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Prognostic significance of 
kynurenine 3-monooxygenase 
and effects on proliferation, 
migration, and invasion of human 
hepatocellular carcinoma
Haojie Jin1,*, Yurong Zhang1,*, Haiyan You1,*, Xuemei Tao1, Cun Wang1, Guangzhi Jin2, 
Ning Wang1, Haoyu Ruan1, Dishui Gu1, Xisong Huo1, Wenming Cong2 & Wenxin Qin1

Kynurenine 3-monooxygenase (KMO) is a pivotal enzyme in the kynurenine pathway of tryptophan 
degradation and plays a critical role in Huntington’s and Alzheimer’s diseases. This study aimed 
to examine the expression of KMO in human hepatocellular carcinoma (HCC) and investigate the 
relationship between its expression and prognosis of HCC patients. We first analyzed KMO expression 
in 120 paired HCC samples (HCC tissues vs matched adjacent non-cancerous liver tissues), and 205 
clinical HCC specimens using immunohistochemistry (IHC). Kaplan-Meier survival and Cox regression 
analyses were executed to evaluate the prognosis of HCC. The results of IHC analysis showed that 
KMO expression was significantly higher in HCC tissues than that in normal liver tissues (all p ﹤ 0.05). 
Survival and recurrence analyses showed that KMO was an independent prognostic factor for overall 
survival (OS) and time to recurrence (TTR) (both p﹤0.01). And in vitro studies revealed that KMO 
positively regulated proliferation, migration, and invasion of HCC cells. These results suggest that 
KMO exhibits tumor-promoting effects towards HCC and it may serve as a novel prognostic marker in 
HCC.

Hepatocellular carcinoma (HCC) is the fifth most prevalent cancer and the third major cause of 
cancer-related death in the world1. Despite many advances in HCC therapy such as surgery, chemother-
apy and biologics, majority of HCC patients still has a poor prognosis due to high frequency of metastasis 
and recurrence2,3. It has been reported that the 5-year survival rate of HCC patients is as low as 25–39%, 
and its recurrence rate remains about 80%4,5. Therefore, it is critical to understand the etiology, illustrate 
the mechanisms underlying HCC initiation and progression, and further identify valuable factors for 
prognosis prediction and novel therapeutic strategies.

Kynurenine 3-monooxygenase (KMO), a pivotal enzyme in the kynurenine pathway (KP) of trypto-
phan degradation, has been suggested to play a critical role in Huntington’s (HD) and Alzheimer’s dis-
eases (AD)6–8. It is widely distributed in peripheral tissues, including liver and kidney, and in phagocytes 
such as macrophages and monocytes9,10, and also in microglial cells in central nervous system11,12. As 
a FAD-dependent enzyme, KMO localizes to the outer mitochondrial membrane and controls the syn-
thesis of several KP metabolites, including 3-hydroxykynurenine (3-HK), quinolinic acid (QUIN), and 
kynurenicacid (KYNA), as well as anthranilic acid. These bioactive metabolites were found to frequently 
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associate with brain disorders8, peripheral inflammatory conditions13, and cancer14,15. However, whether 
KMO deregulation also occurs in human HCC remains unclear. In this study, we investigated the expres-
sion of KMO, evaluated its prognostic significance, and explored the role of KMO in HCC. Our data 
indicate that KMO is remarkably increased in HCC and can be served as a promising biomarker of HCC 
prognosis.

Materials and Methods
Patients and Specimens. Paraffin-embedded pathological specimens in prognostic groups were 
obtained from the archives of the Eastern Hepatobiliary Hospital (EHBH) between 1996 and 2001, and 
followed until October 2010. No patients in this study received sorafenib treatment. Tumor stage was 
defined according to the American Joint Committee on Cancer (AJCC 2010, 7th edition) TNM stag-
ing system16. The grade of tumor differentiation was assigned by the Edmondson-Steiner grading sys-
tem. Micrometastases were defined as tumors adjacent to the border of the main tumor that was only 
observed under the microscope17. Then, 205 and 182 HCC patients were randomly selected from this 
cohort as the study population and reviewed retrospectively.

