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The physiology of climbing fi ber signals in cerebellar Purkinje cells has been studied since the 
early days of electrophysiology. Both the climbing fi ber-evoked complex spike and the role of 
climbing fi ber activity in the induction of long-term depression (LTD) at parallel fi ber-Purkinje 
cell synapses have become hallmark features of cerebellar physiology. However, the key role 
of climbing fi ber signaling in cerebellar motor learning has been challenged by recent reports 
of forms of synaptic and non-synaptic plasticity in the cerebellar cortex that do not involve 
climbing fi ber activity, but might well play a role in cerebellar learning. Moreover, cerebellar LTD 
does not seem to strictly require climbing fi ber activity. These observations make it necessary 
to re-evaluate the role of climbing fi ber signaling in cerebellar function. Here, we argue that 
climbing fi ber signaling is about adjusting relative probabilities for the induction of LTD and long-
term potentiation (LTP) at parallel fi ber synapses. Complex spike-associated, dendritic calcium 
transients control postsynaptic LTD and LTP induction. High calcium transients, provided by 
complex spike activity, do not only favor postsynaptic LTD induction, but simultaneously trigger 
retrograde cannabinoid signaling, which blocks the induction of presynaptic LTP. Plasticity of 
the climbing fi ber input itself provides additional means to fi ne-tune complex spike associated 
calcium signaling and thus to adjust the gain of heterosynaptic climbing fi ber control. In addition 
to dendritic calcium transients, climbing fi ber activity leads to the release of the neuropeptide 
corticotropin-releasing factor (CRF), which facilitates LTD induction at both parallel fi ber and 
climbing fi ber synapses.
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Ross and Werman, 1987), which are required for the induction of 
cerebellar LTD (Konnerth et al., 1992).

More recent observations suggest that the role of climbing 
fi ber signaling is more complex than that of an invariant ‘teacher’ 
signal contributing to LTD induction and, therefore, to cerebellar 
motor learning. Here, we will discuss recent evidence showing that 
climbing fi ber synapses onto cerebellar Purkinje cells show forms 
of plasticity as well. Moreover, we will review recent observations 
on types of synaptic and non-synaptic cerebellar plasticity that 
do not depend on climbing fi ber signaling, suggesting that motor 
learning is not exclusively linked to climbing fi ber activity. Rather, 
a picture emerges, in which the presence or absence of climbing 
fi ber activity infl uences induction probabilities for various types 
of plasticity, thus orchestrating Purkinje cell output patterns and 
cerebellar gain control.

THE COMPLEX SPIKE: SIGNATURE OF CLIMBING FIBER 
ACTIVITY
Climbing fi ber synaptic transmission onto Purkinje cells is very 
powerful and reliable, resulting from the large number of syn-
aptic contact sites formed by an individual climbing fi ber input 
(Palay and Chan-Palay, 1974) as well as from the high probability 
of release at each climbing fi ber terminal (Dittman and Regehr, 
1998; Hashimoto and Kano, 1998; Silver et al., 1998). Climbing 
fi ber synapses contact spines on the primary Purkinje cell  dendrite, 

INTRODUCTION
The fi rst detailed characterization of excitatory synaptic responses 
to climbing fi ber stimulation resulted from intracellular Purkinje 
cell recordings performed in anaesthetized cats by Eccles, Llinas and 
Sasaki, working at the time at the Australian National University 
in Canberra (Eccles et al., 1964, 1966). Stimulation of the climbing 
fi ber input, or the contralateral inferior olive (from which climbing 
fi bers originate) led to an all-or-none ‘giant’ or ‘complex’ spike, 
composed of an initial fast action potential, followed by smaller 
spikelets superimposed on a sustained depolarization (Eccles et al., 
1966). In the mature cerebellum, this massive, excitatory response 
pattern results from the activity of only one climbing fi ber input 
(Ramón y Cajal, 1911) that remains after a period of developmental 
elimination of surplus climbing fi bers, which in rats occurs during 
the fi rst 3 weeks of postnatal life (Crépel et al., 1976).

The characteristic complex spike provides a hallmark feature of 
cerebellar physiology, particularly because of its seemingly invariant 
nature (for review, see Schmolesky et al., 2002). Another hallmark 
feature is the role assigned to climbing fi ber activity in cerebellar 
motor learning. It is widely assumed that long-term depression 
(LTD) at parallel fi ber-Purkinje cell synapses, a type of synaptic 
plasticity that requires co-activation of the parallel fi ber and the 
climbing fi ber input, provides the cellular correlate of forms of 
motor learning. Climbing fi ber activity results in large, widespread 
calcium transients in Purkinje cell dendrites (Miyakawa et al., 1992; 
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whereas parallel fi ber synapses contact spines on secondary and 
 tertiary dendritic branches (Strata and Rossi, 1998). Whereas paral-
lel fi ber stimulation causes a graded excitatory postsynaptic poten-
tial (EPSP) in Purkinje cells, climbing fi ber activity is monitored in 
somatic recordings as an all-or-none complex spike (Eccles et al., 
1964, 1966), characterized by a fast sodium spike that is followed 
by typically two to three spikelets riding on top of a depolarization 
plateau (Figure 1). Purkinje cell complex spikes occur at low fre-
quencies around 1 Hz, but can reach frequencies up to 11 Hz when 
nociceptive stimulation is applied (Ekerot et al., 1987). Each com-
plex spike can be associated with high-frequency fi ring of spikes in 
the climbing fi ber itself, which can reach frequencies up to 500 Hz 
(Maruta et al., 2007). In Purkinje cell dendrites, climbing fi ber acti-
vation evokes calcium spikes, which have been characterized in 
early intradendritic recordings (Llinas and Sugimori, 1980). For a 

