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Abstract  
One of the most important causes of brain injury in the neonatal period is a perinatal hypoxic- 

ischemic event. This devastating condition can lead to long-term neurological deficits or even death. 

After hypoxic-ischemic brain injury, a variety of specific cellular mechanisms are set in motion, 

triggering cell damage and finally producing cell death. Effective therapeutic treatments against this 

phenomenon are still unavailable because of complex molecular mechanisms underlying 

hypoxic-ischemic brain injury. After a thorough understanding of the mechanism underlying neural 

plasticity following hypoxic-ischemic brain injury, various neuroprotective therapies have been 

developed for alleviating brain injury and improving long-term outcomes. Among them, the 

endocannabinoid system emerges as a natural system of neuroprotection. The endocannabinoid 

system modulates a wide range of physiological processes in mammals and has demonstrated 

neuroprotective effects in different paradigms of acute brain injury, acting as a natural 

neuroprotectant. The aim of this review is to study the use of different therapies to induce long-term 

therapeutic effects after hypoxic-ischemic brain injury, and analyze the important role of the 

endocannabinoid system as a new neuroprotective strategy against perinatal hypoxic-ischemic 

brain injury. 
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Research Highlights 

(1) A perinatal hypoxic-ischemic event is one of the most important causes of brain injury in the 

neonatal period.  

(2) Hypoxia/ischemia leads to brain cell damage, finally resulting in brain cell death. 

(3) The complex molecular mechanisms underlying hypoxic-ischemic brain injury cause 

unsatisfactory efficacy of treatments for this condition. 

(4) A thorough understanding of the mechanisms underlying hypoxic-ischemic brain injury will 

provide new insights for the development of novel neuroprotective agents for this condition. 

(5) The endocannabinoid system, which is naturally neuroprotective, is likely to play an important 

role in the prevention and treatment of hypoxic-ischemic brain injury. 
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INTRODUCTION 

    

Despite important advances in obstetric and neonatal 

care over the last 10 years, perinatal hypoxic-ischemic 

events still lead to significant mortality and morbidity in 

neonates. These events are one of the most important 

causes of neonatal brain injury and also result in adverse 

developmental outcomes
[1-2]

. The severity of the event, 

which often results in a dyskinetic cerebral palsy, is 

associated with multiple handicaps and hence a need for 

aid from society. Since hypoxic-ischemic brain injury is 

often unpredictable, the primary approach is to develop 

post-insult therapies to ameliorate ongoing or secondary 

injury
[3]

. In this regard, recent studies have focused on 

current knowledge surrounding neuroprotective 

therapies targeted towards the complexities of perinatal 

hypoxic-ischemic brain injury.  

  

This article provides a comprehensive summary of the 

biochemical mechanisms underlying a perinatal 

hypoxic-ischemic event and a description of the 

morphological and molecular aspects of hypoxic- 

ischemic brain injury in neonates during intrauterine 

asphyxia.  

 

Neuroprotective research has focused on pre-clinical 

studies of therapies that might reduce hypoxic-ischemic 

lesions to increase the opportunities of neonatal survival. 

Among them, cannabinoid compounds appear as a new 

therapeutic strategy with pharmacological properties for 

treatment of hypoxic-ischemic brain injury.   

 

 

HYPOXIC-ISCHEMIC BRAIN INJURY 

 

Hypoxic-ischemic encephalopathy, which is one of the 

most important causes of disabilities in term-born infants, 

leads to devastating long-term effects in the 

development of children
[4]

. The incidence of perinatal 

asphyxia ranges between 0.5–1% of all live births
[5]

 and 

significant neurologic damage occurs in as many as 

50–75% of these children
[6]

. Deficits include a variety of 

sensorimotor and cognitive impairments, depending on 

the extent, nature and location of the injury, as well as 

gestational age. These problems are encountered 

throughout development with a tremendous impact on 

the child, family, and society
[7-8]

. Despite the 

improvements in perinatal care, developmental 

neurological disorders are still a noteworthy problem
[9]

. 

 

It is necessary to take into account that the preterm 

neonate brain is more susceptible to hypoxic-ischemic 

events than the adult brain. Its cerebral vasculature 

makes the preterm neonate particularly vulnerable to 

periventricular and intraventricular hemorrhage. The 

preterm brain has more blood vessels, higher water 

content, lower myelin, a poorly developed cortex and a 

prominent germinal matrix
[8]

. Moreover, because of the 

vulnerability of immature oligodendrocytes in the white 

matter and the disruption in the myelination of motor 

tracts, common disorders, such as spastic paresis of the 

lower extremities, dyskinetic cerebral palsy and visual 

impairments, develop in children suffering 

hypoxic-ischemic brain injury
[10-16]

. 

