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Abstract

Various algorithms have been developed for variant calling using next-generation sequencing data, and various methods
have been applied to reduce the associated false positive and false negative rates. Few variant calling programs, however,
utilize the pedigree information when the family-based sequencing data are available. Here, we present a program, FamSeq,
which reduces both false positive and false negative rates by incorporating the pedigree information from the Mendelian
genetic model into variant calling. To accommodate variations in data complexity, FamSeq consists of four distinct
implementations of the Mendelian genetic model: the Bayesian network algorithm, a graphics processing unit version of the
Bayesian network algorithm, the Elston-Stewart algorithm and the Markov chain Monte Carlo algorithm. To make the
software efficient and applicable to large families, we parallelized the Bayesian network algorithm that copes with pedigrees
with inbreeding loops without losing calculation precision on an NVIDIA graphics processing unit. In order to compare the
difference in the four methods, we applied FamSeq to pedigree sequencing data with family sizes that varied from 7 to 12.
When there is no inbreeding loop in the pedigree, the Elston-Stewart algorithm gives analytical results in a short time. If
there are inbreeding loops in the pedigree, we recommend the Bayesian network method, which provides exact answers.
To improve the computing speed of the Bayesian network method, we parallelized the computation on a graphics
processing unit. This allowed the Bayesian network method to process the whole genome sequencing data of a family of 12
individuals within two days, which was a 10-fold time reduction compared to the time required for this computation on a
central processing unit.
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Introduction

Next-generation sequencing technologies have been employed

routinely in detecting DNA variants and unveiling the cause of

genetic diseases [1]. The broad application of next-generation

sequencing technologies has led to an accompanying rapid

development in variant calling algorithms and related software

[2–5]. However, the variant calling error rate remains relatively

high for rare variants [6], even though many new methods have

been employed to improve variant calling, such as calling multiple

samples together and borrowing information from the dbSNP

database [7].

Roach et al. suggested using pedigree information to reduce the

false positive rate of variant calling by removing all variants that do

not conform to Mendelian transmission [8]. However, this method

cannot control the false negative rate and cannot find any de novo

mutations. Pedigree information has also been used to improve the

accuracy for haplotype phasing in small families [9,10]. Recent

studies have shown that incorporating pedigree information into

the variant calling reduces both false positive and false negative

rates for family trios and extended families [11–14]. Peng et al.

showed that in some HapMap families, incorporating pedigree

information can reduce the false positive rates by 14–33% [12].

Several software packages have been implemented to incorpo-

rate pedigree information for variant calling. SAMtools [13] and

DeNovoGear [14] can process family trios together. The Elston-

Stewart algorithm was used in PolyMutt [11] to incorporate

extended families. However, the Elston-Stewart algorithm requires

either loop-cutting techniques, which will substantially increase the

computing time and give approximate answers that are not always

close to the exact results [15], or the use of the method proposed

by Cannings et al. [16] that is hard to implement and has large

memory requirements. Peng et al. proposed additional computa-

tional solutions for implementing the Mendelian genetic model in

sequence variant calling [12]. The Bayesian network algorithm, in

particular, provides exact results for a family pedigree with

inbreeding loops. In order to allow for uncertainty in the minor

allele frequency estimation, we also implemented a Markov chain

Monte Carlo algorithm [17] to perform the family-based variant
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calling. To incorporate pedigree information into variant calling,

we provide a program, FamSeq, that allows users to choose among

the four following approaches, the Elston-Stewart algorithm, the

Bayesian network algorithm, the graphics processing unit (GPU)

version of the Bayesian network algorithm and the Markov chain

Monte Carlo algorithm. FamSeq further improves the computa-

tional efficiency by using the GPU.

In whole genome sequencing, there are billions of loci with

millions of candidate variant positions, so computing time is

always a problem. We therefore sought to parallelize the Bayesian

network algorithm in order to make the computing time feasible

for analyzing a large set of whole genome sequencing data. GPUs

were originally designed to accelerate the processing of graphics.