long time, however, the origin of the  different somatically recorded 
complex spike components remained unclear (as discussed in 
Schmolesky et al., 2002). Recent somato-dendritic double-patch 
recordings demonstrate that dendritically recorded calcium spikes 
show no obvious relation to the number and occurrence of spikelets 
within the simultaneously recorded complex spike (Davie et al., 
2008). These observations suggest that the typical, somatically 
recorded complex spike waveform is locally generated, whereas 
in the dendrite, climbing fi ber activity evokes isolated calcium 
spikes. Simultaneous somatic and dendritic patch-clamp record-
ings from our lab are shown in Figure 1. In the soma, climbing fi ber 
stimulation evokes complex spikes (black traces). In contrast, the 
dendritic recordings (blue traces) obtained at distances of about 
75 µm (Figure 1A) and 100 µm (Figure 1B) from the soma, respec-
tively, reveal local climbing fi ber responses, which do not show 

FIGURE 1 | Climbing fi ber responses monitored by simultaneous double 

patch-clamp recordings from the soma and dendrites of cerebellar Purkinje 

cells. (A) Paired recordings from the soma (black trace) and the dendrite (blue 
trace). The dendritic patch electrode was located at about 75 µm distance from 
the soma. (B) In this recording, which was obtained from a different Purkinje 
cell, a more distal location (ca. 100 µm) was selected for the dendritic patch 
electrode. Small arrows in (A) and (B) point towards small, delayed spikelets 
seen in the dendritic recordings, that likely refl ect sodium action potentials 
generated in the axon (see corresponding, but larger spikes in the somatic 
recordings), which passively spread into the dendrite. (C) At a far more proximal 
location (ca. 10 µm), the dendritic recording resembles the complex spike 
recorded in the soma, but already at this distance an attenuation of the initial, 
fast sodium spike can be seen. (D) Recording confi guration of the experiments. 

This picture was assembled for illustration purposes only. The recordings were 
obtained from cerebellar slices prepared from P28-35 Sprague-Dawley rats. 
Slices were perfused with standard ACSF (as described in Coesmans et al., 
2004) bubbled with 95% O2 and 5% CO2. The recordings were performed at 
near-physiological temperature (31–34°C) using an EPC-10 amplifi er (HEKA 
Electronics, Germany). Currents were fi ltered at 3 kHz, digitized at 10 kHz, and 
acquired using Fitmaster software. The recording electrodes were fi lled with a 
solution containing (in mM): 9 KCl, 10 KOH, 120 K gluconate, 3.48 MgCl2, 10 
HEPES, 4 NaCl, 4 Na2ATP, 0.4 Na3GTP, and 17.5 sucrose (pH 7.25). Patch 
electrodes used for somatic recordings had electrode resistances of 3–4 MΩ, 
and patch electrodes used for dendritic recordings had electrode resistances of 
7–10 MΩ. For climbing fi ber stimulation, glass pipettes were used that were 
fi lled with ACSF.
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the spikelets that are characteristic for the somatically recorded 
complex spike. An exception to this are small spikelets that occa-
sionally occur during the late stages of the dendritic climbing fi ber 
response (Figures 1A,B: arrows). These spikelets coincide with late, 
higher amplitude spikes seen in the somatic recordings. In Purkinje 
cells, sodium action potentials are initiated in the axon, and pas-
sively spread into the dendrite, where their amplitude decreases 
with increasing distance from the soma (Stuart and Häusser, 1994). 
The small spikelets seen in our dendritic recordings likely represent 
those attenuated sodium spikes.

CLIMBING FIBER ACTIVITY EVOKES DENDRITIC CALCIUM 
TRANSIENTS
Climbing fi bers form so-called ‘en passant’ synapses with their tar-
get Purkinje cells, whose number and distribution along the axis 
of the Purkinje cell primary dendrite allow for excitatory action 
throughout the dendritic tree. The most obvious  consequence of 

this  unusually tight synaptic contact formed by a single climb-
ing fi ber input is a large, widespread calcium transient that 
accompanies complex spikes (Miyakawa et al., 1992; Ross and 
Werman, 1987). Climbing fi ber-evoked calcium transients not 
only can be recorded in the primary dendrites (an example of a 
calcium transient recorded in a primary dendrite spine is shown in 
Figure 2), but also in secondary and tertiary branches (Miyakawa 
et al., 1992; Ross and Werman, 1987). Such ‘out-of-territory’ cal-
cium signaling has also been described in cerebellar Purkinje cells 
of mormyrid fi sh (Han et al., 2007), in which the separation of 
climbing fi ber and parallel fi ber input territories is even more pro-
nounced. The dendritic tree of these cells is palisade-shaped, with 
a horizontal dendrite (contacted by the climbing fi ber input), and 
vertical dendrites (contacted by parallel fi bers) that show a much 
lower degree of branching as compared to their mammalian coun-
terparts. Climbing fi ber stimulation results in calcium transients 
in both the horizontal dendrite and the vertical dendrites (Han 

