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Abstract
Population substructure within human populations is globally evident and a well-known confounding factor in many genetic 
studies. In contrast, admixture mapping exploits population stratification to detect genotype–phenotype correlations in 
admixed populations. Southern Africa has untapped potential for disease mapping of ancestry-specific disease risk alleles 
due to the distinct genetic diversity in its populations compared to other populations worldwide. This diversity contributes 
to a number of phenotypes, including ancestry-specific disease risk and response to pathogens. Although the 1000 Genomes 
Project significantly improved our understanding of genetic variation globally, southern African populations are still severely 
underrepresented in biomedical and human genetic studies due to insufficient large-scale publicly available data. In addition 
to a lack of genetic data in public repositories, existing software, algorithms and resources used for imputation and phas-
ing of genotypic data (amongst others) are largely ineffective for populations with a complex genetic architecture such as 
that seen in southern Africa. This review article, therefore, aims to summarise the current limitations of conducting genetic 
studies on populations with a complex genetic architecture to identify potential areas for further research and development.
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Introduction

Genetics entered an exciting era of discovery with the advent 
of next-generation sequencing (NGS) technology, improved 
bioinformatic techniques and increased international collab-
oration to include underrepresented diversity in genetic stud-
ies. Collaborative initiatives, such as the Human Heredity 
and Health in Africa (H3Africa) Consortium and, African 
Genome Variation Project (AGVP) are rapidly obtaining and 
investigating valuable genetic data previously unattainable 
(Gurdasani et al. 2015; Zheng-Bradley and Flicek 2017; 
Fortes-Lima et al. 2017; Mulder et al. 2018). These studies 

have enabled novel genetic investigations, however large 
sample sizes and high-quality whole-genome data are still 
lacking for most populations from particularly southern 
Africa. Association studies often yield no significant single 
nucleotide polymorphisms (SNPs) associated with multi-
factorial diseases and fail to detect associations with rare 
genetic variants [minor allele frequency (MAF) of < 1%] 
in southern African populations due to a lack of predictive 
power. Furthermore, the vast majority of association studies 
continue to be focused on populations of European ancestry 
and simple admixture scenarios (Wojcik et al. 2019).

Genetic regions associated with multifactorial diseases 
could be identified by investigating the allelic architecture 
of highly complex admixed individuals, since they received 
haplotypes from diverse continental populations previously 
exposed to various environments and pathogens (Dias-Alves 
et al. 2018; Mazandu et al. 2019). If such gene regions could 
be successfully identified, it will aid in the advancement of 
drug therapies, implementation of personalized medicine 
and vaccine development in underdeveloped countries such 
as South Africa. However, individuals from South Africa 
can be up to five-way admixed, arguably the most complex 
global example of admixture (Daya et al. 2013; Uren et al. 
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2017b). The history of South Africa contributed to this 
observed population substructure, one of which includes 
ancestral contributions from predominantly the indigenous 
hunter-gatherers of southern Africa and Bantu-speaking 
Africans, as well as European-descent groups, South East 
Asians and East Asians (de Wit et al. 2010; Chimusa et al. 
2014; Daya et al. 2014b; Uren et al. 2016).

The frequency of disease risk alleles differs between 
populations (Secolin et  al. 2019). These disparities are 
exploited to map disease-causing variants of multifactorial 
diseases in admixed genomes, better known as admixture 
mapping (Shriner 2013). However, additional modifica-
tions are required to conduct admixture mapping studies for 
individuals from southern Africa, since most computational 
tools are designed to infer local ancestry for two-or three-
way admixed populations only (Chimusa et al. 2018; Schurz 
et al. 2019; Mazandu et al. 2019). In addition, statistical 
methods assume homogeneity and may not be applicable 
for Africans with more complex haplotype structures and 
mosaic patterns present on chromosomes generated by 
recent admixture events across the African continent (Fan 
et al. 2019). The continuous increase in non-communicable 
diseases in Africa and the persistent threat of emerging and 
re-emerging infectious diseases could in part be countered 
by the development of comprehensive research pipelines for 
disease mapping in highly admixed individuals from Africa. 
This review, therefore, aims to summarise the current limi-
tations of and prospective avenues for population genomics 
research in relation to disease mapping in southern African 
populations.

