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ABSTRACT Transcriptionally silent HIV proviruses form the major obstacle to eradi-
cating HIV. Many studies of HIV latency have focused on the cellular mechanisms
that maintain silencing of proviral DNA. Here we show that viral sequence variation
affecting replicative ability leads to variable rates of silencing and ability to reacti-
vate. We studied naturally occurring and engineered polymorphisms in a recently
identified exonic splice enhancer (ESEtat) that regulates tat mRNA splicing and con-
structed viruses with increased (strain M1), reduced (strain M2), or completely absent
(strain ERK) binding of splicing factors essential for optimal production of tat mRNA
resulting in a corresponding change in Tat activity. The mutations affected viral rep-
lication, with M1 having wild-type (WT) kinetics, M2 exhibiting reduced kinetics, and
ERK showing completely abrogated replication. Using single-round infection with
green fluorescent protein (GFP)-expressing viruses to study proviral gene expression,
we observed progressively greater rates of silencing relating to the degree of ESEtat

disruption, with the WT strain at 53%, strain M2 at 69%, and strain ERK at 94%. By
stimulating infected cells with a latency reversal agent (phorbol myristate acetate
[PMA], panobinostat, or JQ1), we observed that the dose required to achieve 50% of
the maximum signal was lowest in the WT, intermediate in M2, and highest in ERK,
indicating progressively higher thresholds for reactivation. These results suggest that
the ability of silent proviruses to reactivate from latency is variable and that minor
differences in the viral sequence can alter the proportion of silenced viruses as well
as the threshold required to induce silenced viruses to reactivate and express.

IMPORTANCE A reservoir of infected cells in which the HIV genome is transcription-
ally silent is acknowledged to be the principal barrier to eradicating the virus from
an infected person. A number of cellular processes are implicated in this silencing;
however, the viral factors that may contribute remain underexplored. Here we exam-
ined mutations altering the correct splicing of HIV gene products as a model to
study whether differences in viral sequence can affect either the proportion of vi-
ruses that are active or silent or their ability to reactivate. We found that some natu-
rally occurring variations result in viruses that are silenced at a higher rate and re-
quire a proportionally increased stimulus for reactivation from latency. These data
suggest that the silencing and reactivation behavior of HIV exists in a spectrum, in-
fluenced by factors intrinsic to the virus.
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HIV establishes latency in a population of infected cells where the virus has
integrated its genome but no viral gene expression occurs. If they are genetically

intact, these integrated proviruses are capable of later reactivation, generating virions
which, in the absence of antiretroviral therapy, rekindle the infection. The latent
reservoir is therefore a barrier to HIV cure, and the factors affecting HIV silencing and
reactivation are subjects of intense research interest.
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The biological processes involved in the maintenance of HIV silencing are hetero-
geneous. Cellular responses that silence HIV proviral transcription by modification of
the local histone environment or by altering the availability of critical transcription
factors are well studied (1–3). In contrast, little is known about virus-dependent factors
that affect silencing behavior. Similarly, whether the ability of a mixed population of
silenced viruses to be induced is a binary phenotype (“inducible” or “noninducible”) or
a nonbinary phenotype (“more inducible” or “less inducible”) has not previously been
explored.

The HIV transactivator protein Tat is an early viral gene product required for efficient
downstream viral gene expression. Nascent viral RNA at the viral promoter adopts a
helix-loop structure, trans-activation response element (TAR), to which Tat binds and
enhances processivity of RNA polymerase II (4). The Tat-TAR interaction thus forms a
positive-feedback axis and is important for stable viral gene expression (5). The tat gene
consists of two exons and is encoded by two or more multiply spliced viral mRNAs.
There are a number of splice variants, the predominant tat mRNA being Tat1 (6).
Recently, an exonic splice enhancer (ESEtat) responsible for balanced splicing of tat
mRNA was identified (7). Mutations profoundly disrupting ESEtat abrogate splicing
factor binding and alter tat mRNA splicing, causing a severe replication defect and very
limited Tat protein production (7).