FIGURE 2 | Calcium signaling in a dendritic spine evoked by climbing fi ber 

activity. (A) Top: A rat Purkinje cell (P36) was fi lled through the patch pipette 
with the fl uorescent calcium indicator Oregon Green BAPTA-2 (200 µM). The 
red box indicates the magnifi cation area. Calcium transients were recorded in a 
spine (red circle) and in the shaft (blue circle) of the primary dendrite using a 
Zeiss LSM 5 Exciter confocal microscope and a ×63 Zeiss Apochromat 
objective (bottom picture). (B) Climbing fi ber stimulation evokes a complex 

spike shown at two different time scales (top), which is associated with a large 
calcium transient monitored in the spine (red trace), and a smaller transient in 
the shaft (blue trace; bottom). The calcium traces represent averages of 10 
transients (acquired at 30 s delays), and are displayed as normalized 
fl uorescence changes (ΔF/F). For image acquisition and analysis we used ZEN 
software (Carl Zeiss MicroImaging, Thornwood, NY, USA). Patch-clamp 
recording details are described in Figure 1.
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et al., 2007). In both mammalian and mormyrid Purkinje cells, 
calcium infl ux associated with dendritic calcium spikes is partially 
mediated by P/Q-type voltage-dependent calcium channels (Han 
et al., 2007; Usowicz et al., 1992; Watanabe et al., 1998), suggesting 
that these channels provide the regenerative component needed 
for the spatial spread of the calcium signal. In spines contacted by 
parallel fi bers, coincident parallel fi ber and climbing fi ber activity 
results in supralinear calcium transients (Wang et al., 2000). These 
spine calcium signals are largest when the parallel fi ber activation 
precedes climbing fi ber activation by 50–200 ms, and depend on 
calcium release from IP

3
-sensitive calcium stores when the parallel 

fi ber input is weakly activated (Wang et al., 2000). Stronger parallel 
fi ber stimulation results in the activation of more parallel fi bers. In 
this scenario, supralinear calcium signaling is not restricted to indi-
vidual spines and is mediated by the activation of voltage-depend-
ent calcium channels (Wang et al., 2000). A similar enhancement 
in dendritic calcium signaling at parallel fi ber input sites has been 
found in mormyrid Purkinje cells upon parallel fi ber and climbing 
fi ber stimulation (Han et al., 2007). These observations show that 
calcium transients evoked by climbing fi ber activity do not only 
invade the parallel fi ber input territory, but that they contribute 
to a local amplifi cation of calcium transients at parallel fi ber input 
sites, even in spines located on distal branchlets that are contacted 
by parallel fi bers (Wang et al., 2000). This is a remarkable fi nding, 
as the climbing fi ber input itself only contacts spines on the primary 
dendrite (Strata and Rossi, 1998). The amplitude of the climbing 
fi ber-evoked calcium transient itself also depends on the state of 
the membrane potential. Synaptic activity of the climbing fi ber 
or the granule cell input can shift the membrane potential to an 
‘UP’ state, while inhibitory inputs can cause a transition towards 
a ‘DOWN’ state (Loewenstein et al., 2005; but see Schonewille 
et al., 2006). Dendritic climbing fi ber-evoked calcium transients 
are smaller following a ‘DOWN’ state (Rokni and Yarom, 2009). If 
these bidirectional state transitions occur in vivo, ‘UP’ states could 
provide an optimal time window for enhanced dendritic calcium 
signaling.

GLUTAMATERGIC TRANSMISSION AT CLIMBING FIBER 
SYNAPSES: NEW PLAYERS IN SIGHT
Excitatory postsynaptic currents (EPSCs) at climbing fi ber synapses 
are largely mediated by the activation of AMPA receptors (Konnerth 
et al., 1990; Llano et al., 1991; Perkel et al., 1990) that contain GluR2 
subunits and are therefore not permeable to calcium (Hollmann 
et al., 1991). In the following, we will focus on two additional types 
of glutamate receptors, whose contribution to climbing fi ber sig-
naling (and potential role in calcium signaling) has only recently 
been fully appreciated: N-methyl-D-aspartate (NMDA) receptors 
and metabotropic glutamate receptors.

NMDA RECEPTORS
At many types of excitatory synapses, NMDA receptors provide a 
major source of calcium infl ux and are therefore considered as key 
players in synaptic plasticity (Bliss and Collingridge, 1993). Purkinje 
cells, in contrast, were until recently assumed to lack functional 
NMDA receptors. Both NR1 and NR2 subunits are required to form 
functional NMDA receptors. In Purkinje cells, NR1 subunits are 
expressed at all ages, from birth throughout adulthood, as consist-

ently shown by numerous morphological studies (Monyer et al., 
1992, 1994; Moriyoshi et al., 1991; Petralia et al., 1994). During the 
fi rst postnatal week in rodents, a juvenile form of the NR2 subunit 
(the NR2D subtype) has clearly been demonstrated in Purkinje cells 
(Momiyama et al., 1996). However, during this period the result-
ing NMDA receptors do not contribute to synaptic transmission 
at parallel fi ber or climbing fi ber inputs (Lachamp et al., 2005; 
Llano et al., 1991). In mature Purkinje cells, in situ hybridization 
and immunohistochemical studies reached contradicting conclu-
sions regarding the expression of NR2 subunits (Monyer et al., 
1994; Watanabe et al., 1994; Yamada et al., 2001; but see Akazawa 
et al., 1994; Thompson et al., 2000). As no NMDA currents were 
detected in whole-cell patch-clamp recordings (Farrant and Cull-
Candy, 1991; Konnerth et al., 1990; Llano et al., 1991), the notion 
became widely accepted that Purkinje cells lack functional NMDA 
receptors.

Recently, this question has been re-examined in older animals 
(>8-week-old mice) using more selective pharmacological tools 
(NBQX instead of CNQX as an AMPA receptor antagonist) and a 
new generation of antibodies. It now appears in the light of these 
more recent results (Piochon et al., 2007; Renzi et al., 2007) that 
mature Purkinje cells express functional NMDA receptors from the 
end of the third postnatal week on, which contain NR2A and/or 
NR2B subunits. These NMDA receptors are activated by climbing 
fi ber stimulation and contribute to the complex spike waveform, 
by infl uencing the number and timing of spikelets, as well as the 
afterdepolarization plateau (Piochon et al., 2007). Thus, in mature 
Purkinje cells, functional NMDA receptors are expressed at climb-
ing fi ber synapses, and might well contribute to climbing fi ber-
evoked calcium signaling.