Admixture mapping

The conventional method of genome-wide association stud-
ies (GWAS), which is a hypothesis-free method of detecting 
SNPs associated with a certain disease, is not sufficient for 
detecting SNPs associated with a disease in a population 
with admixed genomes (Visscher et al. 2017). In contrast, 
admixture mapping (study design summarised in Fig. 1) 
acknowledges biogeographic ancestry associated with spe-
cific phenotypes by including ancestry proportions (globally 
or locally inferred from dense genotypic data) as covariates 
in epidemiological studies (Thornton and Bermejo 2014; 
Duan et al. 2018). Instead of relying on the association 
between a genotype and a phenotype, as in GWAS, it con-
siders the associations of the number of haplotypes (0, 1 
or 2) of a specific ancestry with the phenotype of interest 
(Hoggart et al. 2004; Duan et al. 2018). The study design 
has recently been successfully used in a variety of complex 
diseases, e.g. hypertension (Zhu et al. 2005), prostate cancer 
in African Americans (Freedman et al. 2006), asthma-asso-
ciated variants in Latinos (Gignoux et al. 2019), obstructive 

sleep apnea in Hispanic/Latino Americans (Wang et al. 
2019), tuberculosis (TB) associated variants in South Afri-
cans (Daya et al. 2014a) and multiple sclerosis in 3692 Afri-
can Americans, 3777 Hispanics and 4915 Asian Americans 
(Chi et al. 2019).

The successful implementation of admixture mapping 
relies on suitable proxy haplotype reference panels that rep-
resent each ancestral group. The reference panels are used 
to infer the number of haplotypes that originated from a 
specific ancestral source population at a given locus, bet-
ter known as local ancestry inference (LAI) (Paşaniuc et al. 
2009; Dias-Alves et al. 2018). However, limited haplotype 
reference panels are available for southern African popu-
lations. Furthermore, admixture between ethnic groups 
creates long-range linkage disequilibrium (LD) between 
variants from different ethnic groups with different allelic 
frequencies. This subsequently results in differing ancestral 
haplotype LD blocks, which holds implications for the use 
of tagging SNPs when working with admixed individuals 
(Skotte et al. 2019). Tagging SNPs are normally genotyped 
whilst conducting association studies and act as a proxy for 
the underlying common disease-causing variants. Associa-
tion signals depend on how strongly tagging SNPs correlate 
with the presence of the disease-causing variant located in 
a haplotype LD block (Hellwege et al. 2017). The tagging 
SNPs could be in the same ancestral LD block, but due to 
admixture induced LD, be located in a different haplotype 
LD block and no longer tag the original LD block containing 
the causal variant. Therefore no association signal would 
be detected (Skotte et al. 2019). This is predominantly evi-
dent when genetic heterogeneity is present in the admixed 
population (Duan et al. 2018). Genetic heterogeneity within 
a population in this context refers to the individuals of the 
population having different proportions of global ancestry 
and/or differing local ancestry at a given locus (Duan et al. 
2018).