Patient follow-up was performed every 2–3 months during the first year after surgery and 3–6 
months thereafter until October 2010. The median follow-up was 40.8 month (range, 0.3–141 month). 
All follow-up examinations were performed by two physicians unaware of the study. All patients were 
monitored by abdomen ultrasonography, chest X-ray, and a test for the serum AFP concentration every 
month during the first year after surgery and every 3–6 months thereafter. A computed tomography scan 
or magnetic resonance imaging of the abdomen was performed every 6 months or immediately after a 
recurrence was suspected. The diagnosis criteria for recurrence were equal to that for the preoperative 
diagnosis. The overall survival (OS) was defined as the length of time between the surgery and death 
or the last follow-up examination. The time to recurrence (TTR) was calculated from the date of tumor 
resection until the detection of tumor recurrence, death or the last observation.

An additional 50 HCC patients as test cohort were randomly recruited between March 13, 2000 
and January 31, 2002 for immunohistochemistry (IHC) analysis. These resected samples were also sub-
jected to western blot verification (n =  10). To verify immunohistochemical results of test cohort, another 
large-scale cohort as validation cohort, including 70 cases randomly recruited between February 18, 2002 
and March 6, 2003, was analyzed via IHC. In addition, 43 HCC tissue samples and 43 liver cirrhosis 
tissue samples were randomly collected between February 18, 2002 and March 6, 2003, and used for 
further IHC expression analysis.

For the use of clinical materials for research purposes, prior patients' consents and approval were 
obtained from the Ethics Committee of Renji Hospital, Shanghai Jiao Tong University School of Medicine 
and EHBH of the Second Military Medical University. All experiments were performed in accordance 
with approved guidelines of Shanghai Jiao Tong University School of Medicine.

Immunohistochemistry and Scoring. Immunohistochemistry, signal evaluation, and integrated 
optical density (IOD) analysis were performed as described previously18. TDO antibody was purchased 
from Aviva Systems Biology (1:100) and KMO antibody was purchased from LifeSpan BioSciences (1:100). 
Photographs of three representative fields were captured under high-power magnification (× 200); identi-
cal settings were used for each photograph. IOD was counted and measured using Image-Pro Plus v6.0 
software, and mean IOD was calculated from three photographs per specimen.

Immunostaining scores were independently evaluated by two pathologists who were blinded to the 
clinical outcome. Semiquantitative scores were used to analyze immunostaining of each HCC case in tis-
sue microarray. Intensity of staining was categorized into − , + , + + , or + + + , denoting negative, weak, 
moderate, or strong staining, respectively. Extent of immunostaining was categorized into 0 (0–5%), 1 
(6–25%), 2 (26–50%), or 3 (>51%) on the basis of the percentage of positive cells. Three random micro-
scope fields per tissue were calculated. The sum of intensity and extent of staining was used as final score 
of expression level, and determined by the formula: final score =  intensity score ×  percentage score. The 
final score of ≤ 3 was defined as low expression, and > 3 as high expression.

