the selected statistical test (Fig. 4F).

A unique aspect of the Group Analysis module is the ability to create custom graphs. Using 

the “post-hoc plot” panel, the user can select “x” and “y” plot variables from a drop-down 

menu that contains all variables from the analysis output. A user might wish to assess 

whether an electrode’s response in condition 1 predicts the response in condition 2. 

Selecting the appropriate variables in the drop-down menu, the module creates a plot and 

performs the selected statistical test, including Pearson and Spearman correlations and t-test 

or Wilcoxon test of differences.

To assess the relationship between two variables while holding a third variable constant 

(partial regression), users can also select a third (“z”) variable. In an experiment with three 

conditions, a user might wish to assess whether an electrode’s response in condition 1 

predicts the response in condition 2, partialling out the response in condition 3.

The panel also support creating variables from “R” code entered into a text box by the user; 

for example, to assess whether the difference in response between two conditions predicts 

the response in a third condition.

All plots and tables can be easily downloaded as high-resolution PDFs for manuscript or 

presentation figures, or as CSV files for use in manuscript tables or additional analyses.

3.3. Preprocessing and referencing

Because preprocessing of iEEG and EEG data are similar, the preprocessing workflow in 

RAVE is based on that in the widely-used EEGLAB package (Delorme and Makeig, 2004). 

To assess data quality, a variety of plots for each block of data and each channel are 

generated. RAVE creates a PDF showing data quality analytics, with one electrode per page, 

so that users may scan for problematic data. Analytics include plots of voltage vs. time after 

notch filtering; periodograms before and after notch filtering (both normal and log10 

frequency); and histograms signal voltage. Spectral analysis is performed using wavelets 

with default parameters of 16 kernels with lengths from 0.101 to 1.433 seconds and cycles 

from 3 to 16 (Cohen, 2014). After waveletting, data are down-sampled to 100 Hz to reduce 

disk space; this value is also customizable. RAVE provides tools for semi-automated trial 

epoching based on signals present in the iEEG data, such as acquisition system analog inputs 

from microphones signaling the onset of auditory events or from photodiodes signaling the 

onset of visual events. Users can also provide a CSV file that contain the times of events 

within each trial, such as auditory onset, visual onset, or motor response. In Power Explorer, 
a drop-down menu lists all available trial reference timepoints and analyses are time-locked 

to the selected event.
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A key step in EEG analysis is the choice of voltage reference. RAVE incorporates three 

popular reference schemes: common average reference, white matter reference, and bipolar 

referencing. Each of these schemes has advantages and disadvantages (Mercier et al., 2017; 

Li et al., 2018). With the common average reference, the average of the signal at all 

electrodes is subtracted from the signal at each individual electrode at every time point. In 

some clinical situations, there may be a preponderance of electrodes over a single brain area, 

such as cortex important for speech or motor functions. This concentration is strongly 

weighted in the common average, with the result that subtracting the common average 

removes neural signals of interest. In practice, experimenters are well-advised to analyze 

their data using different schemes to understand their influence on the results.

To make referencing faster and allow users to easily inspect how different referencing 

techniques influence results, RAVE flips the usual order of operations. In most EEG 

processing pipelines, data are referenced and then spectral analysis is performed. However, 

spectral analysis is by far the most time-consuming step of the analysis and expands data 

volume many-fold, making it tedious and inefficient to repeatedly select a different reference 

and re-run spectral analysis. Instead, RAVE performs spectral analysis first, followed by 

referencing. Because referencing is a purely arithmetic operation, it can be performed 

quickly, and users can quickly assess the effects of different reference schemes. 

Mathematically, referencing is a linear combination, and waveletting is a linear operator, 

with the result that the order of operations does not change the final result as long as both the 

real and complex components of the spectral signal are preserved.

4. Discussion

RAVE provides an easy-to-use software tool so that users with no programming or signal 

processing expertise can analyze iEEG data and create publication-ready figures and plots.

Direct recording of neural activity from the human brain using implanted electrodes is one 

of the fastest-growing techniques in neuroscience. Translating the vast quantity of data 

collected with iEEG into neuroscience discoveries is difficult. RAVE eases discovery by 

providing a powerful, comprehensive, free, user-friendly toolkit that makes it easy to analyze 

and view iEEG data. For most existing solutions, users interact with their data by coding, 

often in Matlab. RAVE eliminates the necessity for programming expertise. Simply clicking 

on an electrode prompts immediate display of a number of useful analyses including the 

spectrogram, the response amplitude over time, the response to each individual trial, and the 

time series of the response at every trial. In contrast to current solutions, modifying any 

analysis parameter in the RAVE GUI (such as the time-frequency analysis window) instantly 

updates all analyses and visualizations. Development of RAVE is guided by five design 

principles.