 

To improve care in perinatal asphyxia, it is necessary to 

focus on the period of time following the hypoxic- 

ischemic event where therapeutic strategies could be 

efficacious in reducing brain injury. This period is 

normally short and may vary from 2 to 6 hours. Therefore, 

rapid identification would facilitate the application of 

diverse rescue strategies. To reduce the neurological 

consequences derived from hypoxic-ischemic brain 

injury, some actions are required: (1) improved 

monitoring in the perinatal period; (2) rapid identification 

of affected neonates; (3) preconditioning therapy (a 

therapeutic method that reduces the brain vulnerability) 

before hypoxic-ischemic encephalopathy; and (4) prompt 

institution of post-insult therapies to ameliorate the 

evolving injury
[17-18]

. 

 

 

BIOCHEMICAL AND PHYSIOLOGICAL 

EVENTS FOLLOWING HYPOXIC-ISCHEMIC 

BRAIN INJURY 

 

The principal pathogenetic mechanism underlying 

neurological damage resulting from hypoxia-ischemia 

comprises a biphasic pattern of damage. An initial phase 

of early energetic failure is then followed by late 

energetic failure and occurs during reperfusion and 

reoxygenation several hours after the initial insult, and 

can last for days. The main cause of hypoxic-ischemic 

brain injury is the deprivation of glucose and oxygen, 

which results in a primary energy failure (first phase) and 

initiates a cascade of biochemical events leading to cell 

dysfunction and ultimately cell death
[19-22]

. 

 

During early energetic failure, the decrease in oxidative 

energy metabolism generates significant impairment in 

the extracellular balance of glutamate. Glutamate 

accumulation at synapses activates N-methyl-D- 

aspartate receptors. The uncontrolled stimulation of 
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these receptors can lead to neuronal death through a 

process called excitotoxicity
[21, 23]

. The subsequent 

release of excitatory amino acid transmitters and the 

formation of toxic free-radicals trigger a metabolic 

cascade on a slower time scale, leading to an influx of 

Ca
2+

 into neurons and promoting necrotic cell death. In 

this sense, necrosis is generated by organelle and cell 

swelling (cerebral edema), followed by the rupture of the 

plasma membrane and finally the dissolution of cell 

membranes in a zone surrounding the irreversibly 

damaged infarct core
[23-26]

.  

 

The secondary energy failure (second phase) varies 

according to the nature of the insult. High-energy 

phosphate levels recover from baseline levels
[8, 27-28]

 after 

reperfusion and a second decline in high-energy 

phosphate levels is pronounced in the next 48 hours
[29-31]

. 

This secondary phase is characterized by excessive 

entry of Ca
2+

 into cells, causing induction of free radicals, 

such as reactive oxygen species. Excitotoxic amino 

acids are also released and inflammatory reactions occur 

in the immediate zone surrounding the infarct i.e., the 

penumbra. These reactions promote cell death, mainly 

by apoptotic mechanisms including shrinkage
[32-36]

, 

nuclear pyknosis (the nucleus loses density), chromatin 

condensation, and genomic fragmentation
[37]

 (Figure 1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This penumbral zone is characterized by a longer 

tolerance to ischemic stress and a slower rate of 

disintegration, due to a moderate metabolic 

derangement and minor abnormalities in cerebral blood 

flow
[24, 26]

. This biphasic pattern produced during the 

hypoxic-ischemic event (Figure 2) creates a “therapeutic 

window”, a period in which the damaged but viable cells 

could be rescued by neuroprotective strategies. This 

window attracts much interest as a target for therapeutic 

strategies to reduce the damage derived from 

hypoxic-ischemic insults. 

 

 

IMMATURE BRAIN PLASTICITY AFTER 

HYPOXIC-ISCHEMIC BRAIN INJURY 

 

Loss of cerebral function after hypoxic-ischemic brain 

injury is not only due to neuronal death in the infarcted 

tissue but also cell dysfunction in the penumbra. 

Therefore, it is important to take into account these 

surrounding penumbral areas that could survive the 

insult, as well as the non-ischemic ipsilateral tissue and 

the contralateral brain areas, which are connected to the 

area of damage
[38-40]

.  

 

Following hypoxic-ischemic brain injury, the neonatal 

nervous system is capable of making compensatory 

reorganization. This recovery depends on the severity, 

intensity and timing of injury
[21, 41-42]

. This spontaneous 

reorganization occurs during a period proximate to injury 

and probably reflects the recovery of neurotransmission 

in tissue near to and distant from the injury location
[43-45]

. 