Natural variations in any of a number of mechanisms involved in HIV proviral
transcription are predicted to alter silencing. Here we studied polymorphisms in the
ESEtat regions of full-length viral sequences to explore whether apparently intact HIV
proviruses may exhibit different silencing behaviors due to altered Tat splicing. We
found that the more extensive was the disruption of ESEtat, the smaller the proportion
of proviruses that expressed spontaneously, concomitant with a reduction in viral
replication capacity. The concentration of latency reversal agents required to induce
expression from the same proportion of silent proviruses also increases with increasing
levels of disruption of ESEtat, indicating a higher threshold for induction. We thus
provide an example where the ability of silent HIV to be induced is not a binary
phenotype but represents a spectrum of inducibility determined by factors intrinsic to
the virus.

RESULTS
ESEtat is conserved in HIV-1. To examine whether polymorphisms in the ESEtat

region occur in vivo, we examined full-length HIV subtype B sequences from the Los
Alamos database (http://www.hiv.lanl.gov/). A total of 2,013 sequences were identified.
Panel A of Fig. 1 shows the percentage of base identity for each position in ESEtat. The
majority of positions showed greater than 90% conservation; however, some demon-
strated a higher degree of polymorphism. This suggests that although evolutionary
pressure constrains sequences in the ESEtat region, there are viable sequence variants
that can be found.

To study the effect of ESEtat on HIV gene expression, we created mutants M1 and M2
(Fig. 1B). Circulating viruses bearing the ESEtat sequences in M2 (8) and latent, nonin-
ducible viruses bearing the sequences in M1 have been described previously (9). We
also created a mutant (termed ERK) which contains the same mutations as those
demonstrated by Erkelenz et al. to maximally disrupt ESEtat function (7). We used the
putative exonic splicing enhancer/silencer (PESX) score (10) to predict splicing factor
binding, using HIVNL4 –3 as the reference wild-type (WT) viral sequence. The differences
in P scores between the wild type and the mutants were 13.9, �5.3, and �55.8 for the
M1, M2, and ERK sequences, respectively, where a positive score or a negative score
corresponds to predicted increased or decreased splicing factor binding, respectively,
compared to the wild type (Fig. 1C). Thus, M1 was predicted to exhibit a higher level
of splicing factor binding and M2 a reduced level of splicing factor binding, with the
predicted level of splicing factor binding lower still in ERK.

ESEtat disruption alters the relative proportions of tat mRNA species. HIV tat
mRNA is multiply spliced and has a number of different isoforms depending on the
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FIG 1 Predicted splicing factor binding of ESEtat variants found in vivo. (A) ESEtat is conserved among 2,013 subtype B sequences deposited in the Los Alamos
National Laboratory HIV database. Subtype B sequences were aligned using HIVAlign (available from the database). The figure shows the percentage of identity
for each base in the ESEtat region. While variations exist, the majority of bases were 90% to 100% conserved. (B) Variant ESEtat sequences of strains M1 and M2
and the mutant (ERK) created by Erkelenz et al. and used in this study. (C) Variant ESEtat sequences have altered predicted splicing factor binding. Graphs show
predicted splicing factor binding data calculated using the PESX score for each base; red lines show the scores for each mutant and dashed lines the scores
for the wild type. The differences in P scores between the wild-type strain and the individual mutant strains were 13.9, �5.3, and �55.8 for the M1, M2, and
ERK sequences, respectively.
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inclusion or not of small exons (Fig. 2A). All isoforms code for proteins of the same
length, translated from the same initiation codon. The functional differences between
various tat mRNA isoforms are not known, but in the work reported by Erkelenz et al.
(7), disruption of the balance of tat mRNA isoforms resulted in inefficient viral gene
expression. The predominant isoform, Tat1, is formed from the joining of the major
splice donor D1 to the A3 splice acceptor, this junction site being unique to Tat1. The
joining of the D2 splice donor to the A3 splice acceptor is unique to Tat2, the next most
abundant isoform. We designed primer and probe pairs to detect these unique splice
junctions by real-time PCR. A control primer-probe set that amplifies all tat and vpr
transcripts was included to quantitate Tat1 and Tat2 levels relative to the total number
of cells infected.