METABOTROPIC GLUTAMATE RECEPTORS
Similar to parallel fi ber burst stimulation, climbing fi ber stimulation 
can evoke a slow excitatory current that is triggered by the activation 
of type 1 metabotropic glutamate receptors (mGluR1) and can be 
signifi cantly enhanced when glutamate uptake is blocked (Dzubay 
and Otis, 2002). Such mGluR1-mediated potentials are also evoked 
by climbing fi ber stimulation in the presence of an mGluR agonist 
in the bath, suggesting agonist binding and a widespread, dendritic 
calcium transient as key triggers for this type of slow excitatory 
signaling (Yuan et al., 2007). In this scenario, climbing fi ber activity 
could facilitate mGluR1 potentials well beyond the climbing fi ber 
input territory, providing that the climbing fi ber-evoked calcium 
signal coincides with suffi ciently high local glutamate transients. A 
related phenomenon has been described earlier, in which parallel 
fi ber activation elicits mGluR1 potentials when the climbing fi ber 
input was stimulated up to 90 s prior to the parallel fi ber input 
(Batchelor and Garthwaite, 1997). Adding the calcium chelator 
EGTA to the recording electrode abolished the slow potentials, 
while they could be triggered when substituting photolytic calcium 
uncaging for climbing fi ber stimulation. The examples provided in 
these studies (Batchelor and Garthwaite, 1997; Yuan et al., 2007) 
show that calcium signaling is required to trigger mGluR1 poten-
tials. Recent evidence suggests that this calcium sensitivity results 
from the involvement of TRPC cation channels that mediate the 
slow, excitatory conductances. Both TRPC1 (Kim et al., 2003) and 
TRPC3 channels (Hartmann et al., 2008) have been suggested to 
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mediate the slow current. TRPC channels open in response to 
G-protein-coupled receptor activation and/or the occurrence of 
calcium surges. This activation pattern principally enables TRPC 
channels to mediate capacitive calcium entry after release of cal-
cium from intracellular stores (Montell et al., 2002). However, the 
calcium transient associated with slow, mGluR1 potentials is not 
blocked in Purkinje cells obtained from TRPC1−/− or TRPC3−/− mice 
(Hartmann et al., 2008). These observations suggest that mGluR1 
potentials might be triggered by calcium surges, but that signifi cant 
components of the associated calcium infl ux are not contributed 
by TRPC channels.

     These novel fi ndings are crucial for the present discussion of 
the consequences of climbing fi ber signaling for cerebellar plastic-
ity and function, because mGluR1 potentials signifi cantly enhance 
complex spike associated calcium transients (Yuan et al., 2007), and 
might therefore facilitate the induction of parallel fi ber LTD. It has 
been suggested that such an increase in the LTD induction prob-
ability occurs when mGluR1 potentials are enhanced after block-
ade of glutamate transporters (Brasnjo and Otis, 2001). However, 
the cause for the enhanced probability of LTD induction remains 
unclear. Both TRPC channels (but see Hartmann et al., 2008) and 
IP

3
-mediated calcium release from internal stores could contrib-

ute to more pronounced calcium signaling. Moreover, a stronger 
mGluR1 activation would also result in enhanced PKC activation. 
All of these factors could enhance the LTD induction probability. 
Despite of these remaining uncertainties with regard to the type 
of TRPC channels involved and the origin of the calcium signal 
associated with slow excitatory potentials, new aspects of mGluR1 
signaling at climbing fi ber synapses emerge. First, mGluR1-trig-
gered potentials can be evoked by climbing fi ber signaling, and 
second, these slow potentials enhance calcium signaling and are 
likely to facilitate LTD induction.

PLASTICITY OF CLIMBING FIBER-PURKINJE CELL SYNAPSES
Marr-Albus-Ito models of cerebellar motor learning describe the 
parallel fi ber input to Purkinje cells as the site in the cerebellar 
network at which the learning events take place (Albus, 1971; 
Ito, 1984; Marr, 1969). In these classic models, the climbing fi ber 
plays a crucial role as well, but is seen as a ‘teacher’ that signals 
errors and disturbances in sensomotoric function, rather than an 
additional site of information storage. The long prevailing dogma 
of the ‘invariant’ climbing fi ber response resulted from the high 
probability of release at climbing fi ber terminals (Dittman and 
Regehr, 1998; Hashimoto and Kano, 1998; Silver et al., 1998), as 
well as the all-or-none character of climbing fi ber signaling (Eccles 
et al., 1966). These features make climbing fi ber transmission both 
extremely reliable and forceful, and distinguish it from transmission 
at most other types of central nervous system synapses.

