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ABSTRACT Sequence data are expected to increase the reliability of genomic prediction by containing
causative mutations directly, especially in cases where low linkage disequilibrium between markers and
causative mutations limits prediction reliability, such as across-breed prediction in dairy cattle. In practice,
the causative mutations are unknown, and prediction with only variants in perfect linkage disequilibrium
with the causative mutations is not realistic, leading to a reduced reliability compared to knowing the
causative variants. Our objective was to use sequence data to investigate the potential benefits of sequence
data for the prediction of genomic relationships, and consequently reliability of genomic breeding values.
We used sequence data from five dairy cattle breeds, and a larger number of imputed sequences for two of
the five breeds. We focused on the influence of linkage disequilibrium between markers and causative
mutations, and assumed that a fraction of the causative mutations was shared across breeds and had the
same effect across breeds. By comparing the loss in reliability of different scenarios, varying the distance
between markers and causative mutations, using either all genome wide markers from commercial SNP
chips, or only the markers closest to the causative mutations, we demonstrate the importance of using only
variants very close to the causative mutations, especially for across-breed prediction. Rare variants improved
prediction only if they were very close to rare causative mutations, and all causative mutations were rare.
Our results show that sequence data can potentially improve genomic prediction, but careful selection of
markers is essential.
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For accurate genomic prediction, it is important to have a large
reference population (Goddard and Hayes 2009). Therefore, com-
bining reference populations of several breeds could improve across-
breed prediction. The level of linkage disequilibrium (LD) across

breeds is, however, substantially lower than within breed. Therefore,
with the current 50K and high-density (HD) single nucleotide poly-
morphism (SNP) chips, combining reference populations results in
increased prediction accuracy only for closely related breeds, such as
different Nordic Red populations (Brøndum et al. 2011), while, for
more distant breeds, such as Holstein and Jersey, the accuracy of
across-breed prediction is low (Hayes et al. 2009; Erbe et al. 2012;
Lund et al. 2014). Increasing the SNP density from 50K to HD was
expected to increase prediction accuracy across breeds, because, at
the marker density of the HD chip, LD between causative mutations
and markers should be sufficient for across-breed prediction (de
Roos et al. 2008). In practice, however, only small or no differences
between prediction accuracies using the 50K or HD were found
(Erbe et al. 2012; Hozé et al. 2014). By containing causative muta-
tions as well as variants in very high LD with the causative mutations,
sequence data could potentially make accurate across-breed predic-
tion feasible. The increasing number of whole-genome sequences
available will enable the use of sequence data in breeding programs.
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With the 1000 Bull Genomes Project (Daetwyler et al. 2014), a large
reference population of sequences is available for imputation of
SNP chip genotypes to whole-genome sequence, which can subse-
quently be used for genome-wide association studies and genomic
prediction.

While most variants in the sequence have a low minor allele
frequency (MAF), the variants on the SNP chips are selected to have
high MAF (Matukumalli et al. 2009). Differences in MAF between
markers and causativemutations would limit themaximumLD achiev-
able between markers and causative mutations. The abundance of low
MAF variants in the sequence data could suggest that at least some of
the causative mutations have lowMAF. Using sequence data to predict
these variants could therefore increase prediction accuracy, either by
inclusion of the causative variants, or by achieving a stronger LD with
low-MAF sequence variants near the causative mutations and the caus-
ative mutations themselves. Druet et al. (2014) found that using se-
quence data for genomic prediction leads to a higher prediction
accuracy for rare causative mutations.

Sequence data does not, however, necessarily contain all causative
variants for various reasons, including filtering and imputation errors.
Furthermore, even if all causativevariantswerepresent, andevenifa trait
is very polygenic, the number of variants directly affecting that trait is
only a very small proportion of all variants present in the sequence.
Therefore, themajorityof sequencevariantsused forgenomicprediction
will be, at most, in imperfect LD with the causative mutations. As a
consequence, the prediction reliability will be lower than the prediction
reliability if only causative mutations were used. The reduction in
prediction reliability as a consequence of imperfect LD between caus-
ative mutations and markers can be quantified by the regression of
genomic relationships at markers used for prediction on genomic
relationships at causative mutations (de los Campos et al. 2013). We
used this regression to investigate the potential benefits of using se-
quence data for within- and across-breed prediction in five French and
Danish dairy cattle breeds.