Therefore, affected neurons that are damaged by 

catabolic processes could be rapidly repaired by the 

neonatal nervous system
[46]

. However, these neurons 

might still exhibit aberrant neurotransmission, due to the 

presence of dysfunctional spines
[47-48]

. 

 

Immature brain has demonstrated a particularly strong 

capacity to recover from hypoxic-ischemic brain injury by 

producing neurogenesis in non-neurogenic vulnerable 

regions to ischemic injury, and in this way new neurons 

produced in the subventricular zone can migrate to 

injured areas in the neocortex
[49-50]

. This neocortical 

neuron migration, which has great importance for the 

remyelination of injured areas, also guarantees the 

survival of the new neurons
[49]

, and coincides with the 

proliferation and migration of glial cells
[51]

. Furthermore, 

survival, repair and plasticity genes are rapidly 

reactivated after ischemia in response to damage, and 

growth-promoting factors are released to stimulate 

anabolic processes
[52-53]

. These remarkable observations 

suggest the brain has the potential to repair itself, which 

is relevant to therapies for various pathological 

conditions, such as ischemic brain injury.
 

Figure 1  Schematic distribution of brain injured regions 
with different severity of hypoxia-ischemia (HI).  

(A) Lateral and (B) coronal diagrams of the brain at 
interaural distance 5.40 mm and Bregma –3.60 mm. Area 
1 represents the irreversibly damaged tissue (core of 

lesion). Area 2 comprises the penumbra. In the central 
core, blood flow deficits and/or hemorrhagic lesions are 
severe and brain cells die rapidly. In the penumbra, cell 

death, inflammation, and neurovascular perturbations 
proceed at a slower pace[177]. Hence, it may be 
theoretically possible to salvage cells in this region 

following treatment.  

(C) Representative photograph of perinatal rat brain 7 
days after HI brain injury. The dotted line indicates the 

main affected areas after HI brain injury, which 
compromises the hippocampus and the ipsilateral cortex. 
Loss of tissue in this region is apparent. 

A B C 
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Furthermore, delayed regeneration is possible because 

neural stem cells can renew and differentiate themselves 

into cells of all glial and neuronal lineages and can 

populate developing or degenerating central nervous 

system regions. Recent evidence suggests that 

hypoxic-ischemic brain injury can also be treated with 

mesenchymal stem cells
[54]

, which are easily recovered 

from bone marrow, placental tissue, umbilical cord 

stroma and cord blood without ethical issues. 

Mesenchymal stem cells may also secrete several 

trophic factors including stimulating factor-1, vascular 

endothelial growth factor, basic fibroblast growth factor, 

nerve growth factor and brain-derived neurotrophic 

factor
[55]

. Intracranial administration of mesenchymal 

stem cells for 3–10 days after hypoxic-ischemic insult 

has shown decreased histological damage and improved 

outcome in rat models of hypoxic-ischemic brain 

injury
[56]

. 

 

 

THERAPEUTIC STRATEGIES FOR 

HYPOXIC-ISCHEMIC DAMAGE 

 

Reducing neuronal death after oxygen deprivation has 

provided promising results in experimental therapy, 

especially in the developing nervous system
[57-58]

. The 

main strategies related to amelioration of injury after 

hypoxia-ischemia are those applied after the insult or 

reperfusion
[18, 59]

. In this sense, non-pharmacological 

therapies, such as hypothermia, which consist of 

minimizing cerebral metabolism
[60]

, have high relevance 

in clinical practice. However, many studies are now 

focusing on the use of pharmacological therapies to treat 

specific aspects of hypoxic-ischemic brain injury.  

 

Non-pharmacological therapies 

Hypercapnea and hypothermia stand out amongst the 

non-pharmacological therapies for the treatment of brain 

injury. In experimental assays in rats, hypercapnea has 

been reported to reduce lung injury, increase cerebral 

blood flow, and protect the immature brain from 

hypoxic-ischemic brain injury
[61]

. Currently, hypothermia 

appears to be the most reliable intervention available for 

reducing the risk of death or disability in infants with brain 

injury
[62-63]

. A moderate temperature reduction (32–34°C) 

has now become a standard of care for neonatal 

hypoxic-ischemic brain injury
[64-65]

. 

 

Results from MRI studies regarding hypothermia therapy 

suggest that head and total body cooling is associated 

with a decrease in the incidence of basal ganglia/ 

thalamic brain lesions
[16]

. Mechanisms based on 

hypothermic neuroprotection are an increase in neuronal 

survival in the basal ganglia and suppression of 

Figure 2  Cascade of biochemical reactions following hypoxic-ischemic (HI) brain injury[178]. 