As GPUs have become more programmable and have performed

powerfully in parallel computing, they have been widely used in

general-purpose applications, including those used in bioinfor-

matics [18–20]. The Bayesian network algorithm contains many

homogeneous tasks that can be accomplished by GPU parallel

computing. Therefore, we implemented the parallel computing of

the Bayesian network algorithm using the CUDA parallel

computing platform on an NVIDIA GPU, which substantially

increased the performance of that algorithm.

Design and Implementation

Design Overview
We developed a software package, FamSeq, which calls variants

for family-based sequencing data. We used different methods to

implement Mendelian transmission in FamSeq.

As outlined in the workflow of FamSeq (Fig. 1), two files are

required as data input: a pedigree structure file and a file

containing the genotype likelihood Pr DDGð Þ, where D denotes the

raw sequencing measurements, i.e., read counts, read quality and

mapping quality, and G denotes the genotype of the individual.

The pedigree file stores the individual identification (ID), parents’

IDs, and gender and sample name, as is used to denote samples in

the likelihood data file (Fig. 2). FamSeq accepts likelihood data

files in two formats: a variant call format (VCF) [21] and a

likelihood-only format (see description in our software manual).

We introduced the likelihood-only format to allow for data

generated from other sequencing platforms, with the requirement

that the likelihood for each genotype is available.

FamSeq takes as input the two data files and settings of parameters

(details on allele frequency and de novo mutation rate are shown

hereafter). A data preprocessing feature of FamSeq will check

whether there are any errors in the two input files. After that, FamSeq

will implement the method the user chooses to call the variants.

FamSeq creates a new file as the output file, which follows the

format of the input file but adds additional columns, with results

on the posterior probability and the genotype, calculated using

both the individual-based method and the family-based method.

Data Preprocessing
FamSeq first checks the pedigree file. FamSeq requires the input

pedigree to be complete, which means that everyone listed in the

pedigree should have both a father and a mother represented in

the pedigree file, with the exception of the founders of the family

(Fig. 2). Otherwise, if two siblings have only one parent’s

information in the pedigree, FamSeq cannot determine whether

they are full siblings or half siblings. FamSeq also checks for any

inconsistency in the pedigree file, such as the father being

erroneously listed as female. FamSeq extracts likelihood informa-

tion from the Phred-scaled likelihood (PL) section in a VCF file or

directly from a likelihood-only file.

Input of Allele and Genotype Frequency in the
Population

We require Pr Gð Þ, which is the probability of the genotype in a

population. In FamSeq, we consider a bi-allelic model with

reference (R) and alternative (A) alleles. Consequently, there are

three kinds of genotypes in a diploid genome: RR, RA and AA.

Without compromising the detection of true variants, we set the

default value of the frequency of three genotypes in the population

at 0.9985, 0.001 and 0.0005 if the variant is not represented in

dbSNP. The dbSNP information should be provided by the input

VCF file. For dbSNPs, the default value is set at 0.45, 0.1 and

0.45. Users can choose to set other values. When only the allele

frequency is known, users can set genotype frequencies based on

the Hardy-Weinberg equilibrium [22]. Based on findings from

Peng et al., changes in the values of Pr Gð Þ can affect the variant

calling results of the founders, while its influence on offsprings in

the family is small [12].

Rate of De Novo Mutation
In FamSeq, we require the input of the de novo mutation rate by

assigning a probability of m for each parental allele to mutate into

the other allele in the germline [12]. In other words, when the two

parents have homozygous reference genotypes, there is still a

probability that their child has a genotype with an alternative allele.

We added the de novo mutation rate in the calculation of

transmission probabilities (described under Model Implementation).

The de novo mutation rate has been estimated to be around

1e28 per base per generation [23]. When we analyzed real data,

we found that the rates of false positives and false negatives were

better controlled when a de novo mutation rate was set at 1e27.

Thus, we set a de novo mutation rate of 1e27 as the default in

FamSeq. Users can set the de novo mutation rate according to

their requirements. In general, when the de novo mutation rate is

set to a large value, the influence of pedigree-to-variant calling is

small and the identification of more de novo mutations is allowed

during variant calling.