In this paper, we focus on the influence on across-breed prediction
of LD between causative mutations and markers. While LD is an
important factor, the accuracy of across-breed prediction is also
influenced by other factors. Only part of the causative mutations
segregating within breed are segregating across breeds (Raven et al.
2014), and causative mutations that do segregate across breeds can
have different effects in different breeds, due to, e.g., epistasis and
dominance. Therefore, results in this paper should be interpreted as
maximum gains that could be achieved by using sequence variants
near the causative mutations.

The objective of this study was to use actual sequence data from
representative individuals of different breeds to investigate the po-
tential benefits of sequence data for prediction of genomic relation-
ships compared to the use of 50K and HD data, focusing on the loss in
prediction reliability due to theuse ofmarkers in imperfect LDwith the
causative mutations. Because the advantages of using sequence data
are expected to be larger in populations with low LD than in pop-
ulations with high LD, within- and across-breed predictions were
compared in several scenarios.Wesimulated several scenarios, varying
the number of causative mutations, and the MAF of the causative
mutations. Different sets of markers were subsequently used, with
sequence variants on varying distances from the causative mutations,
varying theMAFof themarkers, or variants from the 50KandHDSNP
chips. First, we validated the formula proposed by de los Campos et al.
(2013) to estimate the loss in prediction reliability for across-breed
prediction. Subsequently, we applied this formula to a wider range of
scenarios and breeds.

MATERIALS AND METHODS
Two datasets were used for different parts of the study. Both datasets
consisted of sequence data on chromosome 1. The first set (SEQ,
Supplemental Material, File S1) contained nonimputed sequence data
of 122 Holstein (HOL), 27 Jersey (JER), 28 Montbéliarde (MON),
23 Normande (NOR), and 45 Danish Red (RDC) bulls. These bulls
were the first bulls to be sequenced in France and Denmark, and were
major ancestors contributing to each breed. While all JER and RDC
bulls were Danish bulls, and all MON and NOR were French, HOL
bulls originated from different populations. There were 41 French,
22 Danish, 22 American, eight Canadian, eight German, three Italian,
two Swedish, and one Finnish HOL bulls. Variant calling was done
using GATK (DePristo et al. 2011). There were 1,475,541 biallelic SNP
and indels on chromosome (BTA) 1 segregating in at least one of the
five breeds. Causativemutations were simulated by randomly sampling
100 or 250 variants, either out of all variants (C100 andC250) or out of all
variants with a MAF below 0.10 (C100LM and C250LM).

The second set (IMP, File S2) consisted of imputed sequences of
1230 JER and 961 RDC bulls. Imputation was done in two steps, using
IMPUTE2 (Howie et al. 2012), first from 50K to HD, and subsequently
to full sequence. More details on the imputation can be found in
Höglund et al. (2014). After filtering out variants with an IMPUTE2
INFO score below 0.9, there were 1,150,905 variants segregating on
chromosome 1. Themajority of these variants were segregating in both
JER and RDC, while this was not the case for the variants in the SEQ
data. To make the dataset comparable, only a subset of the data were
used for analyses, containing 247,141 variants for which the percent-
ages of variants segregating in both JER and RDC, in JER but not in
RDC, in RDC but not in JER, and neither in JER nor in RDC, were
equal to those in SEQ. For the individuals in IMP, phenotypes were
simulated as following. First, 50, 100, or 250 variants were randomly
selected from all 247,141 variants as causative mutations for scenarios
C50, C100, and C250, respectively. The effects were then drawn from a
normal distribution  � Nð0; 1Þ. Subsequently, true breeding values
(TBV) were obtained by summing the effects of the causative muta-
tions, and a random error was added to the TBV to obtain a phenotype,
so that the heritability = 0.8.

For the SEQ dataset, markers were selected according to one of the
following scenarios. In scenarios P50K and PHD, markers were either
all variants on BTA1 present on the Illumina BovineSNP50 Beadchip,
or on the Illumina BovineHD Beadchip. In scenarios P50KC and
PHDC, only the closest variant of each causative mutation present
on the 50K or the HD SNP chip were selected. In the remaining
16 scenarios, selected markers were all markers present in two 1-kb
intervals on both sides of each causative mutation. The distance be-
tween the beginning of the intervals and the causative mutations (d)
was 1 base, 1 kb, 5 kb, 10 kb, 25 kb, or 100 kb, and the intervals
contained either all variants (PSEQd), or only the variants with a

n Table 1 Subsets of variants

Variants nVariants Overall HOL JER MON NOR RDC

SEQ 1,475,541 0.12 0.11 0.10 0.11 0.11 0.12
IMP 247,141 0.10 — 0.09 — — 0.10
50K 2863 0.26 0.25 0.20 0.23 0.24 0.25
HD 44,540 0.27 0.25 0.20 0.23 0.24 0.25
MAF # 0.1 907,484 0.03 0.02 0.04 0.03 0.03 0.03
MAF $ 0.1 568,057 0.27 0.26 0.21 0.23 0.23 0.26