Cell Culture and Transfection. Human normal liver cell lines L02 and SMMC7721 were obtained 
from Shanghai Institute of Cell Biology, Chinese Academy of Sciences. SK-Hep1 and PLC-PRF5 were pur-
chased from the American Type Culture Collection. MHCC97H, MHCC97L, and HCCLM3 were pro-
vided by the Liver Cancer Institute of Zhongshan Hospital of Fudan University (Shanghai, China). Huh7 
cells were purchased from Riken Cell Bank (Tsukuba, Japan). All the cell lines were cultured in Dulbecco’s 
modified Eagle’s medium (DMEM) (Gibco, Gaithersburg, MD, USA) containing 10% fetal bovine serum 
(FBS), 100 mg/ml penicillin, and 100 mg/ml streptomycin. All of the cells were incubated in a humidified 
atmosphere of 5% CO2 and 95% air at 37 °C. SK-Hep1 and MHCC-97H cells were transfected with KMO 
siRNA using lipofectamine 2000 (Invitrogen, Carlsbad, CA) according to the manufacturer’s instructions. 
SMMC7721 and Huh7 were transfected with the vector constitutively expressing KMO(pCMV6-XL5/
KMO), or the control empty vector (pCMV6-XL5/Vector) according to the manufacturer’s instructions. 
The siRNA duplexes targeted KMO (siRNA#1: forward 5’-CCAAGGUAUUCCCAUGAGATT-3’, reverse 
5’-UCUCAUGGGAAUACCUU- GGTT-3’; siRNA#2: forward 5’-CAGCCCAUGAUAUCUGUAATT-3’, 
reverse 5’-UUACAGAUAUCAUGGGCUGTT-3’) and scramble siRNA duplex (forward: 
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5’-UUCUCCGAACGUGUCACGUTT-3’; reverse: 5’-ACGUGACACGUUCGGA- GAATT-3’) were chem-
ically synthesized by Biomics Biotechnologies Co. Ltd (Shanghai, China). The pCMV6-XL5/KMO and 
pCMV6-XL5/Vector were purchased from Origene (Rockville, MD).

RNA isolation and Real Time PCR. Total RNA was extracted using TRIzol reagent (Invitrogen) 
and reversely transcribed using PrimeScript™ RT Reagent Kit (TaKaRa Biotechnology). Real time 
polymerase chain reaction (Real Time PCR) was subsequently performed following the manual 
(TaKaRa Biotechnology). Expression levels were normalized against β -actin, and relative expres-
sion levels were displayed using 2-Δ Δ Ct method. Primer sequences used are as follows: KMO: 
Forward:TGCTGAGAAATACCCCAATGTG; Reverse: CTGACAGTTGAATAG GCTCCATC; β -actin: 
Forward: TTGTTACAGGAAGTCCCTTGCC; Reverse: ATGCTATCACCTCCCCTGTGTG.

Western Blot Analysis. Briefly, tissue and cell samples were homogenated in a RIPA buffer (Qiagen, 
China). After centrifugation at 12,000 g, 4 °C for 30 min, 50 μ g of protein samples were fractionated by 
sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to nitrocellu-
lose membranes. After blocking non-specific binding sites for 60 min with 5 % non-fat milk, the mem-
branes were incubated with rabbit monoclonal antibody against KMO (1:1,800; LifeSpan BioSciences, 
Inc.), or β -actin (1:1,000;Santa Cruz) at 4 °C overnight, respectively, and subsequently, probed with 
HRP-conjugated anti-rabbit secondary antibody (1:5,000; Santa Cruz) for 45 min at room temperature. 
Chemiluminescence detection was performed using SuperSignal West Femto Maximum Sensitivity 
Substrate Kit 19 (Pierce). Membranes were exposed and recorded with Molecular Imager ChemiDoc 
XRS+System (Bio-Rad, CA, USA).

Cell Proliferation Assay. Cell proliferation was measured using the Cell Counting Kit-8 reagent 
(CCK-8, Dojindo, Japan). Cells were seeded into a 96-well plate at 2 × 103 cells per well with 100 μ l 
complete medium and cultured at 37 °C. 10 μ l CCK-8 solution was added to each well after 0, 24, 48 and 
72 hours, respectively.

Migration Assay. Cell migration assays were performed using Transwell filter champers (BD 
Biosciences). 5 ×  104 cells in 200 μ l serum-free DMEM were seeded in the upper chamber of a transwell 
and 800 μ l medium supplemented with 15% FBS was added to the lower chamber. After indicated time 
(12 hours for SK-Hep1, 24 hours for MHCC-97H, 20 hours for SMMC7721 and 20 hours for Huh7) of 
incubation at 37 °C, migrated cells were fixed and stained with a dye solution containing 0.1% crystal vio-
let and 20% methanol. Cells adhering to the lower side of the inserts were counted and imaged through 
an IX71 inverted microscope (Olympus). Five random microscopic fields were counted per well for each 
group, and the experiments were repeated at least three times independently.

