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Abstract
Background: Zonula occludens, also known as the tight junction, is a specialized cell-cell
interaction characterized by membrane "kisses" between epithelial cells. A cytoplasmic plaque of
~100 nm corresponding to a meshwork of densely packed proteins underlies the tight junction
membrane domain. Due to its enormous size and difficulties in obtaining a biochemically pure
fraction, the molecular composition of the tight junction remains largely unknown.

Results: A novel biochemical purification protocol has been developed to isolate tight junction
protein complexes from cultured human epithelial cells. After identification of proteins by mass
spectroscopy and fingerprint analysis, candidate proteins are scored and assessed individually. A
simple algorithm has been devised to incorporate transmembrane domains and protein
modification sites for scoring membrane proteins. Using this new scoring system, a total of 912
proteins have been identified. These 912 hits are analyzed using a bioinformatics approach to bin
the hits in 4 categories: configuration, molecular function, cellular function, and specialized process.
Prominent clusters of proteins related to the cytoskeleton, cell adhesion, and vesicular traffic have
been identified. Weaker clusters of proteins associated with cell growth, cell migration, translation,
and transcription are also found. However, the strongest clusters belong to synaptic proteins and
signaling molecules. Localization studies of key components of synaptic transmission have
confirmed the presence of both presynaptic and postsynaptic proteins at the tight junction domain.
To correlate proteomics data with structure, the tight junction has been examined using electron
microscopy. This has revealed many novel structures including end-on cytoskeletal attachments,
vesicles fusing/budding at the tight junction membrane domain, secreted substances encased
between the tight junction kisses, endocytosis of tight junction double membranes, satellite Golgi
apparatus and associated vesicular structures. A working model of the tight junction consisting of
multiple functions and sub-domains has been generated using the proteomics and structural data.

Conclusion: This study provides an unbiased proteomics and bioinformatics approach to elucidate
novel functions of the tight junction. The approach has revealed an unexpected cluster associating
with synaptic function. This surprising finding suggests that the tight junction may be a novel
epithelial synapse for cell-cell communication.
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Background
The tight junction is a specialized cell-cell interaction that
is found in almost all types of epithelial cells [1]. An elec-
tron dense plaque of ~100 nm [2] underlies the cytoplas-
mic domain of the tight junction. This sub-membrane
structure can be seen as a meshwork of densely packed
proteins in detergent-extracted cells [3]. Small vesicular
structures and pinocytosis have been seen to associate
with the tight junction, suggesting that it may be a region
of selective intercellular exchange [4,5]. The membrane
domain of the tight junction is subdivided into discreet
corralled sub-domains, which are physically demarcated
by polymerized membrane components. These sub-
domains are sometimes packed with membrane proteins,
which appear as intramembrane particles [6-10]. The
complexity of the tight junction is illustrated in Figure 1.

Despite being an enormous structure, the tight junction is
dynamically regulated. In normal epithelial turnover, the
tight junction moves down the lateral membranes of the
extruding cell while the cell moves up and out of the epi-
thelium [11,12]. During cell division, new tight junctions
are formed between the daughter cells and their neigh-
bours before cytokinesis is completed [13]. Tight junc-
tions can readily be opened during leukocyte
transmigration and reseal quickly to re-establish the per-
meability barrier [14]. The tensile nature of the tight junc-
tion can be seen during mechanical stretching where the
intramembrane strands move laterally to rearrange from a
compact network to an elongated network [15]. During
wound healing, tight junction proteins are rapidly re-
localized to a purse string structure that eventually closes
the wound [16,17]. Dynamic formation of the tight junc-
tion is observed in embryonic development where its pro-
teins re-position from a basal location to an apical
location [18]. Assembly of the tight junction is a complex
process which is influenced by multiple factors including
vesicular trafficking [19] and extracellular proteases
[20,21].

Beside the classical barrier function [22-27], the tight
junction is emerging as a regulator of cell growth and dif-
ferentiation [28]. Tight junction proteins ZONAB [29,30],
cingulin [31], and claudin-11/OSP [32], have been shown
to regulate cell proliferation. ZO-1 [33,34] and TGFbeta
type II receptor [35] are involved in epithelial-mesenchy-
mal transition. Claudin-1 has been shown to regulate
transformation and metastasis of colon cancer cells [36].
Occludin [37] and Claudin-6 [38] are involved in differ-
entiation of the gastric epithelium and epidermis, respec-

tively. Nevertheless, there are many processes associated
with the tight junction that have little or no molecular and
mechanistic explanations. These are (i) intercellular
mechanisms that allow cell-cell communication, (ii) sign-
aling pathways that lead to regulation of contact inhibi-
tion of cell growth and cell migration, (iii) molecular
events that lead to assembly of tight junction scaffold, (iv)
molecular events that lead to generation of tight junction
membrane microdomain, intramembraneous strands,
permeability barrier, and paracellular channels, (v) extra-
cellular adhesive interactions and their regulation, (vi)
intracellular cytoskeletal interactions and their regulation,
(vii) contribution to morphogenesis and tensile strength
of the epithelial sheet, (viii) maintenance of a steady-state
through regulation of protein synthesis and membrane
recycling, and (ix) generation of polarity during differen-
tiation and epithelialization. The current knowledge of
known tight junction proteins is far from explaining even
one of these complex processes.

Although progress has been made in identifying tight
junction proteins, the current count is about 50 proteins
[39], a number that is way below what is expected for a
complex macromolecular structure. Of these known tight
junction proteins, 21 belong to the claudin family [40]
and 12 belong to the PDZ domain-containing family.
Since different epithelial cells express different combina-
tions of the ~50 proteins, the actual number of known
tight junction protein in any given epithelial cell is much
lower than 50. A list of known tight junction proteins and
a general overview of the tight junction can be found on
the Tight Junction website [41].

The lack of a comprehensive molecular characterization
poses a major obstacle in the understanding of the func-
tions and processes that are associated with the tight junc-
tion. The reason for this deficit is the difficulty with
biochemical purification. There has been only one
attempt in over 20 years to purify the tight junction [42].
Using tedious ultrastructural assays, Stevenson and Good-
enough have managed to obtain a detergent-resistant frac-
tion from mouse liver that is enriched in tight junction
structures. This junctional fraction contains many
polypeptides but the identities of the polypeptides remain
largely unknown. The junctional fraction has been used as
an immunogen to generate a monoclonal antibody that
has led to the discovery of the first tight junction protein,
ZO-1. Subsequent identification of tight junction proteins
are largely by chance [43-47], or from co-immunoprecip-
itation experiments [48,49].

In this study, a novel protocol has been developed to
purify tight junction complexes from a pure source of cul-
tured cells, eliminating potential contamination from
other cell types. A model human intestinal epithelial cell
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Structure of the tight junctionFigure 1
Structure of the tight junction. (A) Epithelial cells when grown to confluent density form polarized intercellular junctions 
with tight junctions and gap junctions at the apical-most lateral position, followed by adherens junctions and desmosomes. (B) 
The tight junction consists of three major components: extracellular, membrane, and intracellular components. Integral mem-
brane proteins and lipids form the membrane component. Secreted and membrane tethered extracellular proteins form the 
extracellular component. Cytoplasmic scaffolds and associated proteins form the intracellular component.
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line T84 has been chosen for several important reasons.
First, the databases for human are the most complete. Sec-
ond, humans express, however small, a unique set of cel-
lular proteins not found in other animals. Third, T84 is an
immortal cell line and provides an unlimited source for
morphological and biochemical studies that is otherwise
unethical if obtained from human donors. Fourth, T84
has been used for many years in a vast number of physio-
logical studies and possess dynamic intercellular proper-
ties including movement of cells along the crypt-villus
axis, cell extrusion at the villus, as well as leukocyte trans-
migration.

Also in this study, a novel method has been developed to
score potential candidates obtained from mass spectros-
copy and fingerprint analysis. In addition, a simple algo-
rithm has been devised to incorporate transmembrane
domains, glycosylation sites and signal peptides to
increase the probability of scoring potential membrane
hits. Lastly, a thorough ultrastructural description has
been performed to comprehensively analyze the tight
junction of T84 cells. The results are cross-correlated with
bioinformatics data to generate a structure-function rela-
tionship of tight junction-associated processes.