The increasing number of admixed individuals is an 
evolving obstacle for epidemiological association stud-
ies. Even populations assumed to be unadmixed may har-
bour fine-scale admixture. A different admixture mapping 
approach is required for southern African populations since 
most individuals will have ancestral contributions from more 
than two different non-intermating admixed subpopula-
tions of unknown origin with different effect sizes (Bostoen 
2018). The Bantu expansion shaped the genetic composition 
of most populations from southern Africa, which consists 
of the countries Namibia, Botswana, Eswatini, Lesotho and 
South Africa, the latter having 11 official languages which 
reflect the main ethnic groups (Uren et al. 2016). Differ-
ential admixture dynamics were experienced by Bantu-
speaking communities in different areas of south-eastern 
Africa and the indigenous populations were most affected 
by this event (Pickrell et al. 2012; González-Santos et al. 
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Fig. 1  Flow diagram indicating resources and software used for 
admixture mapping. Black blocks indicate the analysis steps, orange 
blocks represent the software used to conduct the relevant step, blue 
blocks indicate the resource required for the step and green blocks 

indicate software or approaches used for visualization. The red stars 
indicate missing or inadequate resources for executing the analysis 
step in South African populations
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2015; Beltrame et al. 2016; Fan et al. 2019; Tucci and Akey 
2019). The migration from west to eastern- and southern 
Africa of Bantu-speaking Africans disrupted local commu-
nities by displacement or admixture which led to genetic 
and cultural exchange. This caused agricultural expansion 
(González-Santos et al. 2015). Several aspects, therefore, 
require consideration before conducting genetic studies in 
southern African populations. Firstly, the extensive popu-
lation heterogeneity amongst Africans caused by complex 
genetic population sub-structure and differing levels of 
admixture (Choudhury et al. 2018; Fan et al. 2019). These 
groups can therefore not be grouped as one population in 
genomic studies (Patin et al. 2017). Secondly, differences in 
LD between populations of African descent causes different 
haplotype structures resulting in reduced power to detect 
untyped causal loci (Campbell and Tishkoff 2008). Thirdly, 
derived alleles are more likely to be heterozygous instead of 
homozygous (Barnes et al. 2007).

Although admixture mapping increases power to detect 
disease-associated variants, due to longer ancestral LD 
blocks than haplotype blocks, differing amounts of ances-
try and LD patterns from unknown ancestral populations 
could be present in each individual in the cohort under study 
(Zhu and Wang 2017). Adjusting by local ancestry, reflect-
ing the admixture induced LD within admixed populations, 
will significantly improve the detection of genetic variants 
with small or moderate effect when extensive genetic het-
erogeneity is present in the admixed population under study 
(Duan et al. 2018). However, it is important to also correct 
for global ancestry proportions, whilst correcting for local 
ancestry, since association testing will take place in the con-
text of the admixture induced LD blocks in the admixed 
genome (Duan et al. 2018). This emphasizes the importance 
of characterising fine-scale genome variation among under-
represented southern African populations to facilitate com-
plex-trait mapping amongst those who harbour a significant 
burden of global disease.

Currently, no universal standard operating procedures 
for admixture mapping exists due to the unique admixture 
scenarios of each project (Zhang and Stram 2014). Consider-
ing finer details of population history and ancestry locally 
inferred for each haplotype will become a requirement for 
genomic studies among admixed individuals (Duan et al. 
2018). This is especially true for populations with complex 
histories, such as those found in southern Africa.

Genomic resources

Population‑specific reference genomes

The current human reference genome was essential in 
advancing genetic analysis such as imputation of missing 

genotypes required for GWAS and admixture mapping stud-
ies, as well as the identification of rare variants in mostly 
European and Asian populations (Ikegawa 2012). It is esti-
mated that any two humans will share approximately 99.9% 
of their genomes (Li and Sadler 1991). A 0.1% difference 
might seem insignificant, although in a human genome this 
translates to approximately 3 million base pairs (Suwin-
ski et al. 2019). Since the current reference systematically 
under represents the tremendous global sequence diversity 
it is necessary to focus on the individual, geographically 
defined populations.