Invasion Assay. For in vitro invasion assay, transwell filter champers (BD Biosciences) and tran-
swells coated with Matrigel (BD Biosciences) were utilized according to manufacturer’s instructions. 
5 ×  104 cells in 200 μ l serum-free DMEM were seeded in the upper chamber of a transwell and 800 μ l 
medium supplemented with 15% FBS was added to the lower chamber. After indicated time (20 hours 
for SK-Hep1, 40 hours for MHCC-97H, 24 hours for SMMC7721 and 30 hours for Huh7) of incubation 
at 37 °C, invaded cells were fixed and stained with a dye solution containing 0.1% crystal violet and 20% 
methanol. Cells adhering to the lower side of the inserts were counted and imaged through an IX71 
inverted microscope (Olympus). Five random microscopic fields were counted per well for each group, 
and the experiments were repeated at least three times independently.

Statistic Analysis. Differences among variables were assessed by χ 2 analysis or two-tailed Student 
t test. Kaplan-Meier analysis was used to assess survival. Log-rank tests were used to compare survival 
of patients between subgroups. Multivariate analyses were performed by multivariate Cox proportional 
hazard regression model. The experiments were performed in triplicates and data were presented as 
mean ±  SEM. Differences were considered to be statistically significant for p <  0.05.

Results
Up-regulation of KMO in HCC tissues. KMO expression was first analyzed in 10 matched pairs of 
HCC and adjacent non-tumorous liver tissue by Western blotting. As shown in Fig. 1A, in most cases, 
KMO expression in HCC tissue was obviously higher than in adjacent non-tumorous liver tissue of the 
same HCC patient. We next performed IHC analysis for KMO using a tissue microarray as a test cohort, 
which contained 50 paired HCC tissue samples. Immunohistochemical results showed the staining den-
sity of KMO in HCC group was obviously stronger than that in adjacent non-tumorous liver tissue group 
(Fig.  1B,C, p <  0.05). We further analyzed KMO expression in another independent validation cohort 
of 70 HCC patients by IHC. Similarly, KMO expression was significantly increased in HCC group com-
pared with adjacent non-tumorous liver tissue group (Fig. 1D,E, p <  0.05).

We also performed IHC analysis for KMO using a tissue microarray, which contained 43 tumor tis-
sues from HCC patients and 43 liver tissues from liver cirrhosis patients. Our data showed that KMO 
expression exhibited a progressive increase from liver cirrhosis to HCC (Fig. 2A,B, p <  0.05).
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Association of KMO expression with clinicopathologic features in HCC patients. Next, we 
investigated relationship between KMO expression and clinicopathological variables of HCC patients. 
IHC was performed to assess KMO expression in a retrospective cohort with 205 HCC patients, includ-
ing 59 cases of stage I (28.8%), 120 cases of stage II (58.5%), and 26 cases of stage III (12.7%), based on 
the TNM staging. KMO expression in the 205 samples was determined as high expression in 70 cases 
(70/205, 34.1%) and low expression in 135 cases (135/205, 65.9%). Spearman analysis revealed significant 
correlation between KMO and tumor differentiation (p =  0.004). However, there was no significant asso-
ciation between expression of KMO and other clinicopathological parameters such as age, sex, HBsAg 
status, tumor size, Child-Pugh, and vascular invasion (Table 1).

Correlation of KMO expression with prognosis of HCC patients. To determine the value of 
KMO for the prognosis of postsurgical HCC patients, Kaplan-Meier overall survival (OS) and time to 
recurrence (TTR) analyses were conducted. At the time of last follow-up, among the 205 HCC patients 
in the cohort, 118 had tumor recurrence and 120 had died. The mean OS was 48.7 months for patients 
with low KMO expression and 24.0 months for patients with high KMO expression. The mean TTR 
was 32.3 months for patients with low KMO expression and 16.2 months for patients with high KMO 