Results
Biochemical purification of tight junction complexes
Since there is no established method to purify tight junc-
tion complexes from cultured cells, a protocol has been
established empirically. First, markers for the tight junc-
tion were tested in T84 cells by immunofluorescence
localization (Fig. 2A&B). Second, the antibodies were
assessed in their efficiency in isolation of known tight
junction components. Third, soluble proteins were
excluded at an early stage of the purification to avoid iden-
tification of non-junctional complexes. After testing many
cell disruption methods, buffers and detergents, separa-
tion procedures, and elution schemes, a reproducible bio-
chemical purification protocol was established (Fig. 3, see
Methods). To increase the chance of finding proteins
involved in synthesis, recycling, targeting, and degrada-
tion of tight junction components, T84 cells undergoing
dynamic junction assembly/disassembly were used. This
was achieved by trypsinizing and re-plating confluent
plates of cells at ~18 hours before utilization for biochem-
istry.

A hypotonic method was used to swell epithelial cells
while they were still attached to the dish. This procedure
helped to disrupt the rigid cytoskeletal framework of epi-
thelial cells and increased the efficiency of cell membrane
disruption. The method also allowed removal of most
buffers because the cells were still attached after swelling,
effectively avoiding dilution of cellular contents and pro-
teolysis. A high pH buffer was used to facilitate breaking

and resealing of membranes, thus increasing the forma-
tion of plasma membrane fragments.

After homogenization and differential centrifugation, a
100,000 × g membrane fraction enriched in tight junction
components was used for the final affinity purification
step using anti-PKC zeta antibodies. Anti-PKC zeta anti-
bodies were chosen for several important technical and
scientific reasons. First, PKC zeta strongly localized to the
tight junction of all 4 epithelial cells tested including
human intestinal T84 (Fig. 2B), C2bbe1, MDCKI, and
MDCKII cells. Second, three different antibodies (from
Sigma, Invitrogen, and Santa Cruz Biotech) showed simi-
lar tight junction staining. Third, PKC zeta has been
shown to associate with signaling molecules such as
PAR3, ASIP, and PP2A to promote formation of tight
junctions [50-53], suggesting that it may interact with a
variety of tight junction regulatory proteins including
vesicular trafficking and assembly complexes. Fourth, the
PKC zeta antibodies were anti-peptide antibodies that
allowed specific elution of immunoprecipitated proteins
with the peptide antigen. Fifth, known tight junction pro-
teins including ZO-1, ZO-2, and occludin could be co-
immunoprecipitated with the antibodies in the zwitteri-
onic detergent CHAPS, a detergent of choice for isolation
of large membrane protein complexes.

After immuno-isolation and elution, the tight junction
fraction was analyzed by (i) negative stain electron micro-
scopy, (ii) western blotting of proteins separated by SDS-
PAGE, (iii) silver staining of proteins separated by SDS-
PAGE, and (iv) peptide mass spectroscopy. The purified
tight junction fraction appeared specific because a parallel
control purification using pre-immune antibodies
showed a reasonably clean background (Fig. 4A–C). The
complexes were enriched in known tight junction pro-
teins as shown by western blots of occludin and claudin-
1 (Fig. 4B). Silver stain analysis showed a very complex
protein population with strong and weak bands ranging
from 20 kD to greater than 300 kD (Fig. 4A &Additional
file 1). Visualization of the complexes under electron
microscopy showed a heterogeneous population of
assemblies in various sizes (Fig. 4C & D). Higher magnifi-
cation showed globular units linked together forming lin-
ear arrays. Occasionally, a few larger globular assemblies
that appeared to consist of many subunits were also seen.
The overall appearance of the in vitro structures and the
dimensions of individual globular units closely resem-
bled the in vivo meshwork of densely packed proteins seen
by freeze-fracture technique [3].

Identification and scoring of hits
Protein bands from three separate purifications were sub-
mitted for in-gel digestion and peptide mass spectroscopy
(see Methods &Additional file 1 for details). Subse-
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Immunofluorescence staining of tight junction proteinsFigure 2
Immunofluorescence staining of tight junction proteins. (A) Protocol for visualization of tight junction proteins in mon-
olayer of cells grown on filter support (see Methods for details). (B) Confocal images of T84 cells scanned at 1 µm intervals. 
Occludin (green) and PKC zeta (red) are localized to the apical tight junction domain. Merged images show both proteins 
appearing and disappearing together in the same confocal planes.
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Schematic representation of the different stages of biochemical purification of tight junction complexesFigure 3
Schematic representation of the different stages of biochemical purification of tight junction complexes.
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Validation of specificity and enrichment of tight junction complexesFigure 4
Validation of specificity and enrichment of tight junction complexes. (A) Silver stained gel showing steps of purifica-
tion. Lane 1, whole cell lysate; lane 2, 30,000 × g supernatant; lane 3, 100,000 × g membrane; Lane 3', output 100,000 × g mem-
brane after immuno-isolation, Lane 3", output 100,000 × g membrane after control immuno-isolation; lane 4, immuno-isolated 
tight junction complexes; lane 5, control immuno-isolation. MW markers are 200, 116, 96, 66, 45, 38, 25, 14. (b) Western blots 
of tight junction markers occludin and claudin-1. Lanes 1–5, same as A. (C) Negative staining of complexes showing assemblies 
of a heterogeneous population of proteins in various sizes. Control immunopurification shows relatively clean background. 
Scale bars, 100 nm. (D) Higher magnification of tight junction complexes shows globular proteins linked together forming 
beaded-necklace arrays reminiscent of tight junction seen in vivo (see Results).
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quently, fingerprint analysis was performed using Protein
Prospector (UCSF) to identify candidate proteins. A novel
scoring system was developed to assess the candidates
individually. A probability for each candidate was calcu-
lated from a "score" and a "cutoff" which was used to
determine whether the protein could be counted as a bona
fide tight junction hit (Fig. 5A & B). The "score" for each
candidate was calculated from the number of peptides
matched, molecular mass of the protein, and the percent
coverage. The "cutoff" for each candidate was calculated
from the number of purifications used for fingerprint
analysis and based on a 10% coverage of a cellular protein
with modal molecular mass, 50 kD. Candidates with
probability greater than 1 were counted as bona fide "hits".
Candidates with probability between 1 and 0.85 that were
not soluble proteins were also counted as bona fide "hits".
For hits that fell below the initial scoring criteria, an
"adjusted molecular mass" was used for calculation of an
"adjusted score" for proteins that contain signal peptides,
transmembrane domains, lipid and carbohydrate modifi-
cations (Fig. 5A & B). Using this scoring system, a total of
912 hits were identified. A complete list of hits can be
found on the TJ Proteomics website [54].

Bioinformatic analysis of hits
To understand the hits from a cell biologist's point of
view, bioinformatics analysis was performed. After data
mining using Swiss UniProt and NCBI PubMed, each pro-
tein was binned in 4 categories: protein configuration,
molecular function, cellular function, and specialized
process (Fig. 6 &7, see Methods and Additional file 2 for
details). As expected, the majority of hits were known
integral (21%) and membrane associated proteins (37%).
There were also prominent representations of cytoskele-
ton-associated proteins (9%), secreted proteins (7%), and
proteins that form supra-molecular complexes (11%).

Analysis in the molecular function category revealed a
wide distribution ranging from structural proteins, recep-
tors, kinases, modulators, adaptors, catalysts, and tran-
scription factors (Fig. 6B). There were also strong
representations of transporters, messengers, channels,
transducers, peptidases, modifiers, and motors.

Analysis in the cellular function category revealed major
clusters in synaptic and signaling functions (Fig. 7A).
Prominent clusters in vesicular traffic, cytoskeleton, and
adhesion were also found. Analysis in the specialized
process category revealed major clusters in synaptic trans-
mission, morphogenesis, differentiation, and secretion
(Fig. 9B).

Confirmation of synaptic and non-synaptic hits at the tight 
junction
A more detailed analysis of the synaptic hits showed rep-
resentation of both presynaptic and postsynaptic compo-
nents (Fig. 8A), which covered a wide spectrum of
functions for synaptic transmission (Fig. 8B).