Over a period of time, an HI event displays a biphasic pattern of cell death. A first phase of early energetic failure decreases 
the oxidative energy metabolism of cells and promotes necrotic cell death. A second phase of late energetic failure occurs 
during reperfusion and reoxygenation several hours after the initial insult and can last for days. The "therapeutic window", the 

period between these two phases, is a time when the damaged but live cells could be rescued by neuroprotective strategies. 
This window has been increasingly studied to allow for the development of therapeutic studies to reduce the damage derived 
from HI insult. BBB: Blood-brain barrier. 
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caspase-3 activation
[66]

. Hypothermia has also been 

shown to suppress microglial activation
[67]

. Furthermore, 

inflammation and expression levels of tumor necrosis 

factor-α, interleukin-1β and interleukin-18 are reduced
[68]

 

in this context, whereas an increase in the expression of 

the anti-inflammatory cytokine interleukin-10 has been 

observed
[67, 69]

. 

 

Pharmacological therapies 

Recent studies have demonstrated that the 

administration of a variety of pharmacological agents 

after perinatal asphyxia is effective in alleviating injury. 

These specific drugs are used to reduce toxic free 

radicals, inhibit the excessive influx of calcium into 

neurons, and minimize cerebral edema caused by 

hypoxia-ischemia
[7, 58, 70]

. 

 

Regarding free radical formation after a hypoxic-ischemic 

event, allopurinol, a xanthine oxidase inhibitor, reduced 

the formation of free radicals that cause tissue damage 

and helped to maintain the blood-brain barrier. Its 

effectiveness has been noted in several animal 

studies
[71-72]

. Another alternative is the use of 

antioxidants such as erythropoietin, which has 

antiapoptotic and angiogenic properties
[73]

 and provides 

neuroprotection and neurogenesis in neonatal rats
[74-76]

. 

By contrast, melatonin reduces brain damage and 

inhibits the development of long-term effects from 

ischemic injury
[76]

, while vitamin E is thought to be an 

antioxidant and free radical scavenger, thereby reducing 

the risk and severity of hypoxic-ischemic brain injury
[77]

. 

 

Furthermore, administration of MgSO4 has been 

suggested to act as a neuroprotective agent because 

magnesium ions block the N-methyl-D-aspartic acid 

receptors and can therefore act as potent antagonists of 

glutamate neurotoxicity
[78]

. Previous reports suggested 

that MgSO4 administration prevented the effects of 

energy depletion after a hypoxic-ischemic event in 

newborn children
[79]

, and altered important enzymes in 

erythrocyte membranes from asphyxiated newborns, 

reducing post-asphyxial damage
[80]

. Likewise, other 

authors explain how MgSO4 has potential therapeutic 

benefits after the hypoxic-ischemic event, reducing the 

number of apoptotic cells
[81]

.  

 

Recently, several studies have indicated that 

cannabinoids have high potential as neuroprotective 

compounds, both in acute neurodegenerative diseases, 

such as hypoxic-ischemic or traumatic brain damage, 

and in chronic processes such as multiple sclerosis, 

Parkinson’s disease and Alzheimer’s disease
[82-84]

. 

These substances have emerged as neuroprotectants 

because they can modulate neuronal and glial responses. 

Additionally, cannabinoids have endothelial cell function, 

anti-excitotoxic
[85-86]

, anti-inflammatory
[86-88]

, and 

vasodilatory effects
[89]

 and can also regulate calcium 

homeostasis
[90-92]

. New findings indicate that some 

anti-inflammatory treatments may actually improve 

recovery by promoting neurogenesis
[92-93]

. Cannabinoid 

receptor activation, therefore, is an important 

neuroprotective strategy for neonatal hypoxic-ischemic 

brain injury given its anti-inflammatory effect, with the 

synthetic cannabinoid WIN 55212 enhancing 

subventricular zone cell proliferation after neonatal 

hypoxic-ischemic brain injury
[94]

. 

 

 

NEUROPROTECTIVE EFFECTS OF THE 

CANNABINOID SYSTEM ON 

HYPOXIC-ISCHEMIC BRAIN INJURY 

 

Up to now, different kinds of cannabinoid compounds 

have been described including phytocannabinoids, 

synthetic cannabinoids and those synthesized in the 

brain and certain peripheral tissues, named endogenous 

cannabinoids or endocannabinoids.  

 

Phytocannabinoids  

Phytocannabinoids are substances that normally have a 

carbocyclic structure of 21 carbons and are formed 

generally by three rings of cyclohexene, tetrahydropyran 

and benzene. These kinds of cannabinoids are produced 

by the cannabis plant, with the most representative 

molecules being tetrahydrocannabinol, cannabinol and 

cannabidiol
[95]

. 