Nevertheless, synaptic plasticity exists at climbing fi ber synapses 
as well: LTD of climbing fi ber EPSCs (recorded in voltage-clamp 
mode) can be induced using low-frequency (5 Hz, 30 s) climbing 
fi ber stimulation (Carta et al., 2006; Hansel and Linden, 2000). In 
current-clamp mode, LTD is associated with an alteration in the 
complex spike waveform (Hansel and Linden, 2000), a reduction 
in the complex spike afterhyperpolarization (Schmolesky et al., 
2005), and a long-term depression of climbing fi ber evoked cal-
cium transients (Weber et al., 2003). Figure 3 illustrates two crucial 

aspects of climbing fi ber LTD: climbing fi ber tetanization leads 
to a reduction in the amplitude of the slow spikelets that make 
up the late component of a complex spike (Figure 3A), and the 
associated calcium transients (Figure 3B). Climbing fi ber LTD is 
postsynaptically induced and expressed (Shen et al., 2002). The 
biochemical cascade for the induction of climbing fi ber LTD shares 
elements with the LTD induction cascade at parallel fi ber synapses: 
at both types of synapses, a postsynaptic calcium surge, activation 
of mGluR1 receptors, and activation of protein kinase C (PKC) are 
required for LTD induction (Hansel and Linden, 2000). Climbing 
fi ber LTD induction is also PKA-dependent (Schmolesky et al., 
2007), which has not been tested for parallel fi ber LTD yet.

It remains to be determined whether climbing fi ber plasticity can 
play a similar role in motor learning as assumed for parallel fi ber 
LTD. However, the reduction of calcium transients accompanying 
climbing fi ber LTD (Weber et al., 2003) has a signifi cant effect on 
the LTD induction probability at parallel fi ber synapses (Coesmans 
et al., 2004) and might therefore provide a critical component of 
cerebellar gain control (see below).

DEVELOPMENTAL CLIMBING FIBER PLASTICITY
Climbing fi ber synaptic plasticity has also been observed in the 
developing cerebellum, where it might play a role in the activity-
dependent elimination of surplus climbing fi bers, and the stabiliza-
tion of the remaining ‘winner’ climbing fi ber input. This pruning 
process is typically completed at the end of the third postnatal week 
(Crépel et al., 1976; Lohof et al., 1996). Recent studies suggest that 
long-term potentiation (LTP) and LTD can be observed at climb-
ing fi ber synapses during postnatal development (Bosman et al., 
2008; Ohtsuki and Hirano, 2008). In P4-11 Purkinje cells, pairing 
of climbing fi ber stimulation and Purkinje cell depolarization leads 
to LTP at ‘large’ climbing fi ber inputs, which are suffi ciently strong 
to evoke spike fi ring in Purkinje cells, but induces LTD at ‘small’ 
climbing fi ber inputs (Bosman et al., 2008). As multiple climbing 
fi ber inputs share innervation fi elds on Purkinje cell dendrites 
(Scelfo et al., 2003; Sugihara, 2005), it is conceivable that LTP and 
LTD at developing climbing fi ber synapses refl ect a direct synaptic 
competition of neighbouring climbing fi ber inputs, at the end of 
which the potentiated input is stabilized and becomes the ‘winner’, 
whereas the depressed synaptic inputs are eventually eliminated 
(Bosman et al., 2008). The LTP described in this study is calcium-
dependent, but does not require the activation of NMDA receptors. 
The potentiation is mediated by an increase in the single channel 
conductance of AMPA receptors, suggesting a postsynaptic induc-
tion and expression mechanism (Bosman et al., 2008). Another 
study also described that in postnatal development (P5-9), climb-
ing fi ber stimulation leads to LTP at strong climbing fi ber inputs, 
and LTD at weak climbing fi ber inputs (Ohtsuki and Hirano, 
2008). In this study, however, LTP and LTD were accompanied 
by changes in the paired-pulse depression ratio and alterations 
in the frequency of asynchronous EPSCs, indicating that both 
types of plasticity are presynaptically expressed. LTP (but not LTD) 
induction requires a postsynaptic calcium transient, suggesting 
the involvement of a retrograde messenger (Ohtsuki and Hirano, 
2008). Whether or not the different observations made in these 
two studies can be explained by slight differences in the stimula-
tion protocols (for example, the second study applied unpaired 
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climbing fi ber stimulation) remains to be determined. Despite of 
the existing discrepancies, both Bosman et al. (2008) and Ohtsuki 
and Hirano (2008) show that bidirectional climbing fi ber plastic-
ity exists during postnatal development. These forms of climbing 
fi ber plasticity might be critically involved in the elimination of 
surplus climbing fi bers.

PARALLEL FIBER PLASTICITY UNDER HETEROSYNAPTIC 
CLIMBING FIBER CONTROL
The classic Marr-Albus-Ito theories of cerebellar motor learning 
suggest that synaptic plasticity at parallel fi ber synapses (the learn-
ing site) depends on activity at the heterosynaptic climbing fi ber 
synapses (the instructor site). In agreement with this theoretical 
framework, Masao Ito and colleagues described in the early 1980s 

a form of LTD at parallel fi ber synapses that is induced following 
paired parallel fi ber and climbing fi ber activity (Ito and Kano, 1982; 
Ito et al., 1982). As fi rst suggested by Albus (Albus, 1971), parallel 
fi ber LTD provides an attractive candidate mechanism for cerebel-
lar motor learning, as it is expected to result in a disinhibition of 
the target cells of inhibitory Purkinje cell projections in the deep 
cerebellar nuclei (DCN) or vestibular nuclei.

Parallel fi ber LTD induction depends on activation of the mGluR1/
PKC signaling cascade (for review see Hansel and Bear, 2008) and 
activation of the α isoform of calcium/calmodulin-dependent kinase 
II (αCaMKII; Hansel et al., 2006). Climbing fi ber signaling triggers 
dendritic calcium transients and contributes to parallel fi ber LTD 
induction (Konnerth et al., 1992) by activating these induction cas-
cades. Co-activation of parallel fi ber and climbing fi ber inputs causes 

FIGURE 3 | Climbing fi ber LTD affects bidirectional parallel fi ber plasticity. 