Hits in several of the major clusters were confirmed by
immunofluorescence in 4 different cells (T84 human
intestinal, C2bbe1 human intestinal, MDCK I and MDCK
II canine kidney). Each hit was stained at least twice in 4
different cells at 2 different time points (1 day and >7 days
post-confluent). Tight junction formation in each case
was monitored by measurement of transepithelial electri-
cal resistance before the cells were utilized for staining.
Representative immunofluorescence stainings of some of
the hits showed overlapping localization with the tight
junction marker occludin (Fig. 8C, 9, &10). Both presyn-
aptic and postsynaptic proteins were present at the tight
junction domain (Fig. 8C, 9, &10). The presynaptic com-
ponents included the P/Q-type calcium channel subunit
CPα1A (Fig. 8C), belonging to a major voltage-gated cal-
cium channel for neurotransmitter release in the brain
[55]. There were proteins involved in docking, fusion, and
recycling of synaptic membranes [56-58] including Hsc
70 (Fig. 9), synaptotagmin VII (Fig. 9), and rabaptin-5
(Fig. 10). A neurotransmitter transporter for re-uptake of
glutamate EAAT1 [59] was also found to localized
strongly at the tight junction (Fig. 10). The postsynaptic
components included channels responsible for initiation
of membrane depolarization and calcium influx [60] such
as AMPA glutamate receptor subunit GluR1 (Fig. 8C) and
the NMDA glutamate receptor zeta subunit (Fig. 9). There
were also metabotropic glutamate receptors, mGluR1 &
mGluR5 (Fig. 10), for downstream signaling to phosphol-
ipase C [61]. In addition, the voltage-gated potassium
channel Kv2.1 (Fig. 10), a regulator of membrane poten-
tial and neuronal excitability, was also present [62]. Scaf-
fold proteins including presynaptic piccolo as well as
postsynaptic GRIP and Homer [63-65] were also found at
the tight junction domain (Fig. 10).

Examination of temporal and spatial localization of these
synaptic proteins indicated that they were differentially
regulated in an epithelial sheet (unpublished observa-
tions). For example, NMDA receptor zeta subunit was tar-
geted early during junction formation but was found only
in a fraction of cells at a later stage. On the other hand,
GluR1 was targeted to the tight junction later than NMDA
receptors but presented homogeneously in every cell. The
expression of EAAT1 was early and homogeneous. On the
other hand, many proteins showed a punctate distribu-
tion, including Hsc70, EAAT1, synaptotagmin VII,
mGluR1 & mGluR5. Rabaptin-5 had a punctate distribu-
tion and only presented in a small fraction of the cells.
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Data collection and criteria for scoring of hitsFigure 5
Data collection and criteria for scoring of hits. (A) Filemaker prototype for data entry. (B) Equations and scoring criteria 
for generation of the tight junction proteomics database. #Peptides matched to hit is defined as the number of peptides found 
using fingerprint analysis that has been matched to a particular protein in the SwissProt UniProt database. %Coverage is 
defined as the percent of amino acid sequence of the particular protein that has been represented by the peptides found. #MS 
file is defined as the number of file(s) used in fingerprint analysis, which is the same as the number of times a particular band is 
analyzed by mass spectroscopy (see Supplementary Figure S2A). MW of hit in Daltons is defined as the molecular mass of the 
matched protein. The cutoff is calculated from an average peptide mass of 1000 Daltons and a 10% coverage of a cellular pro-
tein with modal molecular mass 50 kD, i.e. 5 peptides and 5000 Daltons per protein. The "revised MW" is based on the molec-
ular mass of the particular protein, corrected for the number of transmembrane, signal peptide, lipid modification, and sugar 
modification groups. A correction of 3500 Daltons is used for transmembrane and signal peptide regions based on the average 
number of amino acids in those sequences. A correction of 2000 Daltons is used for lipid and sugar modifications to cover two 
average peptide lengths when the modifications are at the ends of the peptides. Lipid and sugar modification sites are obtained 
from SwissProt UniProt database. The "adjusted cutoff" is calculated from the cutoff and the ratio of the "revised MW" to MW, 
adjusted once for the MW and a second time for the coverage.
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Categorization of hits based on their configurations and molecular functionsFigure 6
Categorization of hits based on their configurations and molecular functions. (A) Pie graph representing all 912 hits 
found in this study showing 21% integral membrane proteins, 37% membrane-associated proteins, 9% cytoskeleton-associated 
proteins, 8% secreted proteins. Each of the 912 hits has been counted once to generate this pie chart. (B) Bar graph represent-
ing all 912 hits found in this study showing a wide spectrum of molecular functions including prominent clusters of receptor 
and structural proteins, kinases, modulators and adaptors. Each protein can be counted more than once if it has functions fit-
ting more than one category.
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Categorization of hits based on their cellular functions and involvements in specialized processesFigure 7
Categorization of hits based on their cellular functions and involvements in specialized processes. (A) Bar graph 
representing all 912 hits found in this study showing major clusters in signaling and synaptic functions. Prominent clusters are 
also found in adhesion, cytoskeleton, and vesicular trafficking categories. Each protein can be counted more than once if it has 
functions fitting more than one category. (B) Bar graph representing all 912 hits found in this study showing major clusters in 
differentiation, morphogenesis, secretion, and synaptic transmission functions. Each protein can be counted more than once if 
it has functions fitting more than one category.
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Analysis of synaptic hitsFigure 8
Analysis of synaptic hits. (A) Categorization of 202 synaptic hits based on synaptic localizations. (B) Sub-categorization of 
202 synaptic hits based on synaptic functions. (C) Confocal images showing immunofluorescence localization of presynaptic P/
Q-type voltage-gated calcium channel subunit CPα1A and postsynaptic AMPA receptor subunit GluR1 to tight junctions of 
C2bbE1 intestinal epithelial cells (4 weeks post-confluent). Tight junction formation has been monitored by measurement of 
transepithelial electrical resistance before the cells are utilized for staining. Occludin is used as a marker for tight junction 
domain. Merged yellow images show overlapping of occludin and synaptic proteins.
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Immunofluorescence localization of NMDA zeta receptor subunit (NR1), Hsc70, and synaptotagmin VII to epithelial tight junc-tionsFigure 9
Immunofluorescence localization of NMDA zeta receptor subunit (NR1), Hsc70, and synaptotagmin VII to epi-
thelial tight junctions. (A) Confocal images showing immunofluorescence localization of postsynaptic NMDA receptor zeta 
subunit co-localized with occludin in MDCK I cells (one week post-confluent). (B) Confocal images showing immunofluores-
cence localization of presynaptic Hsc70 localized to tight junction domains of C2bbE1 cells (4 weeks post-confluent). (C) Con-
focal images showing immunofluorescence localization of presynaptic synaptotagmin VII localized to tight junction domains of 
C2bbE1 cells (4 weeks post-confluent). Note the punctate patterns of NMDA zeta, Hsc70, and synaptotagmin VII.
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Therefore, it is likely that different cells in the epithelium
express only a subset of the synaptic proteins depending
on their growth and differentiation states, their localiza-
tion with respect to each other, as well as the cellular activ-
ities of their neighbouring cells.

Immunofluorescence localizations of several non-synap-
tic proteins belonging to signaling function category also
showed co-localization with occludin (Fig. 10). These

included ERK3, a regulator of the cell-cycle [66,67] and
STAT2, a signaling and transcription regulator [68,69].

Enrichment of hits with occludin in heavy plasma 
membranes
In addition to localization studies, some of the hits were
also confirmed by biochemical co-enrichment with tight
junction proteins. Since quantitative measurement does
not tolerate usage of detergents, which may disrupt weak

Immunofluorescence localization of non-synaptic and synaptic hits to epithelial tight junctionsFigure 10
Immunofluorescence localization of non-synaptic and synaptic hits to epithelial tight junctions. Confocal images 
showing immunofluorescence localization of non-synaptic proteins (ERK3 and STAT2) as well as synaptic proteins (mGluR1, 
mGluR5, Kv2.1, homer, GRIP1, EAAT1, rabaptin-5, piccolo, and connexin 36) in C2bbE1 (4 weeks post-confluent) and MDCK 
I (one week post-confluent) cells.
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and transient interactions, a membrane fractionation pro-
tocol has been devised to prepare tight junction-contain-
ing membranes in the absence of detergent (see
Methods). Using confluent T84 cells as starting materials,
a preparation containing heavy plasma membrane sheets
enriched in occludin was used to assess co-enrichment of
several hits including ERK3, STAT2, homer, mGluR5, and
connexin 36 [see Additional file 3]. Some of the hits, such
as hsc70 and EAAT1, were not co-enriched with occludin
but were present in the heavy plasma membrane fraction.
A list of all the antibodies used for immunofluorescence
and western blot studies is provided [see Additional file
3].