Intracellular RNA was extracted from Jurkat cells infected with wild-type HIVNL4 –3

and mutants M1, M2, and ERK; levels of Tat1 and Tat2 expression were determined by
quantitative PCR (qPCR). Panel B of Fig. 2 shows the expression levels of tat mRNA
isoforms, normalized to total tat and vpr transcript levels, relative to that in the wild
type. Compared to the wild type, the M1 mutant showed increased expression of Tat1
and Tat2 mRNA (P � 0.04 and P � 0.005, two-tailed t test) and the M2 mutant showed
reduced expression (P � 0.01 and P � 0.01). Tat1 and Tat2 were not reliably detected
from the ERK mutant despite good amplification of total tat/vpr in qPCR performed
using the control primer-probe set.

Tat protein is expressed only to a low level and is not readily detectable by Western
blotting. To assess how mutations in ESEtat affect Tat activity, we cloned mutant ESEtat

sequences into the viral construct pNL4.3deltaEnv.EGFP and transfected the constructs
into the indicator cell line Tzm-bl (Fig. 2C), which contains an HIV Tat-dependent
luciferase expression cassette. The level of luciferase expression was used to assess Tat
activity. There was no significant difference between the WT strain and the M1 mutant
(WT versus M1; P � 0.0990, two-tailed t test) in the levels of Tat activity, while the M2
and ERK mutant strains showed progressively lower levels of Tat activity (WT versus M2,
P � 0.0180; WT versus ERK, P � 0.0001 [two-tailed t test]).

The degree of reduction in viral replicative kinetics is related to the extent of
ESEtat disruption. To assess replication kinetics, SupT1-CCR5 cells were infected with
either full-length wild-type HIVNL4 –3 or one of the mutants. Culture supernatants were
sampled regularly for levels of viral capsid antigen p24. A typical experiment is
represented in Fig. 3A; there was no detectable replication of the ERK mutant in
repeated experiments.

We analyzed the rate of change of p24 levels to assess virus replicative capacity. We
limited our analysis to p24 levels of 0.25ng/ml to 10 ng/ml, reflecting the log-phase
period of growth. P24 measurements were log transformed, and a linear equation was
derived from the data (an example is shown in Fig. 3B), with the slope giving the log
change in p24 per 24 h.

There was no significant difference between the M1 mutant and wild-type virus
(Fig. 3C). The M2 mutant showed slightly reduced replication kinetics (0.26 log/24 h
versus 0.39log/24 h; P � 0.04, two-tailed t test). Thus, limited disruption of ESEtat

resulted in reduced viral replication kinetics, exemplified by M2, while severe disruption
of ESEtat abrogated viral replication altogether as seen in the ERK mutant.

The extent of ESEtat disruption affects the proportion of proviruses expressing
viral gene products both spontaneously and upon induction. To study viral gene
expression, we utilized the viral construct pNL4.3deltaEnv.EGFP, which expresses en-
hanced green fluorescent protein (eGFP) in place of Env, and created vectors containing
ESEtat mutants. The vector was pseudotyped with vesicular stomatitis virus envelope
glycoprotein (VSV-G) to permit single-round infection of Jurkat cells. The levels of
integrated proviruses, as detected by Alu-PCR (11), were similar for all four constructs
(Fig. 4A).

After 72 h, the cells were stimulated with phorbol myristate acetate (PMA) in the
presence of 15 nM efavirenz and 100 nM raltegravir. Those antiretrovirals prevent de
novo infection of cells by any residual virus in the supernatant upon PMA stimulation
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FIG 2 Effect of the mutations on tat mRNA splicing and Tat activity. (A) Schematic representation of the
HIV genome showing patterns of alternative splicing generating different isoforms of tat mRNA. The
inclusion of small exons gives rise to unique splice junctions. Arrows show the locations of primers used for
qPCR to detect Tat1 and Tat 2. An all-tat/vpr primer set which detects all isoforms of tat and vpr was also
used. (B) Variants in ESEtat alter expression of tat mRNA. Jurkat cells were infected with WT and mutant
viruses. The abundances of Tat1 and Tat2 were determined by qPCR and normalized to that of all tat/vpr
transcripts. The graph shows the levels of Tat1 and Tat2 mRNA in infected cells for the mutant viruses
compared with the WT viruses. The M1 mutant produced more Tat1 and Tat2 than the wild type (P � 0.04
and P � 0.05, two-tailed t test). The M2 mutant produced less Tat1 and Tat2 mRNA (P � 0.01 and P � 0.01).
No tat mRNA was detected from the ERK mutant despite good amplification of the control. Graphs show
means and standard errors of the means (SEM) for the results from three experiments. (C) Variations in ESEtat