Number of variants (nVariants) and corresponding average minor allele frequen-
cies (MAF) according to variant classes. HOL, Holstein; JER, Jersey; MON, Mon-
tbéliarde; NOR, Normande; RDC, Danish Red.
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MAF $ 0.10 (PSEQdHM) present in the intervals. Each of these sce-
narios was repeated 50 times. For the IMP scenarios, the analysis was
restricted to the P50K, PHD, P50KC, PHDC, PSEQ1kb, PSEQ10kb, and
PSEQ25kb scenarios, with 20 repeats per scenario. An overview of
the subsets of variants used from which causal loci and markers were
selected is given in Table 1. Figure 1 gives an overview of all different
scenarios.

For each scenario, two genomic relationship matrices (G) were
constructed, using either the causal loci or the markers following
VanRaden (2008):

G ¼ ZZ’

2
X

pjð12 pjÞ
;

where G is the genomic relationship matrix at causative mutations or
markers, Z is a standardized genotype matrix with the causative mu-
tations or markers, and pj the allele frequency of the alternative allele
for locus j. For individual i and locus j, zij ¼ nij 2 2pj, with nij equal to
the number of alternative alleles (0, 1, or 2). Allele frequencies were
computed from genotypes of all individuals used to construct the
genomic relationship matrix.

The genomic relationship matrices were constructed for all individ-
uals in each breed, and for each pairwise combination of breeds. Only
variants segregating in at least one of the breeds were used to construct
the genomic relationship matrices. Subsequently, the loss in prediction
reliability resulting from the use of markers rather than the causal loci
was quantified following de los Campos et al. (2013):

�R2
# R2 � RF;

where the difference in reliability between prediction usingmarkers in
imperfect LD with the causative mutations ( �R2), and the prediction

(R2) if markers were in perfect LD with the causative mutations, is
quantified by a reliability factor (RF). RF was either obtained (RFO) by
estimating �R2 and R2, or predicted as RFP = 12 ð12bÞ2. The b in the
RFP is the regression coefficient of the genomic relationships at
markers on the genomic relationship markers at the causative
mutations:

�Gn þ 1;i ¼ bn þ 1Gn þ 1;i þ jn þ 1;i;   ði¼1; . . . ;   nÞ;

where �Gn þ 1;i and Gn þ 1;i are the genomic relationships between in-
dividual n+1 and individuals 1 to n at the markers and the causative
mutations, respectively, and jn þ 1;i a random residual. First, b was
computed for each individual. Subsequently, RFP was computed
within replicate, using the b averaged across individuals. Finally,
RFP was averaged across replicates.

To estimate RFO, the IMP dataset was split into training and vali-
dation sets, using either JER to predict genomically estimated breeding
values (GEBVs) of RDC, or prediction of JER GEBVs using phenotypic
information of RDC. GEBVs and variance components were esti-
mated using Average Information Restricted Maximum Likelihood
(AI-REML) (Jensen et al. 1997) as implemented in DMU (Madsen
and Jensen 2013):

y ¼ 1mþ Zgþ e;

where m was the overall mean, Z an incidence matrix linking
phenotypes with the vector that contains the additive genetic ef-
fects g � Nð0;G � s2

gÞ, and e a vector with random residuals
e � Nð0;s2

e Þ. The reliability was estimated as the squared correlation
between GEBVs and TBVs. The genomic heritability was computed

as
s2
g

s2
g þ s2

e
.

Figure 1 Description of the different scenarios. Scenarios varied according to the number (c) and minor allele frequency (MAF) of the causative
mutations, and to the nature (from sequence or from chip), MAF, and distance to causative mutations of prediction variants.
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Data availability
The authors state that all data necessary for confirming the conclusions
presented in the article are represented fully within the article.