Identification of ultra-structures within the tight junction 
domain
Although T84 cells provide an excellent source for bio-
chemical purification, the ultrastructures of their tight
junctions have not been comprehensively studied. Since
different epithelial cells have distinct tight junction char-
acteristics, it is imperative to obtain a detailed description
of T84 tight junctions for comparison with biochemical
results. The condition for growing T84 cells on porous fil-
ters has been standardized in this study to allow enough
time for: (i) epithelial proliferation and differentiation
into columnar cells with polarized morphologies includ-
ing apical microvilli and basally located nuclei, and (ii)
formation of functional tight junction barrier as assessed
by transepithelial electrical resistance. Also in this study, a
protocol has been optimized for electron microscopic
examination of cells that have been grown on porous sup-
ports (see Methods).

Examination of T84 tight junction domain shows many
interesting and novel features that have not been reported
in the literature before. One of the striking observations
was the apparent attachment of cytoskeletal bundles end-
on to the submembrane domain of the tight junction (Fig.
11A). The actin cytoskeleton has been seen to localize to
the tight junction in detergent extracted and myosin S1
decorated samples [3,70]. However, it is unclear whether
these are end-on interactions or side-parallel interactions.
The present images are the first examples of cytoskeletal
attachment showing end-on interactions in non-extracted
samples. These observations suggest that the tight junc-
tion of T84 cells contains proteins that allow end attach-
ment of cytoskeletal bundles, perhaps even machineries
to stimulate actin polymerization at specific membrane
sites. Another striking observation from these images was
that the tight junction membrane appeared to be pulled
into one cell by the cytoskeletal bundles from the adjacent
cell, suggesting that mechanical force was applied. Thus, a
force generating apparatus consisting of a motor may be
involved at these end-on cytoskeletal-tight junction inter-
action areas.

The second distinctive feature of T84 cells was the pres-
ence of intracellular membranes in various sizes and
shapes around the tight junction cytoplasmic domain
(Fig. 11B). Dense particles were prevalent in association
with these structures. Interestingly, the membrane kisses
of tight junctions frequently extended down the apical-lat-
eral membrane for over half a micron whenever there
were pools of associating intracellular membranes. These
observations suggest that some regions of T84 tight junc-
tions may be under continuous remodelling. Alterna-
tively, the intracellular membranes may be permanently
attached to the tight junction domains to regulate local
activities such as calcium release from intracellular stores.
Therefore, the tight junction is likely to contain linker pro-
teins that allow tethering of intracellular membranes as
well as machineries that regulate membrane dynamics.

The third striking feature of T84 cells was the presence of
satellite Golgi apparatus at the proximity of the tight junc-
tion (Fig. 12A). This observation suggests that the tight
junction may be regulated locally and dynamically
through satellite protein synthesis machineries. In addi-
tion, small vesicles with electron dense materials were
seen in transit within the tight junction membrane
domain (Fig. 12B), suggesting that the tight junction
might be an area of intercellular communication via tar-
geted local secretion. Thus, receptors and signaling mole-
cules are expected to localize at these tight junction
corralled domains where secretions occur. Proteins that
are involved in vesicular trafficking including docking and
fusion/budding of small vesicles are also expected to
localize within the tight junction membrane domain.

The fourth distinctive feature of T84 tight junction was the
presence of electron dense transient pockets within the
kisses of the tight junction (Fig. 12C & D). Serial sections
at 50 nm thickness showed that the pockets were fre-
quently less than 100 nm in diameter (Fig. 12C). These
extracellular materials may be the result of targeted vesic-
ular secretion, which can act as messengers in a juxtacrine
manner to regulate activities of neighbouring cells.

One of the most interesting features of T84 tight junction
was endocytosis of the double membranes (Fig. 13). The
endocytosis of tight junction appeared to be preceded by
invaginations/protrusions of the double membranes.
Subsequently, the invaginations were pinched at the neck
regions with associating electron dense materials. Finally,
the double membranes were seen completely broken off
from the surface plasma membrane and endocytosed into
one cell. Several previous studies have tried to address the
question of tight junction turnover [71-73]. Endocytosis
of GFP-claudin has been observed during intercellular
movement of EPH4 mammary epithelial cells [71]. Under
non-physiological treatment with latrunculin A, occludin
Page 15 of 30
(page number not for citation purposes)



Biology Direct 2006, 1:37 http://www.biology-direct.com/content/1/1/37

Page 16 of 30
(page number not for citation purposes)

Ultra-structural study of the tight junctionFigure 11
Ultra-structural study of the tight junction. (A) Filamentous cytoskeletal bundles (arrows) ending head on at the cyto-
plasmic domain of the tight junction. Arrows mark the characteristic tight junction membrane kisses. Scale bars, 100 nm. (B) 
Intracellular membranes, IM, of various shapes and sizes are located at the proximity of tight junction. Some intracellular mem-
branes are located very close to the plasma membrane and appeared docked by dense materials to the tight junction. 
Cytoskeletal filament bundles, CF, and numerous dense particles, Dp, are associated with these intracellular membranes. 
Arrows mark the characteristic tight junction membrane kisses. Scale bar, 100 nm.
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Membrane processes associated with the tight junctionFigure 12
Membrane processes associated with the tight junction. (A) Satellite Golgi apparati are located 0.5 µm away from tight 
junction membranes. Arrows mark the characteristic tight junction membrane kisses. Intracellular membranes, IM, and numer-
ous dense particles, Dp, are closely associating with the Golgi. Scale bar, 100 nm. (B) Small vesicles, v, with electron dense 
materials docked or fusing/budding within the tight junction membrane kisses. Arrows mark the characteristic tight junction 
membrane kisses. Scale bar, 100 nm. (C) Serial 50 nm sections showing discreet small pockets formed between tight junction 
kisses with electron dense material, D. Numbered arrows mark the respective tight junction kisses in consecutive sections. 
Scale bar, 100 nm. (D) Electron dense material, D, and membrane vesicles, MV, are found between the characteristic tight junc-
tion membrane kisses, arrows. Scale bar, 100 nm.
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has been found to be endocytosed via a caveolin-medi-
ated process [72]. On the other hand, a clathrin-mediated
process is used for endocytosis of tight junction proteins
during non-physiological removal of extracellular calcium
[73]. However, the present images are the first examples of
tight junction endocytosis in unperturbed confluent and
polarized cells. These observations indicate that the dou-
ble membranes are capable of creating membrane curva-
tures to form invaginations/protrusions between 2
adjacent cells. This specialized process is likely to require
a novel set of proteins that can facilitate the fusion and fis-
sion of double membranes, which is possibly unrelated to
the conventional clathrin-mediated or caveolin-mediated
processes.

Conceptualization of proteomics and bioinformatics 
results
Most of the strong clusters in both the cellular function
and specialized process categories could be correlated
with ultrastructures that were observed within the tight
junction domain (Fig. 14A). Synaptic function could be
correlated with the observations of small vesicle fusing/
budding within the tight junction kisses. Messengers and
signaling function could be correlated with extracellular
pockets and cytoplasmic plaque. Vesicular trafficking
function could be correlated with the arrays of intracellu-
lar membranes of different shapes and sizes. Translation
function could be correlated with satellite Golgi apparatus
and the associated dense particles.

Cytoskeletal function could be correlated with the
observed cytoskeletal bundles attached to tight junction
membranes. Adhesion function could be related to the
membrane kisses and the close proximity of the apposed
plasma membranes. In summary, the tight junction could
be divided into multiple sub-domains to carry out local-
ized functions and processes.

The complexity and inter-dependency of tight junction
functions and processes can be outlined in a working
model (Fig. 14B). Tight junction proteins could either par-
ticipate in the formation of the tight junction or help to
regulate the various cellular functions associated with it.
These processes are functionally linked to each other such
that perturbation in one process will affect the other proc-
esses.

Discussion
PART 1 – pros and cons of biochemistry, proteomics, & 
bioinformatics
Biochemical purification of membrane components
remains a challenge to cell biologist because the proce-
dure necessitates the use of detergents, which undoubt-
edly disrupt weak and transient protein complexes. This
study provides a starting point for future improvements

on fractionation and isolation procedures of membrane
protein complexes from pure source of cultured cells,
especially epithelial cells. The method also provides a
starting point for optimization of large-scale production
and purification of membrane proteins expressed in het-
erologous systems.