result in different levels of Tat activity. Equal amounts of plasmids pNL4.3deltaEnv.EGFP with mutations in
ESEtat were transfected into TZM-bl indicator cells, which contain a Tat-driven luciferase expression cassette.
Luciferase activity was measured 4 days posttransfection. Levels of signal above that seen with mock
transfection were considered representative of specific Tat activity. For each experiment, the level of Tat
activity was normalized to that of the WT. The graph shows means and SEM of results from five
independent experiments. There was no significant difference in the levels of Tat activity between the WT

(Continued on next page)
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(12), thus ensuring that inducible GFP expression arises from silent integrated con-
structs. Levels of viral gene expression resulting from a single infectious event can then
be measured by detection of GFP expression. At 24 h after stimulation, the proportion
of cells expressing GFP was quantified by flow cytometry (Fig. 4B). After PMA induction,
GFP-positive populations contain both proviruses that are spontaneously expressed
and those that are inducible. We can thus determine the proportions of the proviruses
that are silent and of those that are inducible. For example, as indicated in the WT panel
in Fig. 4B, 17.8% of the cells expressed GFP before stimulation and 32.6% poststimu-

FIG 2 Legend (Continued)
and strain M1 (WT versus M1; P � 0.0990, two-tailed t test), while M2 and ERK showed progressively lower
levels of Tat activity (* [WT versus M2], P � 0.0180; **** [WT versus ERK], P � 0.0001, two-tailed t test).

FIG 3 Altered growth kinetics in ESEtat mutant viruses. (A) Typical data showing curves obtained from
daily measurement of p24 levels in cultures infected with each virus. (B) An example of data analysis.
Data determined for the logarithmic-growth phase of the WT strain reported in panel A as described
above were log transformed, and a linear equation was derived. The gradient gives the log change in p24
per 24 h. (C) Reductions in virus replicative capacity were related to the degree of disruption of ESEtat. The
replicative capacity of strain M1 was similar to that of the wild type (ns, not significant), while strain M2
showed reduced replicative capacity (0.26 log/24 h versus 0.39 log/24 h) (*, P � 0.04, two-tailed t test).
Data show means and SEM of results corresponding to the log p24 per 24 h for 6 experiments.
Replication of ERK was not observed in any of six experiments.
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FIG 4 ESEtat disruption increases the proportion of silent proviruses. (A) Jurkat cells were infected with
GFP-expressing viruses, and DNA was harvested 4 days postinfection. Integrated proviruses were
quantified using an Alu-PCR-based method, and the data were normalized to total LTRs to control for

(Continued on next page)
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lation. In this example, 45% [(32.6 � 17.8)/32.6] of all PMA inducible integration events
were initially silent, while 55% expressed spontaneously.

The data demonstrate a clear trend, indicating that the proportions of silent (but
inducible) proviruses and of active proviruses are related to the degree of disruption of
ESEtat. A total of 53% of the wild-type virus was silent (Fig. 4C) compared to 56% for M1
(P � 0.44, M1 versus WT, two-tailed t test) and 69% for M2 (P � 0.02, M2 versus WT). To
our surprise, ERK could be induced to express upon exposure to high doses of PMA but
demonstrated the presence of a high (94%) proportion of silent but inducible provi-
ruses (P � 0.00001, ERK versus WT).