 

Synthetic cannabinoids  

The development of synthetic cannabinoids based on the 

chemical structure of phytocannabinoids has produced a 

large number of analogs. These compounds aimed to 

block the effects of the endogenous ligands by 

antagonizing cannabinoid receptors. For example, 

SR141716 or rimonabant
[96]

 and AM251 are cannabinoid 

receptor type 1 receptor-selective antagonists, and 

SR144528
[97]

 and AM630 are cannabinoid receptor type 

2 receptor-selective antagonists. Alternatively, 

compounds can be designed to potentiate the effects 

associated with endogenous receptors through the use 

of specific agonists such as arachidonyl-2’- 

chloroethylamide (a cannabinoid receptor type 1 

receptor-selective agonist), AM1241, JWH015 (a 

cannabinoid receptor type 2 receptor-selective agonists) 

or using non-selective agonists like CP55, 940
[98]

, HU210 
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or WIN55, 212-2
[99]

.  

 

Endocannabinoids  

Endocannabinoids are compounds produced within the 

body that have a lipid nature and are derived from 

polyunsaturated fatty acids with long chains. These 

compounds activate cannabinoid receptors and are 

synthesized in moments of intense activity of the 

brain
[100]

. The two most widely studied endocannabinoids 

are N-arachidonylethanolamide (anandamide)
[101] 

and 

2-arachidonoylglycerol
[102-103]

. Endocannabinoid names 

consist of the exogenous and endogenous ligands, the 

target receptors and the enzymes responsible for ligand 

biosynthesis, transport and degradation, such as 

N-acyltransferase, phospholipases, diacylglycerol lipase 

and the fatty acid amide hydrolase
[104-106]

. 

  

Endocannabinoid receptors 

Endocannabinoids constitute a novel family of lipid 

ligands that act via specific G-protein-coupled receptors, 

cannabinoid receptor type 1 and cannabinoid receptor 

type 2
[104]

. Endocannabinoids can also interact with other 

receptors such as vanilloid receptors type 1
[107]

, 

peroxisome proliferator-activated receptors and even the 

TWIK-related acid-sensitive potassium channel 1
[108]

. 

Moreover, some studies have also reported the 

interaction of anandamide with both muscarinic
[109]

 and 

serotonergic receptors
[110]

. Cannabinoid receptor type 1 

is widely expressed in neurons, with particularly high 

levels in the I and IV layers of the cerebral cortex, 

hippocampus, basal ganglia, cerebellum, and 

brainstem
[104]

. It can also be found in glial cells
[95, 108, 111]

. 

Such a distribution of cannabinoid receptor type 1 

receptors suggests that cannabinoid agonists are 

involved in neuronal circuits related to coordination and 

modulation of movement, superior cognitive functions 

such as memory and reward mechanisms, response to 

stress and pain, regulation of sleep, body temperature, 

appetite, nausea and vomiting
[107, 109-110]

. The activation of 

presynaptic cannabinoid receptor type 1 has its main 

neuroprotective capacity in the inhibition of glutamatergic 

neurotransmission
[111-114]

, and avoiding massive 

accumulation of intracellular calcium, nitrogen and 

reactive oxygen species, which would trigger cell 

death
[115]

.  

 

Cannabinoid receptor type 2 is expressed mainly in cells 

of lymphoid origin, such as B and T lymphocytes, natural 

killer cells, mastocytes, macrophages and monocytes. 

Therefore, they may be involved in the 

immunomodulatory effect of cannabinoids
[95, 115-116]

. 

Some reports have described the presence of 

cannabinoid receptor type 2 in brain cells, including 

neurons from the brain stem
[105, 116-117]

. Cannabinoid 

receptor type 2 mediates the cannabinoid anti- 

inflammatory and immunomodulatory effects
[118-119]

, with 

a number of investigations showing that their activation 

has anti-inflammatory therapeutic potential in central 

nervous system diseases, such as multiple sclerosis, 

traumatic brain injury and Alzheimer's disease
[120-121]

. 

Recently, it has been shown that the cannabinoid 

receptor type 2 is also found in resident inflammatory 

cells within the brain, such as microglia
[122-123]

, and that 

hypoxia-ischemia induces its expression in the brain
[119]

. 

Thus, the use of cannabinoid receptor type 2 agonists 

has proven to be beneficial in different paradigms of 

neonatal hypoxic-ischemic brain injury
[124-126]

, by 

reducing cell death accompanied by modulation of 

glutamate release, and decreasing production of 

cytokines, cyclooxygenase-2 and inducible nitric oxide 

synthase expression. These observations support the 

hypothesis that the protective effect of cannabinoid 

receptor type 2 relies mostly upon its anti-inflammatory 

effects and opens a new possibility for its use as a 

neuroprotective target following perinatal asphyxia.  