A total of 912 hits have been found in this study, a
number that is likely to increase with time as better detec-
tion methods are developed. Furthermore, different epi-
thelial cells are expected to have distinct tight junction
proteomes because different epithelial cells can have dif-
ferent junctional structures [6,74] as well as expression of
different tight junction proteins [75,76]. Out of the 912
hits, 20 are known tight junction components. There are
several reasons for a low number of known tight junction
proteins. First, many of the known proteins do not express
in the same cell at the same time. Second, the estimate of
50 tight junction proteins is largely overwhelmed by 21
claudins, which are differentially expressed. Third, pro-
teins with multiple transmembrane regions and post-
translational modifications are very hard to detect due to
the lack of identifiable peptides. For example, occludin
and claudin-1 are clearly enriched when assessed by west-
ern blots but do not make the cutoff during scoring even
though a few peptides have been found. The reasons are
likely related to the facts that occludin has 4 transmem-
brane regions with at least 5 phosphorylation sites and
claudins have 4 transmembrane regions with glycosyla-
tion and phosphorylation sites.

The tight junction preparation appeared to be relatively
pure because none of the 912 hits belonged to other cell-
cell junctions, such as E-cadherin of the adherens junction
or desmosomal cadherin of the desmosome. This could
be attributed to the unique and most important step of
the protocol, which was prolonged swelling of cells while
they were still attached on dish. The extreme distention of
the plasma membranes permitted efficient fragmentation
during subsequent homogenization. Another important
step of the protocol was the employment of zwitterionic
detergent CHAPS, which successfully solubilized tight
junction complexes from plasma membranes and at the
same time preserved interactions of tight junction compo-
nents. However, it was difficult to assess whether all of the
912 hits are bona fide tight junction proteins. Based on
previous studies, many known tight junction proteins
have dual localization. For example, ZO-1 [77], ZO-2
[78], huASH1 [79] and symplekin [45] are localized to
both the tight junction and the nucleus. Therefore, studies
performed in non-polarized or non-epithelial cells are not
helpful in determining whether the hits are bona fide tight
junction proteins. Eventually, confirmation will have to
be done one at a time using conventional methods such
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Endocytosis of the tight junctionFigure 13
Endocytosis of the tight junction. Protruding fingers, P, are formed between neighbouring cells at the tight junction. Pinch-
ing protrusions, PP, of double plasma membranes from opposing cells are frequently associated with necks, N, that contain 
electron dense materials. Endocytosed junctions, EJ, have double plasma membranes and broken necks, BN. Arrows mark the 
characteristic tight junction membrane kisses. Scale bar, 100 nm.
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Conceptualization of hits in the context of tight junction functionsFigure 14
Conceptualization of hits in the context of tight junction functions. (A) Binning cellular functions and specialized proc-
esses with tight junction structures. (B) Complexity and interdependency of different processes involved in the formation and 
function of the tight junction.
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as immunolocalization and exogenous expression of
tagged proteins in polarized epithelial cells.

PART 2 -compare and contrast tight junction and synapse
The presence of synaptic proteins was a very surprising
finding. However, there are noteworthy functional and
structural features shared between the tight junction and
the synapse. First, both structures contain satellite Golgi
apparatus for local protein synthesis, which is important
for plasticity of the synapse [80,81]. Second, both the
tight junction and the synapse contain intracellular mem-
branes of irregular shapes and sizes which are characteris-
tic features of nerve terminals during synaptogenesis [82].
Third, both structures are functional and structurally
linked to the cadherin and nectin-based adhesion systems
[83-88]. Fourth, both the tight junction and the synapse
are regulated by the Eph-ephrin cell-cell signaling system
[89-93]. Fifth, both structures are intimately linked to the
actin cytoskeleton in their formation as well as their nor-
mal function [94,95].

There are also many molecular similarities between the
tight junction and the synapse. First, both structures have
prominent representations of membrane associated guan-
ylate kinase MAGUK proteins at their submembrane scaf-
folds [39,96-98]. In addition, MUPP1, a multi-PDZ
MAGUK protein of the tight junction, can form synaptic
complexes and regulates synaptic plasticity at the gluta-
matergic terminal [99-101]. Second, MAGI-2, another
multi-PDZ containing protein of the tight junction [102],
can also form synaptic complexes with AMPA receptors
and its regulator stargazin in the brain [103]. Interest-
ingly, stargazin belongs to the claudin superfamily of tight
junction associated proteins and has been shown to medi-
ate cell-cell adhesion similar to claudins [104]. Third,
members of the exocyst complex sec6/8 that regulate ves-
icle delivery are localized to both the tight junction and
synaptic membranes [105-109]. Fourth, the small GTP-
binding protein rab3B that regulates calcium-dependent
exocytosis and synaptic vesicle release has also been
shown to present at the tight junction [110-112]. Fifth,
the VAMP-associated protein VAP-33 that functions in
neurotransmitter release also localized to the tight junc-
tion and binds occludin in epithelial cells [113,114].

Comparison of the postsynaptic proteome databases with
the current list of hits showed striking similarities in the
functional distribution of proteins, including 20% in sig-
naling, 10% channels and transporters, and 15% in adhe-
sion and cytoskeleton, and 10% in translation and
transcription [115,116]. In addition, the total number of
proteins identified in the synapse proteome is about
1100, which is comparable to the 912 hits found in this
study.

The finding that tight junctions of epithelial cells con-
tained a major cluster of synaptic proteins further sup-
ports the role of extra-neuronal synaptic proteins in non-
neuronal cells [117-119]. For example, synaptic vesicles
have been found in many non-neuronal cells including
pinealocytes [120], chromaffin [121,122] and pancreatic
beta cells [123]. Receptors for the excitatory neurotrans-
mitter glutamate have also been found in non-neuronal
cells including retinal pigment epithelial [124], urinary
bladder epithelial, prostate epithelial cells [125] as well as
osteoblasts [126-129]. Furthermore, glutamatergic
NMDA receptors have been shown to localize to cell-cell
contacts and participate in regulation of cell growth, dif-
ferentiation, and migration in keratinocytes [130,131].
Interestingly, studies of polarized trafficking in osteob-
lasts indicate localization of tight junction proteins occlu-
din and claudins at their intercellular contacts. These
intercellular contacts appear to be the major target sites of
vesicular traffic that involves synaptic components [132].
Indeed, osteoblasts have been shown to have targeted
vesicular release of glutamate [133] that acts on NMDA
receptors to regulate bone formation and resorption
[129,134]. Generation of action potential has also been
shown in several non-neuronal cells including pituitary
endocrine [135], adrenocortical [136], pancreatic beta
[137], osteoblastic [138], as well as chromaffin cells
[139]. Furthermore, regenerative action potentials have
been observed in chromaffin cells [140] and pigmented
ciliary body epithelial cells [141], suggesting that a synap-
tic mechanism of propagation similar to neurons may
present in these non-neuronal cells.

PART 3 – new frontiers for tight junction biology
Beside synaptic transmission, differentiation and mor-
phogenesis were also found as strong clusters in the spe-
cialized process category, suggesting that the tight
junction might regulate cellular activities of the entire epi-
thelial monolayer. Indeed, there were prominent clusters
of transcription and translation in the cellular function
category that might have roles in differentiation and mor-
phogenesis. Clusters in secretion could partake in signal-
ing events during differentiation; clusters in cytoskeleton
could partake in force generation during morphogenetic
cell movements.

Migration of intestinal epithelial cells is regulated by cal-
cium-activated RhoA activity, which depends on the
influx of extracellular calcium [142]. The influx of calcium
is, in turn, controlled by membrane potential dictated by
ion channels on the plasma membrane [143]. Indeed,
membrane depolarization has been shown to regulate cell
migration and epithelial wound healing [144]. This is
interesting because both voltage-gated calcium and volt-
age-gated potassium channels were among the 912 hits in
this study, suggesting that the tight junction may be able
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to regulate cell migration via these channels. Furthermore,
calcium can also come from intracellular stores through
inositol trisphosphate receptors. Indeed, inositol tri-
sphosphate receptors have been localized to tight junc-
tions of MDCK [145] and salivary acinar cells [146].
Therefore, it appears that the tight junction have multiple
mechanisms to increase local concentration of calcium
which may have roles in calcium-activated RhoA activity
and cell migration. Interestingly, during dynamic epithe-
lial cell movements, the local level of RhoA has been
found to be regulated by PKC zeta at cell protrusion sites
[147]. In addition, a PKC zeta-interacting protein, ZIP3,
has been shown to bind to ion channels, further support-
ing a potential molecular link between PKC zeta and
plasma membrane channels during cell movements
[148].