Inducibility is not a binary phenotype and can be related to the degree of
disruption of the provirus. We hypothesized that the ability of a silent provirus to be
induced to express viral gene products does not represent a binary phenotype. In other
words, the level of stimulus required to induce expression ranges along a spectrum and
the degree of inducibility can be assessed by analysis of the threshold required to
reactivate the silent provirus. The induction threshold would be reflected in the
concentration of latency reversal agents required to achieve gene expression from a
silent provirus. The ESEtat model was used to evaluate this. Pseudotyped, GFP-
expressing HIV vector with wild-type and mutated ESEtat sequences was used to infect
Jurkat cells. After 72 h, the medium was replaced with one containing 100 nM ralte-
gravir and 15 nM efavirenz as well as PMA in serial 2-fold dilutions at concentrations
between 0.048 nM and 200 nM. An infected but unstimulated well was included in each
experiment to represent baseline GFP expression. At 24 h after stimulation, GFP ex-
pression was determined by flow cytometry. Panel A of Fig. 5 shows the mean
percentages of GFP-expressing cells observed at each concentration of PMA for 5
experiments.

To compare the thresholds of reactivation of different viruses, dose-response curves
were fitted to the data. The data were scaled such that the level of baseline expression
in the absence of PMA was set to 0 and the maximum observed level of GFP expression
was set to 1. Other values were scaled accordingly (Fig. 5B). The analysis was used to
compute the effective concentration of PMA required to achieve 50% maximal reac-
tivation (EC50). Table 1 shows the EC50 for each mutant derived using this method.
Confidence intervals were used to calculate a T statistic and therefore a P value for
comparisons to the wild type. There was no statistically significant difference
between the WT and M1 viruses. However, the EC50 seen with the M2 virus was
significantly higher (0.6797 nM versus 0.3074 nM, P � 0.025, M2 versus WT) and that
seen with the ERK mutant was higher still (1.517 nM, P � 0.0011, ERK versus WT;
P � 0.004, ERK versus M2).

The effect on reactivation by other latency-reversing agents, including the bro-
modomain inhibitor JQ1 (Fig. 5C) and a clinically relevant histone deacetylase (HDAC)
inhibitor, panobinostat (13) (Fig. 5D), was also studied. Similarly to the dose response
observed with PMA, there were no significant differences in EC50 levels for the WT and
M1 strains for both JQ1 and panobinostat. The threshold to achieve reactivation shown
by the M2 and ERK viruses with JQ1 was higher than that seen with the wild type
(Table 2; 83.7 nM versus 22.58 nM [P � 0.0258] and 256.8 nM versus 22.58 nM
[P � 0.0035]). There was a significant increase in the threshold for reactivation seen
with panobinostat for the ERK mutant (Table 3; 12.86 nM versus 1.6 nM, 0.0084). There
was also a trend toward an increase seen with the M2 mutant, but the data were not
statistically significant. Thus, with a number of latency reversal agents, the concentra-

FIG 4 Legend (Continued)
variations in DNA extraction and compared with WT levels. (B) Example flow plots showing unstimulated
and PMA-stimulated populations of Jurkat cells infected with GFP-expressing viruses bearing the ESEtat

mutations. (C) The proportion of silenced proviruses increases with disruption to ESEtat. Solid areas
represent the baseline GFP expression level as a proportion of all induced proviruses. A total of 53% of
wild-type virus was silent compared to 56% for M1 (ns, P � 0.44 [M1 versus WT], two-tailed t test) and
69% for M2 (*, P � 0.02 [M2 versus WT]). ERK had a high (94%) proportion of silent, inducible proviruses
(***, P � 0.00001 [ERK versus WT]). Bars show means and SEM for data from 5 experiments.
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tion required to achieve an equivalent level of response increased with more-extensive
disruption of ESEtat, reflecting a higher threshold of reactivation and a lower level of
inducibility.