Reference genomes have been assembled for multiple dis-
tinct human populations and have empirically proven their 
importance by improving both short read mapping and geno-
type calling. It facilitates the assessment and meta-analysis 
of studies done on different microarrays by imputing missing 
genotypes and is regularly utilized for improving imputation 
of low frequency and rare variants (Vergara et al. 2018). 
Despite the decrease in the cost of sequencing, microarrays 
are still the technology of choice, although these do have 
certain limitations. Most notably, probes on the microar-
ray are designed from publicly available data to be an exact 
complement to the desired genomic region to maximize 
genotyping rate. If not, it will result in a lower genotyp-
ing rate and is especially problematic when considering 
the higher base-pair substitution rate of intergenic versus 
protein-coding regions (Cargill et al. 1999; Halushka et al. 
1999; Leabman et al. 2003). Another limitation is the impli-
cation of a probe binding within structural variants (SV) 
which have been shown to be greatly population-specific 
(Rosenfeld et al. 2012; Sudmant et al. 2015). If sequencing 
is selected, the raw data still requires conversion to genomic 
data either through de novo assembly or by alignment to a 
reference genome. The latter approach, which is less compu-
tationally demanding, has not always allowed the detection 
of SVs. Due to the read length cut-off of standard NGS, this 
method of variant detection has a resolution perfect for sin-
gle nucleotide variants (SNV), but is too small to accurately 
detect larger events (Merker et al. 2018).

The failure to detect variants of any size in genomic data 
due to a lack of a population-specific reference genome has 
multiple consequences. Firstly, it has an impact on the ability 
to identify potentially disease-associated variants in patients 
with underlying genetic conditions. This is applicable not 
only to the discovery of the variant but extends to the pre-
cise clinical diagnosis and subsequent treatment. Detecting 
functionally relevant genetic variants with increased accu-
racy with the help of a population-specific reference genome 
brings precision medicine to the forefront of diagnostic/
treatment options. Secondly, the failure to detect variants has 
consequences for the generation and maintenance of allele 
frequency databases as the failure to accurately curate these 
findings overburden variant prioritization pipelines. Whilst 
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considering genomic variants linked to a condition that is 
more prevalent in a certain population, it is preferable to 
compare the genomes to a reference genome more repre-
sentative of that population.

Currently, no reference genome exists that adequately 
represents African genetic diversity and it is unlikely that a 
quality reference genome representative of all populations 
will be achieved. Rare genetic variants could be missed 
when conducting studies on participants from African 
origins since Africans contain ± 10% more DNA (± 3 mil-
lion base pairs) than the presently available human refer-
ence genome (Sherman et al. 2019). Regions as large as 
100,000 base pairs were identified and 387 novel contigs 
were in 315 distinct protein-coding regions (Sherman et al. 
2019). Furthermore, the current $2.7 billion Human Genome 
Reference build 38 (GRCh38) lacks genetic variation from 
individuals worldwide. A study conducted by Yang et al. 
identified certain biases in GRCh38 by sequencing three 
Africans, three Asians, two Europeans and three Americans 
with PacBio single molecule, real-time (SMRT) sequencing 
and comparing these to GRCh38, 174 individuals from the 
1000 Genome Project (1000GP) and 266 individuals from 
the Simons Genomes Variation Project (SGDP). A total of 
40.8% (99,604 nonredundant SVs) were novel compared 
to previously published large-scale projects (Yang et al. 
2019). The SGDP obtained high quality (average coverage 
of 43-fold) whole genomes from 142 diverse populations 
and indicated that these genomes include at least 5.8 million 
base pairs that are not present in GRCh38 (Mallick et al. 
2016). Additionally, a study in Sweden identified 61,000 
novel genetic sequences from 1000 individuals that were 
missing in GRCh38 and nearly 40% of the genetic material 
couldn’t be mapped (Eisfeldt et al. 2020).