RESULTS

Genomic relationships within and across breeds
Figure 2 shows the genomic relationships using HD markers within
and across breeds. HOL bulls originated from several countries, and
within breed relationships were smaller than in the other breeds. Ge-
nomic relationships between other breeds were larger than with HOL,
except for some of the RDC bulls. Within RDC, some of the individuals
were highly related, while others were less related, which confirms the
admixed nature of the breed.

Variants segregating across breeds
The percentage of simulated causative mutations that were segregating
in each breed, and shared between each combination of two breeds, is

shown in Table 2. The largest number of causative mutations segre-
gated within HOL and RDC, 78% and 77%, respectively, when causa-
tive mutations were selected out of all variants, and 64% and 62% when
causative mutations were selected out of all variants with a MAF below
0.10. The smallest percentages were observed in JER, with 54% and 32%
without and with restriction on MAF, respectively. HOL and RDC
shared the largest number of causative mutations, and, for each breed,
the percentage of shared causative mutations was highest with HOL
and RDC and lowest with JER.

Reliabilities for different sets of markers
Table 3 shows the reliabilities, heritabilities, and RF estimated by cross-
validation, and compares the observed RF (RFO) with the RF predicted
by the formula (RFP). Reliabilities were very high for the causative
mutations, ranging from 0.73 for prediction of RDC with a JER refer-
ence population with 250 causative mutations, to 0.95 for prediction of
JER with a RDC reference population with 50 causative mutations.
Reliabilities were substantially lower for all sets of markers. The highest

Figure 2 Genomic relationships within and across breed, using HD markers. HOL, Holstein; JER, Jersey; MON, Montbéliarde; NOR, Normande;
RDC, Danish Red.
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reliabilities using markers were obtained with PSEQ1kb, and decreased
when the distance between markers and causative mutations increased.
Reliabilities equaled 0.38, 0.23, and 0.09 for PSEQ1kb, PSEQ10kb, and
PSEQ25kb, respectively, when averaged across breeds and number of
causative mutations. Reliabilities were lowest for P50K (0.06) and PHD

(0.10), averaged across breeds and number of causative mutations.
Using only the markers closest to the causative mutations rather than
all 50K or HD markers increased reliability, especially for PHDC, with
reliabilities of 0.11 and 0.30 for P50KC and PHDC, respectively.

Heritabilities for different sets of markers
Estimated heritabilities were very close to the true heritability when
prediction was based on the causative mutations. Averaged across
scenarios with different number of causative mutations and breeds,
the heritability was estimated to be 0.79. Using different sets of markers,
the highest heritabilities were obtained with P50K and PHD. Here, her-
itabilities were 0.77 averaged across scenarios with different numbers of
causative mutations and 0.78 averaged over breeds. When sequence
intervals near the causative mutations were used for prediction, heri-
tabilities decreased when the distance between causative mutations and
prediction intervals (d) increased. Heritabilities ranged from 0.61 for
prediction of JER from RDC for scenario C50PSEQ25kb to 0.81 for pre-
diction of RDC from JER for scenario C250PSEQ1kb. The lowest herita-
bilities were obtained for P50KC and PHDC, with 0.56 averaged across
scenarios with different numbers of causativemutations, and 0.64when
averaged over breeds.

Observed and predicted loss in reliability
Averaged across sets of markers and breeds, the difference between
observed and predicted RF equaled 0.06, 0.06, and 0.09 for the
scenarios with 50, 100, and 250 causative mutations, respectively.
Figure 3 show the reliability, RFO and RFP as a function of the num-
ber of causative mutations. While RFP increased when the number of
causative mutations increased, the reliability and PFO decreased.
Averaged across scenarios and breeds, RFP equaled 0.19, 0.21, and 0.26
for C50, C100, and C250, respectively, compared to an RFO of 0.23, 0.23,
and 0.17. Consequently, the loss in reliability was overestimated with
50 and 100 causative mutations, but underestimated with 250 causative
mutations. With 50 causative mutations, the predicted RF minus the
observed RF (RFP-O) ranged from –0.13 with PHD to 0.03 with P50KC
for prediction of JER, and from –0.07 with PHD to 0.09 with P50KC for
RDC. In the scenarios with 100 causative mutations, RFP-O ranged
from –0.12 for PHD to 0.04 to P50KC in JER, and from –0.07 to 0.11
for RDC. With 250 causative mutations, RF was underestimated only
with P50K and PHD, and prediction of JER. RFP-O ranged from –0.04
with P50K to 0.09 with PSEQ25kb for JER, and from 0.06 for PHD to 0.19
for P50KC for RDC.