DISCUSSION

We found that viral replicative capacity shows a strong negative correlation with
progressively increased disruption of the viral splicing regulatory element ESEtat. A
more functionally defective form of ESEtat is associated with a higher proportion of
integrated constructs being silenced; once silenced, the threshold for reactivation by
exogenous stimuli is also higher. Thus, inducibility is not a binary phenotype—a more
extensively disrupted provirus is less inducible, while a virus with a level of disruption
closer to that of the wild type is more inducible. Of note, our data show that the effect
seen with the mutants was not due to differences in the levels of provirus. Importantly,

FIG 5 ESEtat mutant viruses exhibit a higher threshold for reactivation from latency. (A) Jurkat cells infected with GFP-expressing viruses were stimulated with
a 2-fold dilution series of PMA. The percentage of GFP-positive cells was determined by flow cytometry. The graph demonstrates the percentage of
GFP-expressing cells at each concentration of PMA for each of the four viruses. Each data point shows means and SEM for data from 5 experiments. (B) Mutant
viruses exhibit a higher threshold for reactivation with PMA. Dose-response curves were fitted to the data using the maximum and minimum percentages of
GFP to derive the EC50, i.e., the dose required for 50% response. EC50 values were higher in M2 and ERK viruses. (C) Dose-response curves for the
latency-reversing agent JQ1 showing an increased threshold of activation for M2 and ERK (n � 3). (D) Dose-response curves for panobinostat (PBST) showing
an increased threshold of activation for the ERK virus (n � 3).

TABLE 1 PMA EC50 values for each virusa

Strain EC50 (nM) 95% confidence interval P value

WT 0.3074 0.2263 to 0.4174
M1 0.3472 0.2658 to 0.4534 0.63
M2 0.6797 0.5824 to 0.7931 0.025
ERK 1.517 1.226 to 1.877 0.0011
aThe PMA EC50 values for each virus were determined as described in the Fig. 5 legend. Confidence intervals
were used to derive a T statistic and a P value for the comparison with the wild type. There were no
significant differences in the EC50 values for the M1 mutant, but the EC50 values were higher for both the
M2 and ERK mutants.
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as we made this observation on the basis of the relative proportions of cells expressing
the viral vectors with or without induction, our conclusion is not affected by any effect
ESEtat may have on other parts of the virus life cycle.

While host factors affecting HIV latency have been studied extensively, the contri-
bution of viral factors is less well explored. In the present model, subtle disruption of
the Tat/TAR axis results in a viral phenotype that is reminiscent of latency. This is
consistent with previously described cell line models of HIV latency, including ACH-2,
in which a mutation in the TAR loop abrogates binding of Tat and prevents transacti-
vation (14, 15), and HIV mutant Tat H13L, which is less able to bind positive transcrip-
tion elongation factor b (PTEF-b), essential for Tat activity (16). However, it is unclear
whether these examples of functional impairment generated in vitro reflect the biology
of HIV latency in vivo. Here, we studied naturally occurring polymorphisms in a recently
identified viral mRNA splicing regulatory element, ESEtat. We observed that the ability
of the virus to reactivate is related to the degree of disruption of viral mRNA splicing
regulation. We have thus provided an example of an inefficient posttranscriptional
process resulting in a latency-like phenotype; it is likely that modulation of mRNA
splicing represents only one mechanism by which this can occur.

We have not explored the mechanisms underpinning the link between ESEtat

disruption and inefficient viral gene expression. Erkelenz et al. (7), whose publication
originally identified and described the tat exonic splicing enhancer, demonstrated that
disruption of ESEtat resulted in a marked reduction in the level of tat mRNA production
with corresponding levels of preservation of singly and unspliced transcripts. They also
demonstrated that their disruption abrogated the binding of splicing factors serine-
and arginine-rich splicing factor 2 (SRSF2) and SRSF6. Here, we sought not to explore
the efficiency of translation of different isoforms of tat mRNA but to use the polymor-
phisms as a model to demonstrate that apparently minor mutations in the viral
expression machinery can affect how readily a latent virus can be induced to express.
Our data show that a more easily inducible virus also has a higher replicative capacity.
In contrast, the associations among viral defectiveness, replication capacity, and induc-
ibility may not hold true if the defect affects aspects of viral life cycle other than gene
expression.