4.1. Rigorous statistical methodology

The linear mixed-effects model used in the Group Analysis module incorporates our current 

understanding of the most rigorous way to analyze iEEG data. Individual electrodes and 

subjects are modeled as hierarchical random effects. Many iEEG analyses treat electrodes 

and subjects as fixed effects, creating the illusion of immense statistical power since there 
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are thousands of individual experimental trials. However, the high variability across 

electrodes and subjects makes this analysis a poor fit to iEEG data.

No software with a useful degree of flexibility can prevent users from making statistical 

errors such as circular or biased analyses. However, by making the analysis transparent and 

easy to reproduce, other investigators may easily examine claims based on iEEG data and 

determine if the approach is sound. Furthermore, for users who rely on the RAVE GUI, all 

of the code is already shared. This permits community-based examination of the internal 

workings of RAVE and for any errors that are discovered to be corrected. This is in sharp 

contrast to current practice, where each trainee in a single laboratory might analyze data 

using a different combination of functions called in different order with different parameters. 

This can lead to inconsistency if not outright errors and make it very difficult to reproduce 

analyses.

4.2. Keep users close to the data

The Power Explorer module is designed for interactive data visualization to power new 

discoveries. Data is automatically displayed broken down by individual trials, sorted by 

conditions. This is important because many iEEG discoveries (as in the rest of science) are 

serendipitous. For instance, in an experiment originally designed to examine differences 

between auditory and audiovisual words, RAVE users noticed differences between different 

stimulus exemplars explained by the relative timing of the auditory and visual speech (Karas 

et al., 2019). Experimental conditions can be defined on-the-fly, with the results instantly 

viewable. This is more flexible than other workflows (such as generalized linear model 

specification in analysis of BOLD fMRI data) in which the trials making up each condition, 

and the contrasts between the conditions must be prespecified.

4.3. Run anywhere

RAVE has been successfully used on Mac, Windows PCs, Linux boxes and iPads. The use 

of a web browser for user interfacing means that RAVE development is “future proofed” 

against obsolescence of specific graphics libraries, operating systems, and processing 

architectures.

As biomedicine moves towards funding-agency and journal enforced data archiving and 

sharing, the ability of RAVE to operate in the cloud will become increasingly important. 

RAVE automatically organizes all data and meta-data for each participant into a project 

directory; the entire project directory can then be uploaded to a data archive as mandated by 

many journals and funding agencies. The organized directory structure and analysis files 

created by RAVE are also easily translatable into nascent formats such as Neurodata Without 

Borders (Teeters et al., 2015) and the Brain Imaging Data Structure for iEEG (Holdgraf et 

al., 2019).

4.4. Reliability and reproducibility

Replicating iEEG analyses can be challenging. Even if the code used for an analysis is 

available, changes in hardware, operating systems, and dependencies between different 

software tools can make it impossible to load data or execute the analysis code. A good 
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solution to this problem is the use of the Docker system. A single binary image is shared that 

contains all of necessary software, data, and metadata necessary for replication (Boettiger, 

2015). The RAVE website maintains a current Docker image with a complete RAVE install 

and demo data.

4.5. Play well with others

There are a number of outstanding EEG and MEG tools, including EEGLAB (Delorme and 

Makeig, 2004), FieldTrip (Oostenveld et al., 2011) and MNE (Gramfort et al., 2013; 

Gramfort et al., 2014). The RAVE website (https://openwetware.org/wiki/

RAVE:SoftwareToolsTable) maintains a comprehensive list of iEEG software tools that 

includes the development language for each tool. RAVE is developed using “R”, a free, open 

source statistical language with a rich framework of existing packages developed by leading 

statistical and machine learning researchers (Computing, 2013). One disadvantage of “R” is 

that it is not as popular for scientific programming as Python, Matlab, or C and its variants C 

++ and C#. For users of other programming languages or packages, RAVE is designed to 

integrate easily with existing tools via data exchange through open file formats or direct 

function calls via API for access to internal data structures. DICOM and NIfTI formats are 

supported via oro (Whitcher et al., 2011) and JSON via jsonlite (Ooms, 2014). Interactions 

with C ++ are supported with Rcpp (Eddelbuettel, 2013); reticulate supports Python; and 

R.matlab supports Matlab. The RAVE API permits RAVE users to adapt existing analysis 

modules or create new analysis modules in a variety of languages. For instance, a module to 

perform time-frequency analysis using Hilbert transforms could be implemented in “R”; 

time-frequency analyses conducted in the Matlab toolbox chronux (http://chronux.org/) 

could be accessed via R.matlab and displayed with the RAVE viewer.

RAVE imports and exports data in a variety of formats, simplifying the exchange between 

software platforms. For example, there are a number of processing pipelines for localizing 

iEEG electrodes such as iELVis (Groppe et al., 2017) and img_pipe (Hamilton et al., 2017), 

that generate CSV files that RAVE directly reads for use in the surface/volume viewer. On 

the export side, Power Explorer generates FST files so that initial preprocessing and 

analyses can be performed in RAVE before exporting the data for more complex analyses 

not currently implemented in RAVE, such as deep learning.