 

Endogenous ligands 

As mentioned above, the best characterized endogenous 

ligands are N-arachidonoylethanolamide and 

2-arachidonoylglycerol
[101, 126-128]

. 

N-arachidonoylethanolamide or anandamide has been 

found both in the brain and in the periphery
[129]

. 

Anandamide is an agonist for cannabinoid receptor   

type 1
[130-131]

, cannabinoid receptor type 2
[129, 131]

, and the 

vanilloid receptor type 1 receptor
[132]

. In the brain, 

anandamide levels are high in the hippocampus, thalamus, 

striatum and brainstem, and lower, but still detectable, in 

the cerebral cortex and cerebellum
[129, 133]

. Like 

anandamide, 2-arachidonoylglycerol is found both in the 

brain and in the periphery, although the concentrations 

found are approximately 150 times higher than those for 

anandamide
[133]

. 2-arachidonoylglycerol is found at high 

levels in the brainstem, hippocampus, striatum and 

medulla in rats, showing a correlation with anandamide 

but not cannabinoid receptor type 1 localization
[133]

. 

2-arachidonoylglycerol is an agonist at cannabinoid 

receptor type 1 and also cannabinoid receptor type 2, 

having a greater potency than anandamide. This suggests 

that 2-arachidonoylglycerol may be the endogenous 

ligand for cannabinoid receptor type 2, and this finding 

could be due to the greater stability of 

2-arachidonoylglycerol compared with anandamide
[103, 134]

. 

 

In addition, unknown or poorly investigated 
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endocannabinoids do exist. They are present in the 

mammalian nervous system but their exact physiological 

and pathological functional relevance is still obscure. In 

vitro assays demonstrated that some of these novel 

endocannabinoids act upon known cannabinoid 

receptors
[135]

.  

 

Endocannabinoid synthesis 

The synthesis of endocannabinoids (Figure 3) results 

from an intense or prolonged release of excitatory 

neurotransmitters
[136]

. In response to postsynaptic 

depolarization, voltage-dependent calcium channels are 

opened, inducing an increase in intracellular calcium 

levels. This increase in intracellular Ca
2+

stimulates the 

process of exocytosis. Neurotransmitter is released and 

then binds to the corresponding postsynaptic receptor, 

inducing the opening of Ca
2+

 channels; consequently, the 

postsynaptic neuron is depolarized. The increase of 

intracellular Ca
2+ 

activates enzymes such as 

N-acyl-transferase, phospholipases A, C and D or 

diacylglycerol lipase. These enzymes synthesize 

endocannabinoids from membrane lipids including 

phosphatidylethanolamine or phosphatidylcholine. Once 

synthesized, the endocannabinoids leave the 

postsynaptic cells and activate cannabinoid receptor type 

1 on presynaptic neurons. Through the activation of G 

proteins, Ca
2+

 presynaptic channels are inhibited, and 

neurotransmitter release is suppressed
[137-138]

.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Anandamide is produced on demand from the hydrolysis 

of a pre-formed membrane phospholipid precursor 

N-arachidonoyl phosphatidylethanolamine by the action of 

N-arachidonoyl phosphatidylethanolamine- 

phospholipase-D
[139-140]

. In most tissues, anandamide 

removal is catalyzed by fatty acid amide hydrolase
[141]

, but 

can also act as a substrate for palmitoylethanolamide- 

preferring acid amidase
[142-143]

, cyclooxygenase-2, 

lipoxygenases, and cytochrome P450 to produce 

biologically active products. 2-arachidonoylglycerol is also 

synthesized on demand through the conversion of 

2-arachidonate-containing phosphoinositides to 

diacylglycerols, which are then converted to 

2-arachidonoylglycerol by the action of diacylglycerol 

lipase. Monoacyl glycerol lipase is the enzyme mainly 

responsible for its metabolism in vivo, although it can be 

also be metabolized by fatty acid amide as well as by 

cyclooxygenase-2 and lipoxygenases
[140-143]

. 

 

Neuroprotective effects 

The neuroprotective effect provided by cannabinoid 

receptor activation occurs because of the modulation of 

synaptic transmission
[144-145]

, plasticity, calcium 

homeostasis
[95, 103]

 and activation of cytoprotective 

signaling pathways
[103]

.  

 

It has been shown that endocannabinoids synthesized 

by depolarized postsynaptic dendrites, particularly 

2-arachidonoylglycerol
[146]

, can act as retrograde ligands 

at cannabinoid receptor type 1 located at presynaptic 

terminals to inhibit the release of excitatory or inhibitory 

neurotransmitters from the presynaptic neuron
[147-148]

. 