(A) A 5-Hz climbing fi ber tetanization for 30 s evokes climbing fi ber LTD, which 
is monitored here as a reduction in the amplitude of the fi rst slow spike 
component (arrow). (B) Climbing fi ber LTD is accompanied by a reduction in 
complex spike-associated calcium transients (red trace: before climbing fi ber 
tetanization). Calcium transients were recorded in the region of interest (red 
box). Fluorescence signals were monitored using a cooled CCD camera 
(Quantix, Roper Scientifi c), and the calcium indicator dye Oregon Green 
BAPTA-2 (200 µM). (C) After induction of climbing fi ber LTD (open dots; CF 

stimulation at 5 Hz, 30 s), subsequent application of the parallel fi ber LTD 
protocol (PF + CF stimulation at 1 Hz, 5 min) induces LTP instead (closed dots). 
(D) ‘Inverse’ calcium thresholds in the cerebellum: a higher calcium threshold 
has to be reached for LTD than for LTP induction. Climbing fi ber stimulation 
contributes calcium to reach this higher threshold, whereas climbing fi ber LTD 
lowers the amplitude of this calcium transient (red arrows). (A), (C) and (D) are 
modifi ed from Coesmans et al. (2004). Copyright 2004 by Elsevier. (B) is 
modifi ed from Weber et al. (2003). Copyright 2003 by the National Academy of 
Sciences, USA.
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supralinear calcium signaling in parallel fi ber spines (Wang et al., 
2000), thus providing a coincidence detection mechanism that might 
be required to reach a critical calcium threshold for LTD induction. 
A somewhat puzzling observation has been that strong parallel fi ber 
activation on its own can trigger parallel fi ber LTD in the absence of 
climbing fi ber activity (Eilers et al., 1997; Hartell, 1996). Similarly, 
climbing fi ber stimulation can be replaced by somatic depolariza-
tion (Linden et al., 1991). These fi ndings suggest that climbing fi ber 
activity indeed facilitates LTD induction by amplifying local calcium 
transients, but that there is no specifi c requirement for climbing 
fi ber-evoked calcium signals. This conclusion is supported by recent 
recordings from cerebellar Purkinje cells of mormyrid fi sh (intro-
duced above). Parallel fi ber stimulation alone at enhanced stimulus 
strength (increase in the pulse duration) can induce parallel fi ber 
LTD. When the climbing fi ber is co-stimulated, however, a lower 
stimulus strength (as applied to monitor test responses before and 
after tetanization) is suffi cient for LTD induction (Han et al., 2007). 
These observations suggest that parallel fi ber LTD can be induced in 
the absence of climbing fi ber activity, which might nevertheless have 
an important role in facilitating the induction process.

The impact of climbing fi ber signaling on parallel fi ber plastic-
ity becomes more obvious when taking LTP into consideration. 
Both pre- and postsynaptically expressed types of LTP have been 
described at parallel fi ber synapses (Lev-Ram et al., 2002; Salin 
et al., 1996). LTP can be induced when applying the same low-
frequency/low-intensity parallel fi ber stimulation protocol used 
for LTD induction, when climbing fi ber stimulation is omitted 
(Lev-Ram et al., 2002). Just like LTD, this form of LTP is postsyn-
aptically induced and expressed (Coesmans et al., 2004; Lev-Ram 
et al., 2002) and might therefore function as a reversal mechanism 
for LTD. LTP induction depends on lower calcium transients than 
LTD induction (Coesmans et al., 2004; Figure 3D), and requires 
the activation of protein phosphatases PP1, PP2A and PP2B 
(Belmeguenai and Hansel, 2005). Therefore, at the level of cal-
cium signaling and kinase/phosphatase activation requirements, 
cerebellar  bidirectional synaptic plasticity seems to be governed by 
induction rules that provide a mirror image of those described at 
glutamatergic synapses in hippocampal and neocortical pyrami-
dal cells (Jörntell and Hansel, 2006). Moreover, a unique motif in 
cerebellar plasticity is the heterosynaptic control of parallel fi ber 
plasticity by the climbing fi ber input. The effi cacy of this control 
function becomes obvious when looking at the consequences of 
LTD at the climbing fi ber input itself (Hansel and Linden, 2000). 
Climbing fi ber LTD is accompanied by a reduction in complex 
spike-associated calcium transients (Weber et al., 2003). This reduc-
tion in calcium signaling is suffi ciently strong to reverse the polar-
ity of parallel fi ber plasticity after previous climbing fi ber LTD 
induction (Coesmans et al., 2004). This metaplastic interaction is 
illustrated in Figure 3C: when climbing fi ber LTD is induced fi rst, 
subsequent application of the parallel fi ber LTD induction protocol 
results in LTP induction instead. The most likely explanation for 
this sign reversal is that climbing fi ber LTD reduced the activity-
dependent calcium signal below the threshold for LTD induction 
(Figure 3D).