Influence of the distance to causative mutations for
within- and across-breed prediction
Figure 3 shows RFP for the C250PSEQd scenarios as a function of d for
within- and across-breed prediction. While both within and across
breeds, RFP decreases when d increases, this decrease was larger
across than within breeds. For example, within HOL, RFP decreased
from 0.91 to 0.86 when d increased from 1 base to 25 kb, while for
across-breed prediction in HOL and MON, RFP decreased from 0.60
to 0.28 with the same increase in d. Within-breed, RFP was highest for
MON and lowest for HOL, and, across breeds, RFP was highest for
breed combinations with RDC. The sharpest decrease in RFP was
between 1 base and 25 kb. For example, between JER and MON,
RFP dropped from 0.65 to 0.28 when d increased from 1 base to
25 kb, and further decreased to 0.10 when d was 100 kb. All breeds
and across-breed combinations showed the same pattern, and more
or less a parallel decrease in RFP.

MAF
The relation betweenRFP andMAFof causativemutations andmarkers
is shown in Figure 4. RF was lower for causative mutations with a low
MAF than for scenarios with both low and high MAF causative muta-
tions. When causative mutations contained both low and high MAF
variants, prediction was always slightly better when prediction was
based only on high MAF markers, while in the scenarios with only
lowMAF causative mutations, RFP was generally higher when both low
and MAF markers were used. The difference was larger with markers
within 25 kb of the causative mutations.

DISCUSSION
We quantified the loss in prediction reliability due to the use of markers
in imperfect LD with causative mutations for different simulation
scenarios, both within and across breeds. For some scenarios, we
estimated prediction reliabilities, while for others, we used a formula
to approximate the loss in prediction reliability. The loss in reliability
quickly increased with the distance between markers and causative
mutations, especially across breeds, and was influenced by the MAF of
both causative mutations and markers.

Distance between causative mutations and markers
All sets of markers resulted in large decreases in prediction reliabilities
compared topredictionusingonly thecausativemutations.This is in line
with results froma simulation study by Pérez-Enciso et al. (2015), where
prediction accuracies decreased rapidly when variants in lower LDwith
the causative mutations were included. Using only causative mutations
for genomic prediction is, however, not realistic, since only a few caus-
ative mutations have been identified (Grisart et al. 2004; Braunschweig
2010). Alternatively, numerous quantitative trait loci (QTL) have been
identified for various traits (Khatkar et al. 2004; Daetwyler et al. 2008;
Cole et al. 2011; Höglund et al. 2014; Sahana et al. 2014), and can be
used for genomic prediction. Therefore, we tested scenarios that used
sequence intervals near the causative mutations, and increased the
distance between the intervals and the causativemutations.While using
these sequence intervals resulted in substantial decreases in reliability
compared to prediction using the causative mutations, these scenarios
did result in higher reliabilities than those obtained using all markers
from SNP chips. The reliability rapidly decreased when the distance to
causative mutations increased, showing the importance of mapping
precision. Several studies using real data have shown that increases in
prediction reliability can be obtained using variants associated with
QTL (Boichard et al. 2012; Brøndum et al. 2015; Ober et al. 2015;
Porto-Neto et al. 2015).

n Table 2 Sharing of causative mutations between breeds

All Variants MAF # 0.1

Breed HOL JER MON NOR RDC HOL JER MON NOR RDC

HOL 78 64
JER 48 54 23 32
MON 52 41 60 27 16 41
NOR 52 41 45 60 26 16 19 39
RDC 64 48 52 52 77 43 23 29 27 62

Percentage of simulated causative mutations that was segregating in each breed
(diagonal) and shared between breeds (below diagonal) according to minor
allele frequency (MAF). HOL, Holstein; JER, Jersey; MON, Montbéliarde; NOR,
Normande; RDC, Danish Red.
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Marker density
The accuracy of genomic prediction is highly dependent on the level of
LD between markers and causative variants. Therefore, sequence data
can potentially increase prediction accuracy because it contains variants
in high LD with the causative mutations. Increasing the marker density
adds markers closer to, and in higher LD, with the causative mutations.
At the same time, however, markers at a large distance of the causative
mutations are added. Therefore, the genomic relationships at markers
will be close to the genomic relationships at all loci rather than the

genomic relationships at the causative mutations. As a consequence,
increasing the density of the SNP markers from 50K to HD did not
increase the reliability. Reliability increased only when the markers
further away from the causative mutations were discarded, because
genomic relationships at markers then approach the genomic relation-
ships at causativemutations. This is in agreementwithErbe et al. (2012),
who found no difference in prediction accuracy when the marker den-
sity was increased from 50K to HD using the GBLUPmodel. However,
when Bayesian variable selection models were used, both Erbe et al.