Moreover, endocannabinoids also play a key role in 

peripheral and brain immune function, including inhibiting 

the release of inflammatory mediators, such as nitric 

oxide, interleukin-2 and tumor necrosis factor-α. 

Endocannabinoids also inhibit the activation of 

cell-mediated immune processes, proliferation and 

chemotaxis
[149-150]

. 

 

Activation of cannabinoid receptors induces the closure of 

Ca
2+

 channels, thus inducing neuroprotection through the 

reduction of glutamate release
[151-152]

. Drugs reducing 

glutamate release are of particular value in 

neuroprotection in a neonatal hypoxic-ischemic event, as 

glutamate receptor blockers are neurotoxic in immature 

brains
[4]

. In addition, cannabinoids reduce direct 

N-methyl-D-aspartate toxicity by downstream inhibition of 

protein kinase A signaling and nitric oxide generation
[153]

.  

 

Several in vitro studies have reported neuroprotective 

effects of cannabinoids related to their antioxidant 

effect
[154-155]

. Also, in vivo models of neurodegenerative 

diseases have demonstrated antioxidant-related 

neuroprotective actions for cannabinoids
[156]

. It is known 

Figure 3  Role of cannabinoids in the modulation of 
synaptic transmission[169]. 

Presynaptic neuronal activation results in neurotransmitter 
release and induces an increase in intracellular calcium 
levels at the postsynaptic cell, thus activating anandamide 

and 2-arachidonoylglycerol production. Endocannabinoids 
act largely retrogradely and engage cannabinoid receptor 
type 1-mediated signaling pathways. CB1: Cannabinoid 

receptor type 1; C: cannabinoid; Pre-C: pre-cannabinoid. 
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that cannabinoids reduce body temperature
[157]

. Studies 

in adult rats using different cannabinoids have 

demonstrated that hypothermia is a substantial part of 

the neuroprotective effect of these compounds, as 

warming reduces or even abolishes the beneficial 

effect
[158-159]

. Furthermore, cannabinoids cause 

vasodilation in the brain
[160-161]

, stabilize the blood-brain 

barrier and are involved in neuroproliferative 

processes
[162-163]

. Cannabinoids enhance energy 

metabolism of astrocytes
[144]

 and protect these glial cells 

against cytotoxic and proapoptotic stimuli
[164]

. 

 

Different studies postulate that administration of 

synthetic cannabinoids can reduce damage after brain 

injury
[165-170]

. Specifically, administration of WIN55212 

just after recovery from hypoxia-ischemia successfully 

reduces brain injury as observed in a histopathological 

study by Fernandez-Lopez et al 
[167]

. Moreover, 

WIN55212 reduces apoptotic cell death in all regions 

studied through the maintenance of mitochondrial 

integrity and functionality
[171]

 and promotes neurogenesis 

in the subventricular zone, oligodendrogenesis, white 

matter remyelination, and neuroblast generation after 

neonatal hypoxic-ischemic events
[172]

. Additionally, the 

cannabinoid receptor type 1 antagonist AM281 and the 

diacylglycerol-lipase inhibitor O-3640 have been shown 

to exacerbate the detrimental effects of oxygen-glucose 

deprivation in an in vitro model by causing an excess in 

glutamate release. The cannabinoid receptor type 2 

agonist, O-1966, has been found to increase blood flow 

to the brain and thus attenuate neuroinflammation in an 

animal model of stroke
[173]

. 

 

Administration of endogenous cannabinoids emerges as 

a novel neuroprotective therapy because of the 

observation that these substances take part in the 

natural mechanism for controlling damage. According to 

their neuroprotective effects, experimental in vitro studies 

confirmed that the endocannabinoids anandamide and 

2-arachidonoylglycerol may attenuate injury in cortical 

cells in an oxygen-glucose deprivation model
[173]

. In an in 

vivo model of induced excitotoxicity, anandamide 

protects against neuronal injury
[174]

. Moreover, in a 

mouse model of closed head injury, administration of 

2-arachidonoylglycerol significantly reduced brain edema, 

infarct volume and hippocampal cell death, and 

promoted clinical recovery
[175]

. Finally, administration of 

these two endocannabinoids after perinatal 

hypoxic-ischemic brain injury in a rat model remarkably 

ameliorated brain injury, reduced apoptotic cell death, 

maintained mitochondrial functionality and improved 

cellular parameters, including influx of calcium into cells 

and the production of reactive oxygen species
[176]

. These 

data support the hypothesis that the protective effects of 

endocannabinoids relies mostly upon their anti-apoptotic 

and anti-inflammatory effects, opening a new window for 

their possible use as neuroprotective agents following 

perinatal asphyxia. 