In addition to its role in postsynaptic parallel fi ber plasticity, 
climbing fi ber signaling also affects a form of presynaptic parallel 
fi ber LTP that results from brief parallel fi ber tetanization (e.g. 8 Hz 

for 15 s; Salin et al., 1996). Presynaptic parallel fi ber LTP is induced 
by activation of adenylyl cyclase I (Storm et al., 1998), produc-
tion of cAMP and the subsequent activation of cAMP-dependent 
protein kinase (PKA; Chen and Regehr, 1997; Salin et al., 1996). 
More recent observations show that climbing fi ber-evoked cal-
cium signaling can trigger the release of endocannabinoids from 
Purkinje cell dendrites (Brenowitz and Regehr, 2003), which bind 
to CB1 receptors at parallel fi ber terminals and suppress LTP induc-
tion by interfering with the adenylyl cyclase/PKA cascade (Van 
Beugen et al., 2006). It has been suggested that endocannabinoid 
signaling facilitates the induction of postsynaptic LTD (Safo and 
Regehr, 2005). The inhibitory action of CB1 receptor activation on 
presynaptic LTP might well contribute to this facilitation of LTD, 
assuming that activity-dependent postsynaptic alterations are often 
accompanied by presynaptic changes. In this scenario, climbing 
fi ber-evoked calcium transients do not only promote postsynaptic 
LTD, but in addition provide a ‘safety lock’ mechanism that prevents 
that presynaptic LTP and postsynaptic LTD occur at the same time 
(Van Beugen et al., 2006). Under some conditions, coincident paral-
lel fi ber activity and retrograde endocannabinoid signaling might 
even promote the induction of a presynaptic form of LTD (Qiu and 
Knöpfel, 2009), thus aligning pre-and postsynaptic changes. These 
recent reports show that the climbing fi ber input heterosynaptically 
affects four forms of parallel fi ber plasticity: postsynaptic LTD, 
postsynaptic LTP, presynaptic LTP, and presynaptic LTD.

THE OTHER CLIMBING FIBER SIGNAL: CORTICOTROPIN-
RELEASING FACTOR
The complex spike-associated calcium transients in Purkinje cell den-
drites are certainly the best characterized contribution of  climbing 
fi ber signaling to cerebellar plasticity. However, it should not be 
overlooked that climbing fi ber activity can additionally result in the 
release of the neuropeptide corticotropin-releasing factor (CRF) 
from climbing fi ber terminals (Barmack and Young, 1990; Tian and 
Bishop, 2003). CRF can bind to type 1 and/or type 2 CRF receptors 
expressed in Purkinje cells. Whereas type 2 CRF receptors are not 
expressed in spines, type 1 receptors, which are G-protein coupled 
and lead to the activation of adenylyl cyclase/PKA and PKC pathways 
(Grammatopoulos et al., 2001), are located in the dendrite across 
from parallel fi ber terminals, and in non-synaptic regions (Swinny 
et al., 2003). CRF signaling has been shown to be critically involved in 
parallel fi ber LTD induction as the CRF receptor antagonists α-heli-
cal CRF-(9-41) (α-h CRF) and astressin prevent LTD (Miyata et al., 
1999). Type-1 CRF receptors are not expressed in the dendrite across 
from climbing fi ber terminals (Swinny et al., 2003), and yet climbing 
fi ber LTD is blocked, too, in the presence of astressin (Schmolesky 
et al., 2007), suggesting that diffusion to adjacent receptors is suf-
fi cient. It is possible that CRF signaling facilitates LTD induction at 
both climbing fi ber and parallel fi ber synapses by activating the PKC 
signaling cascade and, at least in the case of climbing fi ber LTD, the 
PKA signaling cascade (Schmolesky et al., 2007). These results show 
that the climbing fi ber input exerts a control function over parallel 
fi ber plasticity not only through the calcium transients associated 
with complex spike activity, but also by the activity-dependent release 
of the neuropeptide CRF (Figure 4). Moreover, it seems that the same 
factors involved in parallel fi ber LTD (here: high calcium, CRF recep-
tor activation) promote LTD at the climbing fi ber input as well.
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 cerebellar motor learning? To slightly clear the fog, it might be 
useful to take a step back and have a look at the evidence at hand. 
Granule cells provide massive excitatory input to Purkinje cells 
via ascending granule cell axons on the one hand, and parallel 
fi ber synapses on the other. These two sets of granule cell input, 
however, seem to play different roles in cerebellar processing and 
gain control. Synapses of the ascending axons do not show forms 
of long-term plasticity (Sims and Hartell, 2006). In contrast, there 
is a high degree of pre-and postsynaptic plasticity at parallel fi ber 
synapses, but about 85% of these synapses are functionally silent 
(Isope and Barbour, 2002). It has therefore been suggested that 
granule cells predominantly activate Purkinje cells through the 
hardwired ascending axon input, while the parallel fi ber input 
allows for acquired control using fi ne-tuned recruiting of parallel 
fi ber synapses (Rokni et al., 2008). These observations suggest a 
high degree of functional specialization of the two different sets of 
synaptic contacts provided by granule cells, and support the view 
that the parallel fi ber system plays a key role in cerebellar adap-
tations. But under what conditions does parallel fi ber plasticity 
occur, and what are its functional consequences? A very elegant 
study has been provided by Jörntell and Ekerot, who showed that 
parallel fi ber receptive fi elds in adult cats can be bidirectionally 
modifi ed after parallel fi ber stimulation in vivo (Jörntell and 
Ekerot, 2002). Paired parallel fi ber and climbing fi ber stimulation 
causes a long-term decrease in the receptive fi eld size of Purkinje 
cells, while unpaired parallel fi ber stimulation causes a lasting 
increase. While this study provides an example of plasticity of sen-
sory inputs to cerebellar Purkinje cells, without immediately obvi-
ous consequences for motor control, there are three aspects that 
are highly relevant for the present discussion. First, the  stimulus 