Even though we allow for de novo mutations in our model, we

still may over-correct the variant calling at some loci by following

Figure 1. Workflow of FamSeq. We use a pedigree file and a file that
includes the likelihood (Pr DDGð Þ) as the input to estimate the posterior
probability (Pr GDDð Þ) for each variant genotype. (E-S: Elston-Stewart
algorithm; BN: Bayesian network method; BN-GPU: The computer needs
a GPU card installed to run the GPU version of the Bayesian network
method; MCMC: Markov chain Monte Carlo method; VCF: variant call
format.)
doi:10.1371/journal.pcbi.1003880.g001

FamSeq
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Mendelian inheritance principles when there are true de novo

mutations. Therefore, we provide the following option to alleviate

the over-correction: when the likelihood ratio for all individuals in

the pedigree is larger than a user-specified cutoff and the

genotypes do not follow Mendel’s law, FamSeq will call variants

using the individual-based method instead of the family-based

method.

Method Implementation
Markov chain Monte Carlo (MCMC) algorithm. We use

the Gibbs sampler to derive the posterior probabilities for each

genotype [17,24]. During Gibbs sampling, the genotype of each

individual in the family is updated, one at a time, based on the

condition of all other family members’ genotypes, the family

configuration and the raw sequencing measurements. According

to Mendelian segregation principles, the genotype of the individual

does not depend on those of all family members, but only on the

individual’s parents, spouse and children. We can write the full

conditionals as follows:

f Gið Þ~Pr Gi DG{i,D,Pð Þ~Pr Gi DGfi
,Gmi

,Gci
,Gsi

,D
� �

!Pr Gi DGfi
,Gmi

� �
PJi

j~1 Pr Gcij
DGsij

,Gi

� �
Pr Di DGið Þ

ð1Þ

where Gi denotes the genotype for individual i, G{i denotes the

genotype for all family members, except individual i, D denotes

the raw sequencing measurements, and P denotes the pedigree

configuration. Gfi
, Gmi

, Gci
and Gsi

indicate the genotype of

individual i’s father, mother, child and spouse. Pr Gi DGfi
,Gmi

� �
is

the transmission probability, which shows how the parents’

genotypes influence the child’s genotype.

To avoid a local maximization problem in the Gibbs sampler,

we also implemented a heated-Metropolis algorithm in MCMC, as

proposed by Lin et al. [24]. In the heated-Metropolis algorithm, Gi

is sampled from a distribution of f Gið Þ1=T
instead of f Gið Þ. The

sampled _GGi is accepted with the probability min
f _GGi

� �
f Gið Þ

" #1{1=T

,1

8<
:

9=
;.

The accuracy of the MCMC algorithm depends on the number

of iterations. As is shown in Biswas et al. [17], the MCMC

approach requires tens of thousands of iterations to converge for a

large pedigree; therefore, the computing time will also increase. By

default, we set the number of iterations at 20,000n, where n is the

pedigree size. Users can specify the number of iterations according

to their needs.

Elston-Stewart algorithm. This algorithm splits the whole

pedigree into anterior and posterior parts according to the

individual of interest [25]. The anterior part relates to the parents

of the individual, and the posterior part relates to the child/

children of the individual. The probability of the anterior and

posterior parts can be estimated recursively, such that the posterior

genotype probability is calculated according to the probability of

the anterior part and the posterior part. The Elston-Stewart

algorithm is especially complex when there are inbreeding loops in

Figure 2. Illustration of input files. A.) Pedigree structure. B.) Pedigree structure file storing the pedigree structure shown in Fig. 2A. From the
left-most column to the right-most column, the data are ID, mID (mother ID), fID (father ID), gender and sample name. C.) Part of VCF file. From the
VCF file, we can find that the genome of the grandfather (G-Father) was not sequenced. We add his information to the pedigree structure file to avoid
ambiguity. For example, if we include only one parent of two siblings in the pedigree structure file, it will be unclear whether they are full or half
siblings. The sample name in the pedigree structure file should be the same as the sample name in the VCF file. When the actual genome was not
sequenced, we set the corresponding sample name as NA in the pedigree structure file.
doi:10.1371/journal.pcbi.1003880.g002

FamSeq
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the pedigree because then the pedigree cannot be directly split into

anterior and posterior parts. There are two methods to solve this

problem. First, we can cut the loops according to complex criteria

and obtain an approximate result [15,26]. Cannings et al.

suggested using another method to obtain the analytical results

[16]. However, their method has large memory requirements.
Bayesian network algorithm. By treating the entire pedi-

gree as a directed acyclic graph (a Bayesian network), the genotype

of sample i depends on the genotypes of only his/her parents [27].