Previous attempts to capture underrepresented southern 
African genetic variation have been made by the 1000GP, 
AGVP and SGDP to include more genome-wide genetic 
markers for broader groups of southern African popula-
tions (Gurdasani et al. 2015; 1000 Genomes Project Con-
sortium et al. 2015). The 1000GP, the largest whole-genome 
sequencing survey, analysed 26 populations from Europe, 
East Asian, South Asian, the Americas and Africa. Low cov-
erage sequencing was used and the focus was on demograph-
ically large populations, while smaller populations were 
excluded, despite their respective contributions to human 
diversity. Although five African populations were included 
in the analysis, most of these populations are of recent 
Niger-Kordofanian ancestry (West-and East African) and 
do not reflect the diversity present in southern Africa (1000 
Genomes Project Consortium et al. 2015). Furthermore, 
11%, 5% and 5% of heterozygous positions in KhoeSan, New 
Guineans and Australians respectively were not identified 
by the 1000GP. This study also validated that populations 
from southern Africa contain the highest genetic diversity 

amongst modern humans (Mallick et al. 2016). Addressing 
this diversity, the AGVP included whole-genome sequenc-
ing across individuals belonging to ten language subgroups 
in southern Africa, however, the low coverage sequenc-
ing (4 × coverage) risks misclassifying both observed and 
imputed rare variants (Gurdasani et al. 2015). Although 
efforts by multiple consortiums are currently expanding, 
the risk of eliminating genuine pathogenic variants that are 
segregating in the population will not be improved in the 
absence of comprehensive knowledge of human genetic 
architecture including rare variant frequencies.

Population‑specific recombination maps

Recombination maps are often used for admixture mapping 
(Browning and Browning 2007). A recombination map is a 
genetic map that illustrates the variation of the recombina-
tion rate across a region of the genome or the entire genome 
(Myers et al. 2005). It is dependent on the underlying dis-
tribution of recombination events that occur between suc-
cessive generations within a given population (Kong et al. 
2010). The presence and activity of the PRDM9 zinc finger 
protein in the population under study, the ratio of males to 
females and the population’s genetic substructure are some 
of the known factors that have an effect on these recom-
bination events. Population substructure is affected by the 
migratory history, the evolutionary history and the common 
ancestry of the population (Manu et al. 2018). The extent to 
which the population substructure impacts the utility of a 
recombination map is yet to be determined.

Currently, there is a lack of high-resolution population-
specific recombination maps for southern African popula-
tions. This has inevitably led to inaccuracies in studies that 
make use of a recombination map. These inaccuracies are 
exacerbated when no recombination maps for closely related 
populations are available. Research being done in southern 
African populations have thus been forced to make use of 
ancestral maps (such as European and West African maps) 
(Uren et al. 2017a) or they have to rely on ancestry informa-
tive markers to mitigate potential bias when genome-wide 
data is not available (Daya et al. 2013). There is thus a need 
for accurate, high-resolution recombination maps for south-
ern African populations.

However, there are several uncertainties to be addressed 
before such a map can be handled with confidence. Firstly, 
the accuracy of the map needs to be established. Software 
used to construct recombination maps has been developed 
and tested on populations with homogeneous ancestry 
(Auton and McVean 2007). Secondly, testing the accuracy 
of a recombination map of an admixed population is diffi-
cult, because there are variable recombination rates between 
ancestries. Any one segment of a recombination map would 
have a recombination rate that closely resembles the average 
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rate of the rates of all the ancestries represented in the popu-
lation. Thirdly, the method used to develop the map and 
the map itself would then have to be validated against cur-
rently available recombination maps (Kong et al. 2010). It 
should also be noted that the resolution of a given map relies 
strongly on the method used to construct the map and the 
number of individuals used to construct the map (Halldors-
son et al. 2019). The most common methods used to build 
recombination maps are pedigree-based methods, LD-based 
methods and admixture based-inference (Halldorsson et al. 
2019). Of these methods, the LD-based method produces the 
highest resolution if there are a limited number of individuals 
available. However, the pedigree-based and the admixture-
based method can produce sub-kilobase resolutions when a 
few thousand individuals are available (Halldorsson et al. 
2019). The problem with using the admixture-based method 
on a population for which no recombination map exists is 
that many methods that infer ancestry rely on a recombina-
tion map for the inference. Thus the resulting recombina-
tion map could be inaccurate because the map used for the 
ancestry inference might be based on a population that is 
distantly related to the population in question. When deal-
ing with admixed populations, the pedigree-based method 
would produce the least amount of bias due to admixture, 
since the algorithms employed rely on direct observations of 
recombination events between parent–offspring pairs (Hall-
dorsson et al. 2019). Because of the aforementioned reasons, 
the pedigree-based method should be the method of choice 
when a large enough sample from a population is available. 
The theoretical benefit of a population-specific recombina-
tion map has yet to be proven in practice, but one can expect 
such a map to improve the accuracy of admixture mapping 
and this improved accuracy could result in the discovery of 
novel variants associated with numerous phenotypes.