IS CLIMBING FIBER SIGNALING INVOLVED IN CEREBELLAR 
MOTOR LEARNING?
Numerous studies using genetically modifi ed mice suggest a 
correlation between parallel fi ber LTD and cerebellar motor 
 learning (De Zeeuw and Yeo, 2005). However, LTD has never 
been demonstrated during motor learning in behaving animals. 
It has indeed been claimed that parallel fi ber LTD might not be 
involved in motor learning at all, based on the observation that 
motor  learning  (eyeblink conditioning) is intact when parallel 
fi ber LTD is pharmacologically inhibited (Welsh et al., 2005). Even 
if LTD is involved in motor learning, the contribution of the 
climbing fi ber input remains unclear, as LTD can be induced in 
the absence of climbing fi ber activity, as long as the parallel fi ber 
input is suffi ciently active (Eilers et al., 1997; Han et al., 2007; 
Hartell, 1996). Moreover, when reviewing recent developments in 
cerebellar plasticity research, it becomes obvious that several types 
of plasticity that have been characterized do not require climbing 
fi ber activity for induction. This holds true for presynaptic LTP 
(Salin et al., 1996) and postsynaptic LTP (Lev-Ram et al., 2002). 
Climbing fi ber activity is only required for the induction of LTD 
at both climbing fi ber (Hansel and Linden, 2000) and parallel fi ber 
inputs (Ito and Kano, 1982; Ito et al., 1982) as well as for rebound 
potentiation at interneuron – Purkinje cell synapses (Kano et al., 
1992). While climbing fi ber activity-dependent parallel fi ber LTD 
has been the predominant model for cerebellar motor learning, 
these more recently discovered types of plasticity could well be 
involved in cerebellar learning as well, but are independent of 
climbing fi ber activity.

So what is the role of parallel fi ber plasticity, and specially 
climbing fi ber activity-dependent parallel fi ber plasticity, in 

FIGURE 4 | Climbing fi ber activity facilitates LTD induction at parallel fi ber 

synapses. For simplicity, climbing fi ber and parallel fi ber terminals are shown to 
contact the same postsynaptic compartment. The LTD induction cascade is 
shown in blue: large calcium transients promote the activation of αCaMKII and 
PKC. A PKC-mediated phosphorylation of the AMPA receptor subunit GluR2 
triggers the internalization of GluR2 subunits. The LTP cascade is shown in 
yellow: lower calcium transients promote phosphatase activation (only PP2B is 

directly calcium-regulated). Eventually, GluR2 subunits are delivered to the 
membrane. Climbing fi ber activity facilitates LTD induction by elevating the 
overall calcium transient (calcium sources are not shown), and by releasing the 
neuropeptide CRF. CRF binding to type 1 CRF receptors (CRF-R1) facilitates the 
activation of PKC and PKA. The activation of PKA is a required step for the 
induction of climbing fi ber LTD. It has not been determined yet, whether the 
same holds true for parallel fi ber LTD.
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protocols applied suggest that both LTD (paired stimulation) and 
LTP (unpaired stimulation) phenomena contribute to the decrease 
and increase, respectively, of the receptive fi eld sizes. If so, this 
study demonstrates that LTD and LTP are involved in a form of 
cerebellar learning that can be monitored in vivo. Second, this 
study elegantly shows that LTD and LTP can perfectly complement 
each other in cerebellar information storage, without the need to 
classify one as the ‘learning’ mechanism and the other as a tool 
used for ‘extinction’ or ‘reversal’. In other words, in some types of 
 cerebellar learning, depression and potentiation simply provide 
two sides of the same coin, allowing for bidirectional adaptations. 
Third, this study clearly demonstrates that climbing fi ber activity 
exerts a crucial function in the control of bidirectional cerebellar 
plasticity. This latter observation is in line with the widespread 
notion that enhanced climbing fi ber activity precedes cerebellar 
learning, acting as an ‘error detector’, or as a ‘teacher’ (for review 
see Simpson et al., 1996). In this view, climbing fi ber activity signals 
the need for adjusting the gain values of cerebellar sensory inputs 
and/or motor output control.

CONCLUSION
In a recent paper published in Frontiers in Neuroscience, Rodolfo 
Llinas and Yosef Yarom review the histology and physiology of 
the cerebellar cortex, concluding that ‘the cerebellum should be 
regarded as a control machine rather than a learning machine’ 
(Rokni et al., 2008). We do not agree with this assessment. In our 
view, the cerebellum certainly acts as a control machine, but on 
top of that the cerebellum (particularly the cerebellar cortex) pro-
vides a giant switchboard for associative learning. Currently, the 
existing evidence does not seem to allow for a defi nite conclusion. 
Our more learning-biased view results from close inspection of the 

cerebellar circuitry and its capacity for information storage based 
on both in vitro and in vivo studies (see also Hansel et al., 2001; 
Jörntell and Hansel, 2006). Parallel fi ber to Purkinje cell synapses 
are perfect candidate locations for the storage of motor memories, 
because of their ability to bidirectionally adjust synaptic gain both 
pre- and postsynaptically. Although not strictly required, elevated 
climbing fi ber activity facilitates the induction of parallel fi ber 
LTD by enhancing dendritic calcium signals and by releasing the 
neuropeptide CRF from climbing fi ber terminals. Climbing fi ber 
activity also suppresses presynaptic LTP by triggering the release of 
endocannabinoids from Purkinje cell dendrites. The complexity of 
this ‘orchestration’ of parallel fi ber plasticity by the climbing fi ber 
input shows after induction of LTD at the climbing fi ber input itself: 
the accompanying reduction in complex spike-associated calcium 
transients shifts the relative probabilities for the induction of LTD 
and LTP, respectively, at the parallel fi ber input. Plasticity residing 
at the parallel fi ber synapses is likely complemented by additional 
types of cerebellar plasticity, such as plasticity at inhibitory synapses 
onto Purkinje cells, and intrinsic plasticity mechanisms found in 
several types of neurons within the cerebellum. It remains to be seen 
how the cerebellum puts these features to use, but its underlying 
circuitry seems very well suited for activity-dependent information 
storage and learning.
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