Conclusion
The striking similarities in molecular, structural, and func-
tional features between the tight junction and the synapse
suggest that epithelial cells may utilize the same proteins
that neurons use for synaptic transmission to perform a
similar function. However, there are also many molecular,
structural, and functional differences between epithelial
tight junctions and neuronal synapses that distinguish
these very different cell types. For example, it is not known
whether epithelial cells in the intestine can propagate
action potential from one cell to another. It is also not
known whether epithelial synaptic proteins function to
regulate cell-cell communication or other activities at the
plasma membrane. However, the structure within the
tight junction domain appears to be an active zone of
vesicular trafficking. In addition, the presence of claudins
and PMP22 at both the tight junction and myelin suggests
that these proteins may form an electrical insulation at the
tight junction similar to their function in myelin. An alter-
native name, zonapse, is proposed here to incorporate the
synaptic and zonula characteristics of the epithelial junc-
tion. The new nomenclature is meant to help distinguish
the diverse roles of tight junction proteins because some
of the proteins will have the classical "tight junction"
functions such as formation of permeability barrier and
maintenance of membrane polarity whereas other pro-
teins will have "zonaptic" functions such as cell-cell com-
munication via release of transmitters and propagation of
intercellular signals.

The presence of zonapse at the apical domain would
allow cells to communicate through secretion of transmit-
ters within the confined extracellular space delineated by
the tight junction membrane barrier, which could directly
stimulate or inhibit activity of neighbouring cells. Such
signals when propagated and amplified via the network of
tight junctions within a monolayer of epithelium may
spread one-dimensionally or two-dimensionally depend-

ing on the expression patterns of the pre-zonaptic and
post-zonaptic components within the epithelium. This
would definitely provide a novel way of looking at epithe-
lial sheets as two-dimensional organs, which is essential
for understanding complex processes such as epithelial
differentiation and morphogenesis where a group of cells
must behave in a coordinated manner. For example, intes-
tinal epithelia are turned over continuously and replen-
ished by proliferation of stem cells located close to the
base of crypts. Many different cell types are differentiated
from stem cells; some move up the crypt-villus axis to
become surface absorptive epithelial cells and some move
down to become secretory cells at the base of the crypt.
However, it is unclear how the progenitor cells coordinate
among themselves to differentiate and migrate along the
crypt-villus axis to their final destinations. One possibility
is that the cells are constantly communicating with each
other and the entire epithelium behaves as a unit. Thus,
analysis of zonaptic function may provide insight into
regulation of fundamental processes such as regeneration
and maintenance of the intestinal epithelium.

Methods
Cell culture
T84 (from ATTC) cells were maintained in DMEM/F-12
supplemented with 10% fetal bovine serum. MDCKI
(from Kai Simons, EMBL) cells were maintained in MEM
with Earle's salts supplemented with 10% fetal bovine
serum. C2bbE1 (from ATTC) cells were maintained in
DMEM supplemented with 10% fetal bovine serum, insu-
lin, transferrin, and selenium. Cells were grown in cell cul-
ture dishes or in Transwell-clear inserts (Costar, Corning).

Biochemistry for proteomic analysis
T84 cells (15 × 150 mm dishes) were plated at 100% con-
fluent density at 18 hours before utilization for biochem-
istry. On the first day of purification, cells were quickly
rinsed four times with ice cold 10 mM HEPES, pH 9.0, and
incubated in the same buffer for three hours at 4°C with-
out agitation. At the end of three hours, in the cold room,
the buffer was decanted quickly and gently to avoid
sloughing off of cells from the plate.

To maintain the highest protein concentration possible in
the initial cell lysate, the remaining buffer was removed as
much as possible by tilting the plate and using a pipet-
man. Cell were immediately scraped off the plates and
collected in a 50 ml conical tube chilled on ice. After all
the cells were collected from the plates, they were passed
10 times through a 22 G needle. Efficiency of homogeni-
zation was examined under phase-contrast of trypan blue
stained whole cell lysate. After homogenization, protease
inhibitors (Antipain, 50 µg/ml; Aprotinin, 2 µg/ml; cal-
pain inhibitor I, 17 µg/ml; calpain inhibitor II, 7 µg/ml; E-
64, 10 µg/ml; leupeptin, 1 µg/ml; Pefabloc SC, 1 mg/ml;
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pepstatin A, 1 µg/ml; Roche Molecular Biochemicals)
were added immediately with continuous vortex. Large
organelles, nuclei, and whole cells were removed by cen-
trifugation at 30,000 g for 10 minutes at 4°C. The super-
natant was centrifuged at 100,000 g for 60 minutes at 4°C
onto a saturated sucrose cushion. Membranes were col-
lected at the buffer and sucrose interface, washed with ice-
cold distilled water, and re-centrifuged at 100,000 g onto
a saturated sucrose cushion in a new tube. The washed
membranes were collected at the water/sucrose interface
and diluted in 10% CHAPS in distilled water (chilled to
4°C) to a final concentration of 2% CHAPS. The mem-
branes were then incubated with rabbit anti-PKC zeta
antiserum at 5 µL per 150 mm dish of cells (P0713,
Sigma) or control anti-serum for 18 hours at 4°C. Mem-
branes were centrifuged at 10,000 g for 30 min at 4°C to
remove precipitates. Cleared supernatants were incubated
with Protein A-Sepharose beads at 80 µL of beads per 150
mm dish of cells (Sigma) for 18 hours at 4°C. Beads were
washed 6 times with ice cold 2% CHAPS in distilled water.
PKC zeta immuno-complexes were eluted with a PKC zeta
peptide antigen (KGLYINPLLLSAEESV, Research Genetics,
Inc) in 100 mM NaCl, 15 mM HEPES, pH 7.5, for 60 min
at 25°C. A small fraction of the eluted immuno-complex
was used immediately for negative stain electron micros-
copy. The rest of the sample eluate was passed through a
25G Sepharose spin column to remove salts and subse-
quently concentrated about 5 fold using a speedvac. The
concentrated samples were either used immediately for
gel analysis or stored at -80°C.

Biochemistry for heavy plasma membranes
T84 cells (15 × 150 mm dishes) were grown to 100% con-
fluent density and maintained for one week post-conflu-
ency before utilization for biochemistry. Cell homogenate
was obtained using the same protocol as for proteomics
(see above). In addition to protease inhibitors (see
above), dithiothreitol (DTT) was added to a final concen-
tration of 10 mM to the cell homogenate. Large plasma
membrane sheets were obtained by centrifugation of cell
homogenate at 1,000 g for 15 minutes at 4°C. The pellet
was resuspended in 10 mM Hepes/10 mM DTT/pH8 with
a 20G needle. The resuspended membranes were loaded
onto a sucrose step gradient of 15%w/v–37%w/v–47%w/
v–60%w/v and centrifuged at 100,000 g for 5 hours at
4°C. Membranes at the interfaces of sucrose steps were
concentrated by re-centrifugation at 100,000 g onto a sat-
urated sucrose cushion in a new tube. The fraction at
47%w/v–60%w/v interface was found to enrich in tight
junction protein occludin.

SDS-PAGE, western blots, and silver stain
For SDS-PAGE, protein samples were solubilized to a final
concentration of 2% SDS/2 mM EDTA/20 mM Tris pH
6.8. The samples were boiled for 15 minutes and cooled

to room temperature before loading onto the gel. For sil-
ver staining of polypeptides, the eluted proteins were
resolved with 4–15% SDS-PAGE, fixed in 50% methanol
for 30 min, rinsed in 5% methanol, reduced in 10 mM
DTT in distilled water for 30 min, stained with 5% silver
nitrate in distilled water for 15 min, and developed imme-
diately in 100 mM sodium carbonate/0.375% formalde-
hyde. The stained gel was transferred quickly to a new
vessel containing 10% acetic acid to quench the silver
staining reaction. For western blot analysis, proteins were
transferred to nitrocellulose paper (0.45 µm, Biorad). The
blots were pre-incubated in 150 mM NaCl/20 mM HEPES
pH7/0.1% TX-100/5% non-fat dry milk for 2 hours before
probing with anti-occludin (33–1500, Zymed), anti-clau-
din-1 (71–7800, Zymed), anti-ERK3 (sc-156, Santa Cruz
Biotech), anti-STAT2 (sc-476, Santa Cruz Biotech), anti-
Homer (sc-15321, Santa Cruz Biotech), anti-Hsc70 (sc-
7298, Santa Cruz Biotech), anti-mGluR5 (Ab27190,
Abcam), anti-connexin 36 (sc-14904, Santa Cruz Bio-
tech), anti-EAAT1 (sc-15316, Santa Cruz Biotech). Blots
were washed 3 times and probed with HRP-conjugated
secondary antibodies (anti-mouse HRP #170–6516, Bio-
rad; anti-rabbit HRP 170–6515, Biorad; anti-goat HRP
#81–1620, Zymed). After washing 5 times, the blots were
developed using a ECL kit (#94–0144, Amersham) and
images were captured on film. All images were digitally
scanned and imported into Adobe Photoshop for figure
preparation. No digital manipulation has been done to
any images.