Future prospects for disease mapping

Novel loci identified in African populations

Novel genetic regions associated with multifactorial diseases 
could be identified by investigating the allelic architecture of 
highly admixed individuals from southern Africa, along with 
fine-mapping previous genomic loci associated with com-
plex traits (Narang et al. 2011; Gurdasani et al. 2019). The 
first meta-analysis conducted in western Africa identified a 
novel locus (ZRANB3) significantly associated with type 
2 diabetes (T2D) in a study investigating 5231 individuals 
from Nigeria, Kenya and Ghana. The study also indicated 
the transferability of 32 established T2D loci from previous 
investigations and contributed to the disease aetiology of 
T2D (Adeyemo et al. 2019). Furthermore, Gulsuner et al. 
investigated 909 schizophrenia patients and 917 healthy 

controls from the Xhosa population of South Africa (resid-
ing mostly in the eastern cape of South Africa). Not only did 
they identify admixture between Bantu-speaking Africans 
and San individuals, but also identified more private damag-
ing mutations in cases than in controls. Interestingly when 
the same analysis was replicated in a Swedish cohort, the 
Xhosa individuals generally had larger effect sizes than that 
of the Swedes (Gulsuner et al. 2020). Furthermore, a meta-
analysis consisting of 14,100 African individuals concern-
ing cardiometabolic traits, identified novel loci associated 
with lipid, blood cell, and also other traits that appear to be 
rare in populations from other parts of the world (Gurdasani 
et al. 2019). However, these are mostly concerning common 
genetic variants and not adequate to identify rare genetic 
variants.

High-throughput technologies, such as whole-exome 
sequencing (WES) and whole-genome sequencing (WGS), 
are required to locate rare population-specific variants (Uren 
et al. 2017a; Retshabile et al. 2018; De La Vega and Bus-
tamante 2018). Although WES is a cost-effective approach 
for identifying coding sequence targets in resource-restricted 
settings, WGS includes the complete and unbiased informa-
tion carried by an individual, and high coverage WGS can 
detect rare variants (Suwinski et al. 2019). The first deep 
sequencing experiment of southern African populations 
assessed the population substructure within a cohort of HIV 
positive children from Botswana. WES data of 164 individu-
als from Botswana were analysed and compared with 150 
similarly sequenced HIV positive Ugandan children (Retsha-
bile et al. 2018). Approximately 13–25% of genetic variation 
in populations from Botswana was not captured in current 
public databases. These missing variants were significantly 
enriched for coding variants with MAF between 1% and 5% 
and included predicted-damaging non-synonymous vari-
ants. This population also had more rare (< 1%) pathogenic 
and damaging variants (Retshabile et al. 2018). These stud-
ies highlight the untapped potential of these populations to 
contribute to the novel discovery of disease risk alleles in 
GWAS studies. Extending GWAS and sequencing studies 
to diverse populations will surely generate a rich harvest of 
novel risk alleles.