Figure 1. Up-regulation of KMO in HCC tissues. (A) Western blotting analysis for KMO in 10 paired 
samples of HCC tissues (T) and matched adjacent non-tumorous liver tissues (N). Left panel Representative 
Western blots for KMO and β -actin were shown. Right panel Band intensities of KMO were normalized to 
β -actin and showed as T/N Fold Change. Uncropped full-length blots for A are shown in the Supplementary 
Fig. 1. (B) IHC staining of KMO in 50 pairs of HCC tissues (T) and matched adjacent non-tumorous liver 
tissues (N) (Test cohort). (C) Integrated optical density (IOD) for KMO was obtained from the test cohort. 
(D) IHC staining of KMO in 70 pairs of HCC tissues (T) and matched adjacent non--tumorous liver tissues 
(N) (Validation cohort). (E) IOD for KMO was obtained from the validation cohort.
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expression. These results indicated that patients with high KMO expression had much shorter OS times 
(Fig.  3A, p =  0.0005) and a higher tendency of disease recurrence (Fig.  3B, p =  0.0034). Moreover, we 
also performed IHC analysis for tryptophan 2,3-dioxygenase (TDO), which is the main KP enzyme 
in liver cells, using a tissue microarray with 182 HCC patients. Kaplan-Meier OS and TTR analyses 
were conducted and results showed that TDO had no prognostic value for postsurgical HCC patients 
(Supplementary Fig. 2).

Additionally, prognostic value of KMO was further confirmed by stratified OS and TTR analyses. 
Results showed that high expression of KMO was closely connected with OS and TTR after surgical 
resection in subgroups including TNM stage (TNM stage I , Fig.  4A,B; TNM stage II-III, Fig.  4C,D), 
tumor number (tumor number =  1, Fig. 4E,F), tumor size (tumor size >3 cm, Fig. 4G,H), and AFP con-
centration (AFP ≤ 20 ng/ml, Fig. 4I,J).

Univariate and multivariate analyses of prognostic variables in HCC patients. We next eval-
uated prognostic significance of KMO and other clinicopathologic parameters in HCC using univariate 
analysis. As shown in Table  2, KMO as well as TNM stage, tumor number, tumor differentiation, and 
microvascular invasion, was responsible for the OS and TTR of HCC patients.

Multiple Cox regression analysis was further utilized to evaluate independent prognostic value of 
KMO. Results revealed that KMO was an independent prognostic marker for OS (HR: 1.700, 95% CI: 
1.161–2.489, p =  0.006) and TTR (HR: 1.763, 95% CI: 1.193–2.606, p =  0.004) in HCC patients (Table 2).

Inhibition of cell proliferation, migration, and invasion by KMO knockdown. We also assessed 
protein level of KMO in a normal liver cell line L02 and seven HCC cell lines, including SMMC7721, 
Huh7, SK-Hep1, PLC-PRF5, MHCC-97L, MHCC-97H, and HCC-LM3. Results showed that KMO 
expression was much higher in HCC cell lines, compared with the normal liver cell line L02 (Fig. 5A). 
Then, KMO was knocked down in SK-Hep1 and MHCC-97H cells, which expressed high levels of KMO, 
by small interfering RNA (siRNA). The mRNA and protein levels of KMO were effectively down-regulated 
by two KMO siRNAs at 48 hours of posttransfection (Supplementary Fig. 4 and Fig. 5B). As indicated by 
results of CCK8 assays (Fig. 5C), the proliferation of SK-Hep1 cells was significantly inhibited after KMO 
siRNAs transfection on day 2 (p <  0.05) and day 3 (p <  0.01). Likewise, compared to scramble siRNA 
transfected cells, proliferation of MHCC-97H cells also significantly inhibited after KMO siRNAs trans-
fection on day 3 (p <  0.05). Besides, effects of KMO on cell migration and invasion were also investigated 
using transwell migration assays and matrigel invasion assays, respectively. Our results showed that KMO 
knockdown significantly decreased the migration and invasion rates of both SK-Hep1 and MHCC-97H 
cells in vitro, respectively (Fig. 5D,E, all p <  0.05).