We can write the posterior probability as

Pr GDP,Dð Þ!Pn

i~1 Pr Di DGið ÞPr Gi DGfi
,Gmi

� �
ð2Þ

The Bayesian network approach directly calculates the joint

probabilities for all the combinations of genotypes of the whole

family, and allows for analytic calculations for pedigrees with

inbreeding loops. The Bayesian network approach is straightfor-

ward and easy to implement; however, the computing time

increases exponentially when the pedigree size increases, so a

supplementary approach is needed for a larger pedigree.
Bayesian network parallelization. For variant calling using

whole genome sequencing data, there are billions of loci. After

filtering by FamSeq, there are still millions of candidate variant

positions remaining; thus, we propose to parallelize the Bayesian

network algorithm in order to reduce the computing time and

make this approach feasible in the DNA sequencing data analysis.

In the Bayesian network method, we need to calculate the

posterior probability for 3n kinds of genotypes. This amounts to a

large volume of homogeneous computing tasks that are suitable to

parallel computing by GPUs.

Compared to central processing units (CPUs), GPUs have many

advantages in parallel computing. A GPU usually has hundreds or

thousands of core processors, while there are only several core

processors for a CPU. Although the computing speed for each core

processor of a GPU (about 1 GHz) is not as fast as that of a CPU

(about 3 GHz), the total computing speed of a GPU is faster than

that of a CPU. For a large amount of homogeneous computing

tasks, we can assign one task to each GPU core to parallelize the

computing.

In FamSeq, we use CUDA (version 5.0 or later) to parallelize

the Bayesian network algorithm on a GPU. CUDA is a parallel

computing platform and programming model developed by

NVIDIA. It can be implemented on many CUDA-enabled GPUs

(https://developer.nvidia.com/cuda-gpus). CUDA provides many

application programming interfaces that can be easily incorporat-

ed into C++ language. A brief illustration of GPU programming in

FamSeq is shown in Fig. 3. For more details on GPU program-

Figure 3. Illustration of GPU parallel computing in FamSeq. The
program can be divided into two parts: a serial part and a parallel part.
The serial part is processed in a CPU and the parallel part is processed in
a GPU. The program: 1. Prepare the data for parallel computing in a
CPU; 2. Copy the data from CPU memory to GPU memory; 3. Parallelize
the 3n jobs computing in the GPU, where n is the pedigree size; 4. Copy
the results from GPU memory to CPU memory; and 5. Summarize the
results in the CPU.
doi:10.1371/journal.pcbi.1003880.g003
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ming in C/C++, see the NVIDIA CUDA C Programming Guide

(http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.

html).

Results

We compared the computing time of the four different methods

using real sequencing data with one million (1M) variants and a

pedigree size that varied from 7 to 12. If there is no alternative

allele at a position, this means that all individuals in the family

have a homozygous reference genotype. If these positions are

provided in the input VCF files, FamSeq will skip these positions

and run joint calling on only the remaining potential variant

positions. In order to estimate the actual computing time of

FamSeq, we prepared a VCF file with 1M candidate variant

positions as the input file. We tested the non-GPU version on a

Linux server with Intel Xeon CPUs of 3.07 GHz. Only a single

core of one CPU was used during testing. The GPU version was

conducted on an NVIDIA Tesla M2090 with 512 cores of a

1.3 GHz GPU on a Linux server from Texas Advanced

Computing Center (TACC). We used only one GPU during the

comparison.