Population‑specific allele frequency databases

Population-specific allele frequencies have been sparsely 
characterised for southern African populations. For rare dis-
ease genetics, reference databases are continuously used for 
filtering based on allele frequency with the idea that com-
mon alleles are unlikely to be responsible for rare, highly 
penetrant disorders (Visscher et al. 2017). Therefore, in the 
absence of appropriate population reference datasets, vari-
ants can be misclassified and may lead to false disease asso-
ciations. For instance, a major allele for southern African 
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populations can be identified as minor, since the current 
reference genome indicates it is a minor allele (Yang et al. 
2019). High-coverage whole-genome reference datasets are 
needed to characterize and catalog population-specific vari-
ation and facilitate genetic studies in admixed southern Afri-
can populations to identify causal rare variants.

The clinical value contributed by the deep sequencing 
of whole genomes was demonstrated by The GenomeAsia 
100 K project (GAsP) (Wall et al. 2019). The pilot phase, 
which included a WGS dataset of 1739 individuals from 219 
populations and 64 countries across Asia, identified a total of 
194,585 novel variants with a MAF of > 1%. Overall 23% of 
protein-coding altering variants in GAsP were not found in 
publicly available databases such as the Single Nucleotide 
Polymorphism Database (dbSNP), the Genome Aggregation 
Database (gnomAD), the Exome Aggregation Consortium 
(ExAC) and the Exome Sequencing Project (ESP) (Wall 
et al. 2019). Importantly, imputation accuracy using the 
GAsP reference panel was 93- 95% compared to < 90% uti-
lising the 1000GP reference panel. GAsP discovered thirteen 
unique cancer risk variants and HBB, a variant associated 
with beta-thalassemia. HBB is found almost exclusively in 
South Asians and at a lower frequency in Southeast Asia. 
Ultimately the GAsP reference dataset improves the abil-
ity to filter out low–probability candidates for highly pen-
etrant disorders to identify putatively pathogenic variants 
that are found at high frequency in particular populations 
and improves the ability to infer pathogenicity of identified 
variants (Wall et al. 2019). Not only did this study exceed the 
ability of publicly available sources to annotate protein-cod-
ing variants and capture low-frequency rare variants unique 
to Asian populations, but it also improved the imputation of 
missing genotypes.

The Ugandan 2000 Genomes Project (UG2G) consists 
of 1978 individuals from rural Uganda and is the largest 
sequence panel from Africa (Gurdasani et al. 2019). The 
investigators identified 41.5 million SNPs and 4.5 million 
insertions and deletions. Likewise, 29% of the SNPs discov-
ered in the UG2G project were absent in gnomAD. Further-
more, 52 population clusters in the region of Uganda (home 
to 9 ethnolinguistic groups) were identified and revealed a 
mixture of complex ancient East African pastoralists (Gur-
dasani et al. 2019). A genetic study conducted by Higasa 
et al., which included 1208 Japanese individuals identified 
156,622 previously unreported variants. Surprisingly, the 
allele frequencies were lower than 0.5% and functional del-
eterious. This study specifically emphasized the importance 
of constructing an ethnicity-specific reference genome for 
identifying rare variants (Higasa et al. 2016).

An existing catalogue of known variants, be it common 
or rare, will allow researchers to identify mutations in pro-
tein-coding regions, rare causal variants and track the small 
and discrete mutations at a genomic level at multiple loci. 

However, population-specific variants will only be accurately 
collected if a reference genome exists with a representative 
population consensus, instead of using the existing human 
reference genome (GRCh38) of European ancestry (currently 
employed as a proxy in all genomic studies) (Ballouz et al. 
2019).

Avenues for future improvements

Genomic resources lack southern African representation which 
is impacting on research in these settings. Future investigations 
to address this could include the following:

1. A consensus southern African reference genome, 
obtained from high-throughput whole genomes, for 
southern African populations, is required to capture 
the major alleles present in the region. This will serve 
as a genetic toolbox to improve imputation of missing 
genotypes to standardize cohorts genotyped on differ-
ent arrays for meta-analysis and minimise the possibility 
of misclassifying major and minor alleles for southern 
African populations.