Enhancement of cell proliferation, migration, and invasion by KMO over-expression. To fur-
ther confirm the effects of KMO on proliferation, migration, and invasion, SMMC7721 and Huh7 cells 
were transfected with a vector constitutively expressing KMO (pCMV6-XL5/KMO) and a empty control 
vector (pCMV6-XL5/Vector), respectively. The mRNA and protein levels of KMO were significantly 
increased in pCMV6-XL5/KMO cells compared with pCMV6-XL5/Vector (Supplementary Fig. 6 and 
Fig. 6A). As indicated by results of CCK8 assays (Fig. 6B), the proliferation of SMMC7721 cells was sig-
nificantly increased after KMO over-expression on day 3 (p <  0.05). Likewise, compared to empty control 
vector transfected cells, proliferation of Huh7 cells significantly increased after KMO over-expression on 
day 2 (p <  0.05) and day 3 (p <  0.01). Furthermore, KMO over-expression also significantly increased 
the migration and invasion rates of both SMMC7721 and Huh7 cells in vitro, respectively (Fig.  6C,D, 
all p <  0.01).

Figure 2. Comparison of KMO levels in HCC patients and LC patients. (A) IHC staining of KMO in 43 
HCC patients and 43 LC patients. (B) IOD for KMO was obtained from (A).
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Discussion
Despite substantial advances in surgery and chemotherapy for HCC in the past time3,19,20. therapeutic 
failure and mortality are still very common. The current pathological TNM (pTNM) stage and histo-
logical grading systems are established and can indicate HCC prognosis to a certain extent. However, 
due to tumor heterogeneity and accumulation of genetic and epigenetic alterations, patients with the 
same pTNM stage and/or histological grade of HCC often demonstrate considerable variability in tumor 
recurrence and metastasis21. Thus, searching for valuable diagnostic and prognostic predictors that can 
effectively distinguish between patients with favorable or unfavorable prognoses in the same stage and/
or grade are urgently needed. Although previous studies have suggested several molecular biomarkers 
of HCC22–26, the novel biomarkers that can identify tumor recurrence and aid risk assessment remain 
substantially limited.

In the present study, we provide the first evidence that increased expression of KMO is correlated with 
an unfavorable clinical outcome of HCC patients. IHC staining in two independent cohorts (test cohort: 

Variable (missing cases) KMO protein

All cases Low expression High expression p value

Age 0.886

 ≤50 104 68 36

 >50 101 67 34

Sex 0.515

 Male 174 113 61

 Female 31 22 9

HBsAg 0.602

 Negative 54 34 20

 Positive 151 101 50

Serum AFP 0.316

 ≤20 ng/ml 74 52 22

 >20 ng/ml 131 83 48

Liver cirrhosis 0.932

 No 20 13 7

 Yes 185 122 63

TNM 0.299

 I 59 42 17

 II 120 79 41

 III–IV 26 14 12

Child-Pugh class 0.777

 A 195 128 67

 B 10 7 3

Tumor size 0.268

 ≤3 cm 25 14 11

 >3 cm 180 121 59

Tumor number 0.118

 Single 162 111 51

 Multiple 43 24 19

Tumor differentiation(3) 0.004*

 I-II 37 32 5

 III-IV 165 102 63

Vascular invasion 0.155

 No 69 50 19

 Yes 136 85 51

Table 1. Correlation between KMO expression and clinicopathologic parameters in HCC. Chi-square 
test for comparison between groups. *p < 0.05. HBsAg, hepatitis B surface antigen; AFP, alpha-fetoprotein; 
TNM, tumor-node-metastasis
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50 paired; validation cohort: 70 paired) indicated that KMO was abnormally elevated in HCC specimen 
compared with adjacent non-tumorous liver tissue. In a cohort of 205 HCC patients, Kaplan-Meier OS 
and TTR analyses showed that high KMO expression was associated with short HCC recurrence and 
poor prognosis after surgical resection. Multiple Cox regression analysis further conformed that KMO 
was an independent prognostic marker for OS and TTR. In addition, our data also showed a progressive 
increase of KMO from liver cirrhosis to HCC. These findings implicate that up-regulation of KMO may 
be a common feature in HCC and it can serve as an independent prognostic marker to identify patients 
with poor clinical outcome.