n Table 3 Reliabilities and observed and prediction reliability factors for different sets of markers

ncaus Train Val Set Reliability Heritability RFO RFP

50 JER RDC Cc 0.85 (0.02) 0.79 (0.01) — —

PSEQ1kb 0.38 (0.03) 0.75 (0.01) 0.45 (0.04) 0.39 (0.02)
PSEQ10kb 0.27 (0.03) 0.72 (0.01) 0.31 (0.04) 0.25 (0.02)
PSEQ25kb 0.13 (0.02) 0.71 (0.01) 0.15 (0.03) 0.16 (0.01)
P50K 0.04 (0.01) 0.78 (0.01) 0.05 (0.02) 0.03 (0.00)
P50KC 0.09 (0.02) 0.54 (0.02) 0.11 (0.02) 0.20 (0.01)
PHD 0.08 (0.02) 0.78 (0.01) 0.10 (0.03) 0.03 (0.00)
PHDC 0.31 (0.04) 0.61 (0.02) 0.36 (0.04) 0.34 (0.02)

RDC JER Cc 0.95 (0.01) 0.78 (0.01) — —

PSEQ1kb 0.47 (0.04) 0.70 (0.01) 0.50 (0.04) 0.38 (0.02)
PSEQ10kb 0.26 (0.03) 0.66 (0.02) 0.28 (0.04) 0.23 (0.02)
PSEQ25kb 0.13 (0.03) 0.61 (0.02) 0.14 (0.03) 0.14 (0.01)
P50K 0.09 (0.02) 0.75 (0.01) 0.10 (0.02) 0.02 (0.00)
P50KC 0.14 (0.03) 0.39 (0.02) 0.15 (0.03) 0.18 (0.01)
PHD 0.14 (0.03) 0.77 (0.01) 0.15 (0.03) 0.02 (0.00)
PHDC 0.40 (0.04) 0.51 (0.03) 0.42 (0.04) 0.33 (0.02)

100 JER RDC Cc 0.84 (0.01) 0.79 (0.01) — —

PSEQ1kb 0.36 (0.03) 0.79 (0.01) 0.43 (0.03) 0.43 (0.02)
PSEQ10kb 0.24 (0.03) 0.79 (0.01) 0.29 (0.03) 0.26 (0.01)
PSEQ25kb 0.08 (0.01) 0.78 (0.01) 0.09 (0.01) 0.17 (0.01)
P50K 0.06 (0.01) 0.79 (0.01) 0.07 (0.01) 0.05 (0.00)
P50KC 0.09 (0.02) 0.61 (0.01) 0.11 (0.02) 0.21 (0.01)
PHD 0.11 (0.02) 0.79 (0.01) 0.13 (0.02) 0.06 (0.00)
PHDC 0.28 (0.03) 0.68 (0.01) 0.34 (0.03) 0.37 (0.01)

RDC JER Cc 0.92 (0.01) 0.79 (0.01) — —

PSEQ1kb 0.47 (0.04) 0.75 (0.01) 0.50 (0.04) 0.41 (0.02)
PSEQ10kb 0.32 (0.03) 0.72 (0.01) 0.35 (0.03) 0.24 (0.01)
PSEQ25kb 0.12 (0.02) 0.68 (0.01) 0.13 (0.02) 0.14 (0.01)
P50K 0.07 (0.01) 0.76 (0.01) 0.08 (0.01) 0.03 (0.00)
P50KC 0.14 (0.02) 0.47 (0.01) 0.15 (0.02) 0.19 (0.01)
PHD 0.14 (0.02) 0.78 (0.01) 0.15 (0.02) 0.03 (0.00)
PHDC 0.37 (0.04) 0.59 (0.01) 0.40 (0.04) 0.36 (0.01)