Table 1 shows the computing time for FamSeq based on using

the CPU versus the GPU. The Elston-Stewart algorithm was the

fastest among the four methods we used, and was the best choice

when there were no inbreeding loops in the pedigree. The

presence of inbreeding loops in the pedigree requires the use of

loop cutting technology before calculating the probability of the

anterior and posterior parts, which leads to algorithm complexity,

increased computing time, and an approximation of the results. A

big advantage of the Elston-Stewart algorithm is that the

computing time increases almost linearly with increases in the

pedigree size. When the pedigree size is large (greater than 12), the

Elston-Stewart algorithm is almost the only computationally

feasible method, especially for analyzing whole genome sequenc-

ing data.

Although the computing time for the Bayesian network

algorithm increases exponentially when the family size increases,

variant calling with this method can be completed in several hours

for a pedigree with fewer than 10 individuals, based on whole

genome sequencing data and assuming there are about 20 million

candidate variant positions. When the pedigree size is small, the

computing time difference between the Bayesian network algo-

rithm and the Elston-Stewart algorithm is small. An advantage of

the Bayesian network algorithm is that it can directly calculate

posterior probabilities in pedigrees that have inbreeding loops.

From Table 1, we show that the computing time for the Bayesian

network algorithm is not affected by whether or not the pedigree

has inbreeding loops.

We implemented the Bayesian network algorithm in both a

CPU and GPU. Although we tried to increase the computing

speed by parallelization at the GPU, the GPU version was slower

than the CPU version when the pedigree size was less than 10. We

found that transferring data between a CPU and GPU (steps 2 and

4 in Fig. 3) requires a lot of time and becomes a bottleneck for

speed improvement with GPU parallelization. The number in the

parentheses in Table 1 is the actual GPU computing time, which

is only about one tenth of the total computing time. Since the time

required to copy the data increases linearly and the computing

time increases exponentially, the advantage in speed improvement

for GPU parallelization becomes evident when the pedigree size is

larger than 10. When the pedigree size was 12, the GPU version

became 10 times faster than the CPU version, which made it

feasible to call variants for the whole genome sequencing data in

,36 hours as compared to more than 16 days for the CPU

version. The actual improvement achieved from GPU computing

will depend on its capacity, such as the total number of cores

available in the GPU, which will vary from hundreds to thousands.

We ran FamSeq-GPU on a personal computer, a MacBook Pro

with OS X 10.8.5, which has an NVIDIA GeForce GT 650M

GPU containing 384 CUDA cores of up to 900 MHz. When the

family size was 7, the corresponding GPU computing time was

360 s, which almost doubled the time needed by the TACC GPU

server (Table 1), and the total computing time, including reading

and writing between the CPU and GPU, was 3,060 s. We further

observed that the GPU computing time increased to 1,970 s and

the overall time increased to 7,300 s for a family size of 11. Our

result shows if users do not have a professional computer server,

they have an option of running FamSeq with parallel computing

on a personal computer.

We also tested the computing time for our MCMC algorithm

under the same settings (Table 1). Here, we set the total number of

iterations at 20,000n, where n is the pedigree size. This option was

the most time consuming and only provided approximate results.

However, it can be used to analyze pedigrees with inbreeding

loops and to incorporate uncertainty in the estimated alternative

allele frequency, which is often not given as a set value, but as a

value that follows a Beta distribution [14].

Availability and Future Directions

FamSeq is a free software package under GNU license (GPL

v3), which can be downloaded from our website: http://

bioinformatics.mdanderson.org/main/FamSeq, or from Source-

Forge: http://sourceforge.net/projects/famseq/. According to

feedback from current users, we will add to the output files an

annotation of de novo mutations.

The present FamSeq provides the option of harnessing the

power of GPUs that are manufactured by NVIDIA (CUDA

parallel computing architecture). We plan to re-implement

FamSeq using the Open Computing Language (OpenCL) so that

FamSeq can be executed across heterogeneous platforms such as

CPUs, GPUs, digital signal processors (DSPs), field-programmable

gate arrays (FPGAs) and other processors.

Supporting Information

Software S1 FamSeq software package.
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