Identification of novel and specific prognostic biomarker for patients with early stage HCC is remark-
ably important27. Although AFP is most commonly employed and currently available as serological 
markers of HCC for surveillance, diagnosis and patient outcome prediction28–30, HCC patients without 
AFP elevation (AFP <  20 ng/ml) are missed and subsequently progress to late stage HCC before becom-
ing clinically symptomatic and detectable28,30. Moreover, the diagnostic and prognostic sensitivity of AFP 
was poor in the early stage of HCC, especially when used alone. Here, we evaluated the clinical useful-
ness of KMO as a prognostic factor in HCC patients with AFP <  20 ng/ml, which accounted for 36.1% 
of HCC patients in our study cohort. In addition, our results also showed that high expression of KMO 
in HCC patients at TNM I stage was closely associated with the risk of recurrence and shorter survival 
time (OS, p =  0.0042; TTR, p =  0.0500). Thus, our results have exhibited the potential value of KMO 
in predicting the risk of recurrence and patient survival in subgroups with normal AFP levels (AFP <  
20 ng/ml) or in the early-stage HCC group, which would have been difficult using currently clinically 
available surrogate biomarkers.

Molecular mechanisms underlying recurrence or metastasis of HCC are very complicated. Genetically, 
chromosomal copy number alterations, such as the loss of alleles on 16q and the amplification of 1q, 
have been found to associate with HCC metastasis31,32. Recently, multiple genes associated with HCC 
progression and metastasis have also been identified, including PGE233, Keratin 1934, FoxQ135, ICAT36, 
and Gankyrin37. KMO locates in a pivotal position in KP, which is responsible for >95% of tryptophan 
degradation in mammals, ultimately leading to the formation of NAD38,39. NAD is a key regulator of sev-
eral energy and signal transduction processes such as transcription, DNA repair, cell cycle progression, 

Figure 3. Correlation of KMO expression with OS and TTR in HCC patients. (A) Representative 
photomicrographs showed negative (− ), weak (+ ), moderate (+ + ), or strong (+ + + ) immunostaining of 
KMO in HCC specimens (magnification, ×  50, ×  200). (B, C) Kaplan-Meier curves of OS (B) and TTR (C) 
in 205 HCC patients.
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Figure 4. Correlation of KMO expression with OS and TTR in HCC subgroups. Analyses of OS and TTR 
by TNM stage (A–D), tumor number =  1 (E, F), Tumor Size > 3 cm (G, H), and AFP ≤  20 ng/ml (I, J).

Factors OS TTR

Multivariate Multivariate

Univariate p HR 95%Cl p Univariate p HR 95% Cl p

Age: ≤50 vs >50 0.520 NA NA NA 0.420 NA NA NA

Sex: Male vs Female 0.244 NA NA NA 0.192 NA NA NA

HBsAg: Negative vs 
Positive 0.028 NA NA NA 0.168 NA NA NA

Serum AFP (ng/ml): 
≤20 vs >20 0.215 NA NA NA 0.754 NA NA NA

Liver Cirrhosis : No 
vs Yes 0.307 NA NA NA 0.442 NA NA NA

TNM: I vs II vs III–IV 0.000 NA NA NA 0.001 1.633 1.216–2.192 0.001

Child-Pugh: A vs B 0.616 NA NA NA 0.509 NA NA NA

Tumor Size: ≤3 cm vs 
>3 cm 0.159 NA NA NA 0.774 NA NA NA

Tumor Number: Single 
vs Multiple 0.003 1.827 1.200–2.780 0.005 0.010 NA NA NA

Tumor Differentiation: 
I-II vs III-IV 0.041 NA NA NA 0.755 NA NA NA

Microvascular Invasion: 
No vs Yes 0.000 2.182 1.439–3.308 0.000 0.035 NA NA NA

KMO: Negative vs 
Positive 0.001 1.700 1.161–2.489 0.006 0.003 1.763 1.193–2.606 0.004