2. A southern African recombination map might improve 
the phasing of haplotypes to increase the accuracy of 
local ancestry inference in highly admixed individu-
als. However, there still exists some uncertainty in this 
regard and further investigations are warranted.

3. A southern African population-specific catalogue is 
required to capture allele frequencies in this region. 
Rare variants could be shared amongst healthy individu-
als, but not be present in public databases. Only high 
throughput sequencing technologies will be able to cap-
ture population-specific rare variants, since a reference 
genome, which is used as consensus in disease mapping, 
would not necessarily contain a specific variant.

4. An electronic catalogue of phenotypic information and 
the associated genotypic information enables geneticists 
to accurately identify genetic variants associated with 
disease phenotypes. However, the complexity of sample 
collection (due to unique ethical, cultural and socio-eco-
nomic factors) in southern Africa is frequently under-
estimated as is reviewed elsewhere (Martin et al. 2018). 
The United Kingdom Biobank is a recent example of 
how incorporating clinical data embedded in electronic 
health records combined with GWAS data and registries 
available for research, can benefit everyone and not just 
individuals from a specific region.
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Conclusion

Current GWAS and admixture mapping study designs 
are failing to identify disease-causing loci or rare genetic 
variants in southern African individuals. This is largely 
the result of limited reference haplotype panels and in 
turn limited genetic and computational tools available 
for southern African populations. The majority of SNP 
genotyping arrays are selected from a small sample of 
individuals (predominantly of European ancestry) and 
imputation and phasing of genotypic data usually involve 
a human reference of European ancestry, missing ± 10% 
of the genomes of individuals from African descent (De 
La Vega and Bustamante 2018). The genome structures of 
future generations might develop in a similar way to that 
of a complex five-way admixed southern African popula-
tions as admixture between populations originating from 
more than two different continents are now considered a 
customary feature of human populations across the globe 
(Busby et al. 2016; Salter-Townshend and Myers 2018).

Existing methods to detect loci associated with the mul-
tifactorial disease are not optimized for southern African 
ancestral groups and innovative approaches are urgently 
needed to study lethal communicable diseases such as TB, 
as well as non-communicable diseases such as cardio-met-
abolic diseases and type 2 diabetes in Africa. This entails 
the systematic development of best practises for ancestry 
inference, imputation and association studies. The estab-
lishment of a publicly available southern African-specific 
consensus reference genome is required to capture novel 
genetic variants and to maximize imputation for southern 
African populations. This will benefit future genetic stud-
ies involving complex diseases and traits by capturing rare 
variants previously lost due to a lack of publicly avail-
able data. Admixture mapping studies will continue to be 
inconclusive for populations from Southern Africa if no 
reference panels are available to represent proxy ancestral 
populations contributing to their genomes. The accuracy 
of the local ancestry calls for southern African individuals 
could also be decreased if population-specific recombina-
tion maps are not available. This will, in turn, affect the 
accuracy of admixture mapping studies that make use of 
LAI.

Conducting genetic studies on admixed southern Afri-
can populations, with varying ancestral contributions, 
could also be beneficial for genetic studies of communica-
ble and non-communicable diseases not mentioned in this 
review. Without a proper representative reference genome 
and methodologies to analyse complex admixed southern 
African genomes, genomic medicine will never benefit 
these individuals in contrast to those of European descent. 
For southern African countries and ethnicities to benefit 

from large-scale GWAS, as most European countries have, 
disease variants associated with southern African-specific 
diseases have to be identified. This will allow precision 
medicine and polygenic risk scores to be implemented. 
Although several consortiums contributed immensely to 
the development and training of African genetic research-
ers to include more diverse populations that have tradition-
ally been underrepresented, global collaboration is still 
essential to increase the genetic representation of southern 
African populations.
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