 

 

SUMMARY 

 

Cannabinoids emerge as effective neuroprotective 

compounds, given that the endogenous cannabinoid 

system is one of the natural mechanisms for controlling 

damage and induces the healing of diverse injuries. The 

antioxidant and immunomodulatory properties of 

cannabinoids, as well as their ability to reduce glutamate 

release and inducible nitric oxide synthase expression, 

make these compounds particularly attractive as 

neuroprotectants in neonatal hypoxic-ischemic 

encephalopathy given that glutamatergic excitotoxicity, 

toxic nitric oxide production, oxidative stress, and 

cytokine release are crucial elements of post-hypoxic- 

ischemic brain injury in newborns. Moreover, these 

compounds provide real and exciting prospects for 

clinical use in the future and give hope that better 

long-term outcomes may be possible for these patients.   
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[164] Docagne F, Muñetón V, Clemente D, et al. Excitotoxicity 

in a chronic model of multiple sclerosis: neuroprotective 

effect of cannabinoids through CB1 and CB2 receptor 

activation. Mol Cell Neurosci. 2007;34:551-561.  

[165] Alonso-Alconada D, Alvarez FJ, Alvarez A, et al. The 

cannabinoid receptor agonist WIN 55,212-2 reduces the 

initial cerebral damage after hypoxic-ischemic injury in 

fetal lambs. Brain Res. 2010;1362:150-159.  

[166] Alvarez FJ, Lafuente H, Rey-Santano MC, et al. 

Neuroprotective effects of the non-psychoactive 

cannabinoid cannabidiol in hypoxic-ischemic 

newbornpiglets. Pediatr Res. 2008;64:653-658. 

[167] Fernandez-Lopez D, Pazos MR, Tolon RM, et al. The 

cannabinoid agonist WIN55212 reduces brain damage in 

an in vivo model of hypoxic-ischemic encephalopathy in 

newborn rats. Pediatr Res. 2007;62:255-260.  

[168] Martinez-Orgado J, Fernandez-Lopez D, Moro MA, et al. 

Nitric oxide synthase as a target for the prevention of 

hypoxic–ischemic newborn brain damage. Curr Enzyme 

Inhib. 2006;2:219-229. 

[169] Martinez-Orgado J, Fernandez-Lopez D, Lizasoain I, et al. 

The seek of neuroprotection: introducing cannabinoids. 

Recent Pat CNS Drug Discovery. 2007;2: 131-139.  

[170] Alonso-Alconada D, Alvarez A, Alvarez FJ, et al. The 

cannabinoid WIN 55212-2 mitigates apoptosis and 

mitochondrial dysfunction after hypoxia ischemia. 

Neurochem Res. 2012;37:161-170.  

[171] Fernández-López D, Pradillo JM, García-Yébenes, et al. 

The cannabinoid WIN55212-2 promotes neural repair 

after neonatal hypoxia-ischemia. Stroke. 2010;41: 

2956-2964.  

[172] Zhang M, Martin BR, Adler MW, et al. Modulation of 

cannabinoid receptor activation as a neuroprotective 

strategy for EAE and stroke. J Neuroimmun Pharmacol. 

2009;4:249-259.  

[173] Sinor AD, Irvin SM, Greenberg DA. Endocannabinoids 

protect cerebral cortical neurons from in vitro ischemia in 

rats. Neurosci Lett. 2000;278:157-160.  

[174] van der Stelt M, Veldhuis WB, van Haaften GW, et al. 

Exogenous anandamide protects rat brain against acute 

neuronal injury in vivo. J Neurosci. 2001;21:8765-8771.  

[175] Panikashvili D, Simeonidou C, Ben-Shabat S, et al. An 

endogenous cannabinoid (2-AG) is neuroprotective after 

brain injury. Nature. 2001;413:527-531.  

[176] Lara-Celador I, Castro-Ortega L, Alvarez A, et al. 

Endocannabinoids reduce cerebral damage after 

hypoxic-ischemic injury in perinatal rats. Brain Res. 2012; 

1474:91-99. 

[177] Sofroniew MV, Vinters HV. Astrocytes: biology and 

pathology. Acta Neuropathol. 2010;119(1):7-35.  

[178] Hilario E, Alvarez A, Alvarez FJ, et al. Cellular 

mechanisms in perinatal hypoxic-ischemic brain Injury. 

Curr Pediatr Rev. 2006;2:131-141.  

 

(Edited by Cao GD, Sharma S, Ray B/Song LP) 

 