Table 2.  Univariate and multivariate analysis of different prognostic parameters in patients with HCC 
by Cox regression analysis.
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apoptosis and metabolism, which are relevant to tumor cell survival and proliferation. It functions as a 
coenzyme in metabolic pathways including glycolysis and the pentose phosphate pathway, thereby allow-
ing the efficient production of NADPH, ribose-5-phosphate (Rib-5-P) and biosynthetic compounds used 
by the tumor for growth and angiogenesis40. Moreover, aberrant NAD metabolism is considered a hall-
mark of cancer: the high rates of aerobic glycolysis (Warburg effect) perturbs NAD metabolism, thereby 
leading to disrupt the cellular NADH/NAD+  redox homeostasis, and promote cancer progression41,42. 
Our data first exhibited that KMO expression was significantly upregulated in HCC tissues. As a pivotal 
enzyme in the kynurenine pathway, increased KMO expression might affect NAD concentration in HCC 
and then involved in HCC progression.

Previous studies showed that modulation of KMO activity was mainly involved in several neurode-
generative diseases, including Huntington's disease and Alzheimer's disease6,43. However, roles of KMO 
in tumor, including HCC, remain hitherto unknown. It has been previously reported that selective deg-
radation of tryptophan created an immunosuppressive micromilieu of tumor both by depleting tryp-
tophan and by accumulating immunosuppressive metabolites of the kynurenine pathway: On the one 
hand, tryptophan shortage inhibited T cells proliferation and causes a lack of accumulation of specific 
T cells at the tumor site44,45. On the other hand, the main tryptophan metabolites, such as Kynurenine, 
3-hydroxykynurenine, and 3-hydroxyanthranilic acid, could suppress the T cell response and kill T cells, 
B cells and natural killer (NK) cells46,47. In this study, we found that KMO expression positively regulated 
proliferation, migration and invasion of HCC cells in vitro. Although underlying mechanism remains 
to be further investigated, our present study provides a clue for biological function of KMO in HCC.

Figure 5. Inhibition of proliferation, migration, and invasion by KMO siRNAs in vitro. (A) Analysis of 
KMO expression in HCC cell lines by Western blotting. Upper panel Representative Western blots for KMO 
and β -actin were shown. Lower panel Band intensities of KMO were normalized to β -actin and showed as 
Relative Intensity to L02 cells. Uncropped full-length blots were showed in the Supplementary Fig. 3. (B) 
SK-Hep1 and MHCC-97H cells were transfected with no siRNA (Mock), siRNA control (Scramble siRNA) 
or siRNAs against KMO (KMO siRNA#1 and KMO siRNA#2), respectively. Knockdown efficiency of KMO 
was verified by Western blotting. Upper panel Representative Western blots for KMO and β -actin were 
shown. Lower panel Band intensities of KMO were normalized to β -actin and showed as Relative Intensity 
to Mock cells, respectively. Uncropped full-length blots were showed in the Supplementary Fig. 5. (C) 
Cell proliferation of SK-Hep1 and MHCC-97H cells transfected with KMO siRNA was observed by CCK8 
assay. (D) Cell migration of SK-Hep1 and MHCC-97H cells transfected with KMO siRNA was measured 
by transwell migration assays. (E) Cell invasion of SK-Hep1 and MHCC-97H cells transfected with KMO 
siRNA was measured by matrigel invasion assays. Data are mean ±  SD of 3 biological replicates (*p <  0.05, 
**p <  0.01, ***p <  0.001).
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To the best of our knowledge, this is the first study to report that high KMO expression is correlated 
with aggressive malignant phenotype of HCC. Our data indicate that KMO may serve as a novel prog-
nostic marker for HCC and targeting KMO may provide a promising strategy for HCC treatment.
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