250 JER RDC Cc 0.73 (0.02) 0.79 (0.01) — —

PSEQ1kb 0.26 (0.02) 0.81 (0.01) 0.35 (0.03) 0.47 (0.01)
PSEQ10kb 0.12 (0.01) 0.80 (0.01) 0.17 (0.02) 0.32 (0.01)
PSEQ25kb 0.04 (0.01) 0.81 (0.01) 0.06 (0.01) 0.23 (0.01)
P50K 0.04 (0.01) 0.79 (0.01) 0.05 (0.01) 0.13 (0.00)
P50KC 0.07 (0.01) 0.74 (0.01) 0.09 (0.02) 0.27 (0.01)
PHD 0.05 (0.01) 0.79 (0.01) 0.07 (0.01) 0.13 (0.00)
PHDC 0.20 (0.02) 0.76 (0.01) 0.27 (0.03) 0.41 (0.01)

RDC JER Cc 0.85 (0.01) 0.79 (0.01) — —

PSEQ1kb 0.33 (0.03) 0.77 (0.01) 0.39 (0.04) 0.42 (0.01)
PSEQ10kb 0.19 (0.03) 0.75 (0.01) 0.22 (0.03) 0.27 (0.01)
PSEQ25kb 0.07 (0.01) 0.71 (0.01) 0.08 (0.02) 0.17 (0.01)
P50K 0.08 (0.02) 0.76 (0.01) 0.09 (0.02) 0.07 (0.00)
P50KC 0.11 (0.02) 0.60 (0.01) 0.13 (0.02) 0.22 (0.01)
PHD 0.10 (0.02) 0.78 (0.01) 0.11 (0.02) 0.07 (0.00)
PHDC 0.25 (0.03) 0.66 (0.01) 0.29 (0.03) 0.38 (0.01)

SE of reliability, estimated heritability, RFO and RFP are given in parentheses. ncaus, the number of causative mutations; train, training population; val, validation
population; set, markers used for prediction; RFO, observed reliability factor; RFP, predicted reliability factor; JER, Jersey; RDC, Danish Red; Cc, causative mutations;
PSEQ1/10/25kb, sequence interval on 1 kb/10 kb/25 kb of the causative mutations; P50K and PHD, all markers on the 50K and HD SNP chip, respectively; P50KC and
PHDC, the closest causative mutations to each 50K and HD marker, respectively.
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(2012) and Hozé et al. (2014) found a small increase in prediction
accuracy for HD markers compared to 50K markers. In a study using
simulated sequence data, MacLeod et al. (2014) found increases in
prediction accuracies for sequence data compared to HD data when
Bayes R was used. GBLUP (VanRaden 2008) uses all markers to con-
struct a genomic relationship matrix, and, therefore, using all markers
from the 50K or HD chips will result in a genomic relationship matrix
close to the genomic relationship matrix at all loci, while the Bayesian
variable selection models (Habier et al. 2011) assume the majority of
markers have no effect. By including only markers in high LD with
causativemutations in the predictionmodels, Bayesianmodels result in
covariance structures of phenotypes that are closer to those at causative
mutations than GBLUP.

Prediction of RF
For some scenarios, we compared the RF estimated by cross-validation
with the RF predicted by the formula of de los Campos et al. (2013).
While the differences between RFP and RFO are in the same range as
those observed by de los Campos et al. (2013), both RFP and RFO were
influenced by the number of causative mutations, but in opposite di-
rection. When the number of causative mutations increased, RFP in-
creased, while RFO decreased. Consequently, RFP overestimated the
loss in prediction reliabilities in the scenarios with 50 and 100 causative
mutations, while it is supposed to be a measure of the minimum re-
duction in prediction reliability. Therefore, with the SEQ data set, we
focused on the scenarios with 250 causative mutations, where RFP
could be used as an approximation for the minimum loss in reliability.
RFP is based on the genomic relationships at causative mutations and
markers. When the number of causative mutations increases, genomic
relationships at causative mutations become closer to the genomic
relationships at all loci, and therefore, closer to any set of randomly
selected markers, resulting in a higher RFP. On the other hand, in
scenarios with fewer causative mutations, prediction reliabilities may
be higher because more information is available to accurately estimate

their effect. Originally, RFP was developed with reference to a homo-
geneous population (de los Campos et al. 2013), and applying it to
across-breed prediction may have resulted in larger deviations from
RFO than it would have had for within-breed prediction. RFP compared
genomic relationships matrices at markers and causative mutations,
and therefore, the way the genomic relationship matrix is constructed
is likely to influence RFP. In the across-breed scenarios, we used the
allele frequencies of both populations to center the genotypes. Alterna-
tively, we could have centered the genotypes based on the allele fre-
quency of each population, which would have resulted in different
genomic relationships, which would in turn have influenced RFP.