Mass spectroscopy, fingerprint analysis, and 
bioinformatics
For mass spectroscopy analysis, eluted proteins were solu-
bilized to a final concentration of 2% SDS/2 mM EDTA/
20 mM Tris pH 6.8. The samples were boiled for 15 min-
utes and cooled to room temperature before loading onto
the gel. Proteins were separated with 4–15% SDS-PAGE,
stained with 0.2% commassie blue/20% methanol/10%
acetic acid, de-stained with 20% methanol/10% acetic
acid, and stored in 10%acetic acid. All visible bands were
excised (supplement figure S2) and submitted for in-gel
tryptic digestion and MALDI-TOF mass spectroscopy anal-
ysis (Molecular Biology Core Facilities, Dana-Farber Can-
cer Institute). Peptide masses of the same identifiable
bands from three separate experiments were combined for
fingerprint analysis (supplement figure S2). All searches
were done using MS-fit peptide mass fingerprint tool from
the UCSF Mass Spectroscopy facility (Protein Prospector,
UCSF) on SwissProt database (2005.01.06) with mass tol-
erance of 50 ppm, maximum number of missed cleavage
of 1, and protein/peptide modifications (peptide N-termi-
nal Gln to pyroGlu, oxidation of M, and protein N-termi-
nus acetylation). All candidates were individually scored
and the final list of hits entered into a tight junction pro-
teomics database using a customized filemaker table (see
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Supplement figure S2). Parameters used for scoring and
bioinfomatic analysis were obtained from Swiss UniProt
and PubMed. Bioinformatics analysis was performed
using a customized filemaker table (supplement figure
S3).

Immunofluorescence
Cells were grown to confluence on Transwell-clear inserts
(Costar). C2bbE1 cells were 4 weeks post-confluent with
well-formed tight junctions and transepithelial electrical
resistance of 400-ohm cm square. MDCK I cells were 10
days post-confluent with well-formed tight junctions and
transepithelial electrical resistance of ~10,000-ohm cm
square. Before fixation, cells were chilled at 4 degree Cel-
sius for 3 hours. Cells/Transwells were rinsed five times in
150 mM NaCl and 10 mM HEPES, pH 7.5 at 4°C, and
immediately fixed in 100% methanol at -20°C for a min-
imum of 18 hours. Subsequently, the cells/Transwells
were rinsed briefly (30 seconds) in 100% Acetone at -
20°C and allowed to air-dry at room temperature. Cells/
Transwells were used immediately or stored at 4°C until
use. For immunofluorescence staining, cells/filters were
excised with a razor bald and the filters were transferred to
a multiwell plate. Cells/filters were rinsed twice with 150
mM NaCl and 10 mM HEPES, pH 7.5. Primary antibodies
were incubated overnight at room temperature in the
same buffer. Antibodies to P/Q-type calcium CP alpha 1A
(sc-28619), synaptotagmin VII (sc-15420), EAAT1 (sc-
15316), piccolo (sc-18569), connexin 36 (sc-14904),
GRIP1 (sc-28934), rabaptin-5 (sc-6162), Homer (sc-
15321), NMDA zeta (sc-1467), GluR1 (sc-13152), Hsc70
(sc-7298) were purchased from Santa Cruz Biotechnol-
ogy. Antibodies to metabotropic glutamate receptor 1
(G7794) were purchased from Sigma. Antibodies to
metabotropic glutamate receptor 5 (ab27190) were pur-
chased from Abcam. Antibodies to Kv2.1 (AB5186) were
purchased from Chemicon. An antibody to occludin (33–
1500) was purchased from Zymed. After primary antibod-
ies incubation, cells/filters were washed 3 times with 150
mM NaCl and 10 mM HEPES, pH 7.5 and incubated with
secondary antibodies (FITC and Cy3 conjugated second-
ary antibodies; anti-mouse AP160F, AP124F & AP192F,
anti-goat AP106C & AP180C, anti-rabbit AP156C &
AP132F from Chemicon) for 3 hours at room tempera-
ture, washed 6 times, and post-fixed with 100% ethanol at
-20°C. Cells/filters were air-dried at room temperature
and mounted immediately onto slide using ProLong Gold
anti-fade (Molecular Probe) and coverslips. Confocal
images were obtained from Biorad2000 attached to
Nikon E800 using Lasersharp imagine acquisition soft-
ware (Nikon Imaging Center, Harvard Medical School).
All images were imported into Adobe Photoshop for prep-
aration of figures. No digital manipulations have been
done to any images.

Negative stain transmission electron microscopy
Samples were layered onto formvar coated/carbon
coated/glow discharged copper grids and allowed to sit for
2–5 min. The grids were rinsed 3 times with water and
stained with 2% uranyl acetate for 1–3 min. After removal
of excess uranyl acetate solution, the grids were air-dried
and examined at 60 kV in JEOL-1200EX. Images acquired
on negatives were scanned and imported into Adobe Pho-
toshop for figure preparation.

Ultra-thin section transmission electron microscopy
T84 cells were plated at 15% confluent density and
allowed to grow to confluency for 10 days. Cells/Tran-
swells were chilled at 4°C for 6 hours before fixation with
3.75% glutaraldehyde, 150 mM NaCl, 20 mM HEPES, pH
7.5 at 4°C for 18 hours. The fixation reaction was
quenched with 50 mM glycine, 150 mM HEPES, pH 7.5
on ice for 1 hour. Cells/Transwells were rinsed in ice cold
distilled water for 3 times, secondary fixed with 1%
osmium tetroxide/1.5% potassium ferrocyanide for 2
hours on ice, rinsed 4 times in ice cold distilled water, en
bloc stained with freshly prepared and filtered 2% uranyl
acetate in distilled water on ice for 2 hours, and rinsed 4
times in ice cold distilled water. Cells/Transwells were
dehydrated with sequential 5-minute incubations in 50%,
75%, 95%, 100%, 100%, 100% ethanol at room temper-
ature. Epon-Araldite (EMbed 812) was added to Tran-
swells and allowed to polymerize at 60°C for 48 hours.
Ultrathin sections were cut using a Reichert Ultracut-S
microtome, layered onto carbon coated copper grids, and
stained with freshly made/filtered 2% lead citrate. Grids
were examined with Tecnai G2 Spirit BioTwin equipped
with an AMT 2 k CCD camera. Digital images acquired
were imported into Adobe Photoshop for figure prepara-
tion.
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Reviewer's comments
Reviewer's report 1
Gáspár Jékely, European Molecular Biology Laboratory

This paper presents a novel purification protocol and a
proteomic approach to identify several novel tight-junc-
tion components. Many of the identified proteins are syn-
aptic proteins hinting at an unexpected functional
similarity of the two structures. The paper also presents a
detailed EM study of tight junctions and describes inter-
esting morphological features.
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It is an impressive and important work but a more exten-
sive discussion and some reorganisation of figures and
text would greatly increase its value. In contrast to the
amount of new and interesting data the paper seems to be
quite concise, a more lengthy discussion of the results is
needed. We don't read anything about how the proteomic
analysis could help us to understand the unique features
of tight junctions listed in the introduction and the mor-
phologies described by EM. At least a tentative link should
be made between some of the novel components and
some of the described features/morphologies. For exam-
ple several endocytic proteins (e.g. rabaptin-5, Hsc70)
were identified and localised in punctate structures at the
tight junction that could be responsible for regulating
tight junction endocytosis. What may be the role of syn-
aptic signalling proteins in cell-cell communication?
What about adhesion, signalling and the links to the
cytoskeleton? What are the novel tight junction compo-
nents and what is there role in other cellular processes?

Authors's response: The manuscript has been substan-
tially re-written. The section showing EM pictures has
been re-written (Fig. 11, 12, 13) to discuss novel processes
within the tight junction found in this study. A table has
been added (Fig. 14A) to correlate EM structure and func-
tion. A comprehensive Introduction, and expanded Dis-
cussion & Conclusion sections have been included.

The quality of the preparations subjected to mass-spec
analysis is carefully checked by EM, yet one is left wonder-
ing about the purity of the preps and the specificity of the
hits. Although several hits were verified by immunostain-
ings, there is no general overview: we don't know how
many antibodies were tried and how many gave positive
or negative results. Was it a randomised test or only TM
proteins were checked? One could imagine for example
that some cytoskeletal components that are otherwise not
enriched at the tight junction co-purify through links to
actin cables that bind to tight junction components (e.g.
cadherin).