4.6. Future directions

Future development of RAVE will focus on a number of areas, guided by user demand. The 

existing surface and volume viewer can display cortical surface models, CT, and volumetric 

MRI. The ability to display diffusion MRI or blood-oxygen level dependent functional MRI 

(BOLD fMRI) data would be an obvious extension. RAVE supports a variety of data quality 

checks and referencing schemes. Individual electrodes can be excluded from analyses at any 

stage, and outlier/artifact trials can be detected visually in the Power Explorer GUI and 

removed by clicking on the outliers in a scatter plot. Future development could include 

additional preprocessing routines for artifact rejection or noise reduction, such as 

independent components analysis.
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Fig. 1. 
Schematic of RAVE deployment configurations. Users interact with RAVE via a web 

browser running on a desktop, laptop, or tablet (red “Display” column). Data storage (blue, 

columns) and processing (green, rows) can both occur on the same desktop machine used for 

display. This is mandatory in situations with little or no internet connectivity, such as a 

hospital room or an airline flight. In laboratory situations, processing can occur on the 

desktop while data storage is shared, or both processing and storage can be shared. For 

large-scale collaborations, data can be stored remotely (e.g., using a cloud storage system) 

and processing can occur either on the desktop, locally, or in the cloud.
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Fig. 2. 
Flowchart of RAVE software architecture, proceeding from data input, through different 

processing stages, and ending in output of processed data and results, graphs and plots, and 

videos. Data files are stored internally using the HDF5 format and can be imported from a 

variety of formats. MRI volumes are imported in standard NIfTI format and cortical surface 

models in GIfTI format. The format for exported data varies depending on the type of data 

being exported.
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Fig. 3. 
A. The 3dViewer displays axial, sagittal and coronal slices through the MRI volume for 

localization of sEEG electrodes (orange spheres). B. The 3dViewer also supports display of 

cortical surface models for localization of ECoG electrodes (black spheres). Red pointer 

highlights YAB electrode 14. C. Power-by-frequency plot showing the average response 

across words in YAB electrode 14. The experiment consisted of repeated presentations of 

single words, time zero corresponds to the onset of the auditory component of the word. D. 

Individual trial data from YAB electrode 14. Each row/strip shows the response in a single 

trial over time, collapsed across the frequencies within the analysis window. There were 8 

total stimuli, 4 stimuli consisted of auditory-only recordings of words, 4 stimuli consisted of 

silent visual-only videos of the same words. There were 16 presentations of each individual 
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stimulus. E. The response from each row/strip in (D) was converted to a single value by 

averaging over the analysis window from 0 seconds to 0.5 seconds. Each orange symbol 

shows the response to a single auditory-only trial, each blue symbol shows the response to a 

single visual-only trial. The black lines show the mean and standard error of the mean for 

each condition across trials. F. The average response to auditory-only words and visual-only 

words over time in YAB electrode 14, collapsed across the frequencies in the analysis 

window. G. The t-score of the power difference between auditory-only and visual-only 

conditions, calculated for each electrode (red: auditory only > visual only; blue: visual only 

> auditory only).
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Fig. 4. 
A. To visualize activity across all electrodes in a subject, RAVE plots a symbol for each 

electrode (x-axis is electrode number) with the y-axis displaying the result of the selected 

statistical test, in this case the t-test for the response to auditory-only words. Users may 

select electrodes for inclusion in the group analysis using combinations of up to three 

functional and two anatomical criteria. Here, the functional selection criterion is the 

statistical threshold (shown as a dashed red line) above which an electrode is considered 

responsive (t > 5 for this analysis). The anatomical selection criterion for this analysis was 

“located on the superior temporal gyrus”. Filled dots indicate electrodes that met both the 

functional and anatomical criteria, empty dots did not meet both criteria (empty dots above 

the red line indicate electrodes that passed the functional criterion but not the anatomical 

Magnotti et al. Page 19

Neuroimage. Author manuscript; available in PMC 2021 January 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



criterion). B. All electrodes in subject YAB displayed on the subject’s cortical surface 

model. Black electrodes met both anatomical and functional criteria in (A), gray electrodes 

did not. C. The same anatomical and functional criteria developed in (A) were applied to 

832 electrodes across eight subjects. A total of 60 electrodes met both criteria. The locations 

of all left hemisphere electrodes that met the criteria are plotted on a template brain, colored 

by subject number (two subjects had only right hemisphere electrodes, not shown). D. The 

mean response across the 60 selected electrodes to auditory-only and visual-only words are 

plotted. Shaded regions indicate the standard error of the mean across electrodes. E. The 

response over time in each electrode was converted to a single value by averaging over the 

time window from 0 s to 0.5 s. Each orange symbol shows the response of a single electrode 

across all auditory-only trials, each blue symbol shows the response of a single electrode 

across all visual-only trials. The black lines show the mean and standard error of the mean 

for each condition across trials. F. Results of the statistical contrast between the auditory-

only and visual-only conditions was calculated for each electrode and used to color the 

electrodes, displayed on the left and right hemispheres of a template brain.
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