MAF
The SNPs on the 50K and HD chips are selected to have a higher MAF
than most sequence variants (Matukumalli et al. 2009). As a conse-
quence, their predictive ability will be better for common variants than
for rare variants. If causative mutations are mainly variants with low
MAF, using sequence data for the prediction of causative mutations
could increase prediction accuracy. Druet et al. (2014) found that using
sequence data increases prediction accuracy particularly for rare caus-
ative mutations. In our results, including low MAF variants in the
prediction intervals increased RFP only if all causative mutations had
low MAF and the variants were very close to the causative mutations.
When the distance between intervals and causative mutations in-
creased, including low MAF variants still resulted in a slightly higher
RFP across breeds, while within-breed RF was higher when low MAF
variants were excluded. When causative mutations included both low
and highMAF variants, excluding lowMAF variants always resulted in
a higher RFP. The LD between a rare variant and a causative mutation
will generally be high if only the causative variant is rare and the
distance between both variants is very small. Therefore, the advantage
of using rare variants for genomic prediction might be limited, espe-
cially when GBLUP is used. Furthermore, for across-breed prediction,
the number of rare variants shared between breeds is expected to be

Figure 3 Reliability factor (RFP)
as a function of the distance be-
tween causative mutations and
intervals in prediction scenarios
for within- and across-breed pre-
diction. HOL, Holstein; JER, Jer-
sey; MON, Montbéliarde; NOR,
Normande; RDC, Danish Red.
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low, due to their low frequency, their increased fixation risk due to drift,
and their generally younger age compared to high MAF mutations.

Across-breed genomic prediction
LD within breeds is larger and conserved over longer distances than
across breeds (de Roos et al. 2008). As a consequence, RFP was lower
and decreased faster with an increasing distance across breeds than
within breeds. Differences in LD within breeds, and in the amount of
variants shared and the LD preserved across breeds, can explain differ-
ences between the different breeds and different breed combinations.
HOL used for the analysis consisted of different Holstein populations,
originating from several countries, while for the other breeds sequences
originated from one country. This most likely explains why RFP for
HOL was lower than for the other breeds.

Limitations and further studies
In our study, we only focused on the influence of LD between markers
and causative mutations on the prediction of genomic relationships at
causative mutations. In practice, there are many other factors influenc-
ing the accuracyof genomicprediction thatwedidnot take into account.
Across-breed prediction requires, besides high LD between causative
mutations and markers, causative mutations to be segregating across
breeds, and to have similar allele substitution effects in different breeds.
In theacross-breedscenarios, causativemutationswere sampled fromall
causativemutations segregating in at least one of the breeds. In practice,
the proportion of QTL segregating across breeds may be smaller than
those presented in Table 2 (Raven et al. 2014). Furthermore, by pre-
dicting genomic relationships rather than breeding values, we did not
consider scenarios where allele substitution effects vary across breeds,
due to, e.g., dominance and epistasis. Our results suggest that inclusion
of sequence variants near causative mutations can increase across-
breed prediction. Because some of the assumptions made in the simu-
lation of the phenotypes are likely to be violated in real populations, our
results should be interpreted as maximum gains that could be obtained

by using variants in close LD with the causative mutations. In prac-
tice, gains would be expected to be smaller, due to factors other than
LD limiting across-breed prediction. Further studies are required to
investigate the effect of the proportion of causative mutations seg-
regating across breeds, and differences and genetic heterogeneity on
the accuracy, and advantage, of sequence variants for across-breed
prediction.

Conclusions
Our results show that sequence data can potentially improve genomic
prediction. While using the full sequence directly for prediction is not
likely to improve prediction, using only variants close to the causative
mutations could substantially increase reliability. Thiswas especially the
case for across-breed prediction, where reliabilities dropped quickly
when the distance between causative mutations andmarkers increased.
Using rare sequence variants improved prediction only when they were
very close to rare causative mutations. To exploit the potential advan-
tages of sequence data for genomic prediction, careful selection of
markers is essential.
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