Authors's response: A paragraph has been added to the
Introduction to discuss previous biochemical methods
and identification of tight junction proteins. A paragraph
has been added to the Discussion to address the question
of purity and specificity. A supplementary figure S1 has
been added to show co-enrichment of a few of the new
proteins with the tight junction marker occludin. A table
has been added (Fig. 14A) to show confirmation of hits
other than synaptic proteins. A list of antibodies in this
study has been added as a supplementary figure.

Reviewer's report #2
Etienne Joly, Equipe de Neuro-Immuno-Génétique
Moléculaire, IPBS, UMR CNRS 5089

This very interesting paper is likely to represent a very sig-
nificant advance in understanding the biology of tight
junctions (TJ). The initial step is the development of a
novel protocol to purify tight junctions from a human epi-
thelial cell in culture. This is then used to undertake a pro-
teomic characterisation of the TJ components, yielding an
impressive list of 912 hits. Quite remarkably, bio-infor-
matic analyses of the proteomic results reveals that there
is a very significant overlap between the protein constitut-
ing TJ and those previously identified as constituent of
neuronal synapses. This raises the intriguing possibility
that TJ and synapses may share certain similar functions.

Reviewer's report 3
Neil Smalheiser, University of Illinois at Chicago

Overview
This is an interesting and significant paper that presents,
for the first time, a method of purifying tight junction
complexes. The tight junctions are unexpectedly enriched
in synaptic and signaling proteins, suggesting that they
may be involved in cell-cell signaling processes. The paper
needs revising because it gives too much room to irrele-
vant or redundant findings; at the same time, it gives too
little room to discussing critical technical details, as well
as the broader context and physiologic implications.

Authors's response: The manuscript has been substan-
tially re-written. The number of figures has been reduced
to 14 (plus 3 supplementary figures). A comprehensive
Introduction, and expanded Discussion & Conclusion
sections have been included.

Results and discussion
I don't see the relevance of showing EM pictures of cul-
tured T84 cells (fig. 2, 3, 4, 5, 6, 7, 8) – how is this novel
or how does it support the data in the paper?

Authors's response: The section showing EM pictures has
been re-written (Fig. 11, 12, 13) to discuss novel processes
within the tight junction found in this study. A table has
been added (Fig. 14A) to correlate structure with function.

Are there any previously described methods for purifying
tight junction complexes at all? If so, they should be cited
and discussed.

Authors's response: Yes, one study in over 20 years. A par-
agraph has been added to the Introduction to discuss pre-
vious biochemical methods and identification of tight
junction proteins.

The immuno-purification protocol is not precisely
described. What was the control antibody? Pre-immune
serum? 
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Authors's response: Control serum was discussed in the
Methods section in the previous manuscript. 

The best control would be an antibody that brings down
a different cellular compartment, i.e. that is positively
enriched in some proteins but not those found in the tight
junctions. 

Authors's response: Unless one is interested in compara-
tive proteomics, comparison of the tight junction fraction
with other cellular compartments does not speak to
whether a particular protein is important in tight junction
function. For example, Protein X could have function at
the tight junction as well as other cellular compartments.
A thorough discussion of the specificity and purity of the
tight junction preparation has been included in the Dis-
cussion. 

Figure 11 shows discrepancies (missing lanes that are
described in the legend but not found in the figure). 

Authors's response: Fixed.

The negative staining of isolated tight junction complexes
could be shown in a single figure with a few panels, fewer
than is currently shown (fig 11, 12, 13). Also, it is not very
persuasive simply to show photos with no quantification.

Authors's response: Illustrations have been reconfigured
and condensed.

The methods section is lacking in details such as antibody
concentrations, and there is no verification that the anti-
bodies used for immunofluorescence are actually specific
for the desired proteins (e.g. by doing Western blotting).
What, if anything, was used as a blocking solution during
immunostaining? 

Authors's response: Details added to the Methods section.
A list of antibodies and their concentrations used in this
study has been added as a supplementary figure. 

It is important to show not only that occludin and PKC
zeta are enriched in isolated tight junctions, but that some
or all of the synaptic proteins are enriched biochemically
in this fraction as well by Western blotting. 

Authors's response: A supplementary figure S1 has been
added to show co-enrichment of a few of the new proteins
with the tight junction marker occludin. 

Conversely, it is NOT important to show all of the primary
photos taken for each cell line, for each antibody, in fig.
19-28, unless specific points are being made (e.g. punctu-
ate staining patterns). 

Authors's response: Illustrations have been reconfigured
and condensed.

Are any of the synaptic proteins localized to tight junc-
tions in epithelial cells in vivo? Or is something that only
occurs in cultured cells?

Authors's response: This is a very good and important
question that I do not have an answer at this moment. I
have tried to stain formaldehyde fixed human colon sec-
tions but none of the antibodies worked, not even the
occludin antibodies. I think the tight junction area is very
compact and inaccessible. For tissue culture cells, I had to
fix the cells overnight in methanol and expose the anti-
gens/epitopes by acetone denaturation before I can get the
stainings to work. I believe one may have to express
tagged proteins in transgenic animals or spend the time
optimizing frozen sections for immunofluorescence.
Alternatively, I am planning to try immunogold cryoEM,
which provides higher resolution as well as better preser-
vation of antigenicity.

The poor yield of known tight junction components in the
MS profile may be due, in part, to the fact that the author
first separated individual bands on a gel before subjecting
them to proteolysis. If the entire junction were to be pro-
teolyzed without any gel separation first, the yield might
be much better. There no details given about how the pro-
teins were separated on the gel – were they dissolved in
SDS? (What concentration? Boiled? Under reducing con-
ditions?)

Authors's response: Details added to the Methods section.

The author should discuss whether anything is already
known about the function of these "synaptic proteins" in
T84 or other epithelial cells. Is it surprising that they are
expressed in epithelial cells per se, or are they well known
to be expressed there? Have any epithelial cells been
shown to exhibit regulated glutamate release? Have the
glutamate receptors expressed on epithelial cells been
shown to mediate biochemical responses that participate
in any known physiologic process? I found at least two
previous reports of various non-neuronal cell types that
have functional synaptic vesicles and/or regulated gluta-
mate release; these are not epithelial cell types but may be
worth discussing in terms of the broader context that syn-
aptic proteins have signaling roles in many cell types:

Authors's response: These are helpful suggestions. A new
Discussion section has been added.

Rastaldi MP, Armelloni S, Berra S, Calvaresi N, Corbelli A,
Giardino LA, Li M, Wang GQ, Fornasieri A, Villa A, Heik-
kila E, Soliymani R, Boucherot A, Cohen CD, Kretzler M,
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Nitsche A, Ripamonti M, Malgaroli A, Pesaresi M, Forloni
GL, Schlondorff D, Holthofer H, D'Amico G. Glomerular
podocytes contain neuron-like functional synaptic vesi-
cles. FASEB J. 2006 May;20(7):976–8.

Bhangu PS, Genever PG, Spencer GJ, Grewal TS, Skerry
TM. Evidence for targeted vesicular glutamate exocytosis
in osteoblasts. Bone. 2001 Jul;29(1):16–23.

Conclusion
There should be a separate section of Discussion, and the
Conclusions section should look ahead to discuss possi-
ble future experiments or investigations. The author
should not refrain from making an explicit model of how
synaptic proteins at tight junctions might work – e.g.,
glutamate is released from one cell in response to some
dynamic event and acts upon a neighboring cell via gluta-
mate receptors localized (and presumably amplified in
their actions) to tight junctions. How could this be tested
further? What might this contribute to intestinal epithe-
lium function? What are the implications for physiology,
health or disease?

Authors's response: These are helpful suggestions. A new
Conclusion section has been added.
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Identification and scoring of hits. (A) Bands from 3 separate purifications 
were used for mass spectroscopy (see Methods for details). (B) Peptides 
from the same bands were pooled for fingerprint analysis.
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Filemaker prototype for bioinformatic analysis
Click here for file
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Additional File 3
Co-enrichment of hits with occludin. (A) Western blots of whole cell, WC, 
and heavy plasma membrane, HPM, showing co-enrichment of ERK3, 
STAT2, Homer, Connexin 36, and mGluR5 with occludin. EAAT1 and 
Hsc70 are also present in the heavy plasma fraction (see Methods for 
details). (B) Antibodies used in this study.
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