How can our findings be applied to HIV latency in vivo? The model described here
is based on viruses generated in vitro. In vivo, latent HIV is genetically heterogeneous
(17). The basis of this heterogeneity is error-prone reverse transcription, possibly with
additional mutations introduced by the apolipoprotein B mRNA editing enzyme cata-
lytic polypeptide-like (APOBEC) system of the host cell (18). These processes happen
before incoming HIV is archived as a latent provirus. Hence, in vivo, latent proviruses are

TABLE 2 JQ1 EC50 values for each virusa

Strain EC50 (nM) 95% confidence interval P value

WT 22.58 18.09 to 28.17
M1 33.88 26.43 to 43.43 0.11
M2 83.7 57.37 to 122.1 0.0258
ERK 256.8 211.3 to 312.1 0.0035
aJQ1 EC50 values for each virus were determined as described in Fig. 5. There were no significant differences
in the EC50 values for the M1 mutant, but the EC50 values were higher for both the M2 and ERK mutants.

TABLE 3 Panobinostat EC50 values for each virusa

Strain EC50 (nM) 95% confidence interval P value

WT 1.603 1.118 to 2.299
M1 1.68 1.204 to 2.344 0.864
M2 2.972 2.226 to 3.969 0.11
ERK 12.86 11.01 to 15.03 0.0084
aPanobinostat EC50 levels for each virus were determined as described in Fig. 5. There were no significant
differences in the EC50 values for the M1 mutant. There was a small but nonsignificant difference in the
EC50 level for the M2 mutant. The ERK mutant required a significantly higher concentration of panobinostat.
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likely to be genetically diverse; some of them inevitably have mutations affecting viral
gene expression through sheer chance. As demonstrated with the current model, and
consistent with previous reports (19), these disruptions do not necessarily have to
directly involve the viral promoter regulating viral transcription but can involve any
component of the complex apparatus involved in viral gene expression, including
transcription initiation, production and splicing of early transcripts, and Tat transacti-
vation. Thus, it is more than probable that nondefective latent proviruses would have
a spectrum of inducibility in vivo, reflecting the degree of disruption accrued in the
virus gene expression apparatus. These disruptions might affect any stage of the
postintegration life cycle, from altered binding of transcription factors at the promoter
to differential translation of mRNA isoforms. Indeed, others have constructed isogenic
mutants of HIVLAI containing the promoters of different HIV subtypes and found that
the promoter of subtype AE had a higher level of basal activity but was less responsive
to tumor necrosis factor alpha (TNF-�) than was the case with subtype B viruses (20).
The promoters of HIV are heterogeneous, and the numbers of NF�B binding sites differ
for different subtypes. In addition, polymorphism of an AP-1 binding site has been
found to affect the silencing and reactivation of HIV (21). Emery et al. (22) studied HIV
RNA splicing with a panel of subtype B transmitter/founder viruses and a subtype C
virus and noted considerable variability in the use of the A3/tat splice acceptor site. This
could also potentially have an impact on the silencing behavior and inducibility of the
virus. Latency and inducibility thus represent complex phenotypes that reflect an
aggregate of viral and host factors, and our model is a demonstration of how perturb-
ing of just one facet of the transcriptional machinery can lead to higher rates of
silencing and serves as an exemplar of a viral factor enhancing silencing. Future studies
may identify a range of other mechanisms that produce similar phenotypes.

The “shock and kill” (23) strategy aims to achieve HIV cure through therapeutic
reactivation of latent HIV to provide targets for immune clearance (24, 25). If viral
reactivation represents not a binary but a continuous variable, then such reactivation
may become increasingly difficult with successive rounds of stimulation, as latent
proviruses with lower thresholds of reactivation respond to earlier rounds of activation,
leaving proviruses with higher thresholds in the reservoir.

Here we have demonstrated that disrupting HIV gene expression by altering tat
mRNA splicing can cause an inducible and variable proviral silencing phenotype
comparable to and superficially indistinguishable from viral latency. We found that
inducibility is not a binary phenotype and that the threshold of reactivation of silent
proviruses varies with the extent of disruption of the virus. This has potentially
significant implications for the shock and kill approach to HIV cure.

MATERIALS AND METHODS
Plasmids. Mutations in ESEtat were introduced by site-directed mutagenesis. A 1.8-kb fragment

between the EcoR1 and Nhe1 restriction sites of pNL4.3 was cloned into the corresponding sites in
plasmid pBR322. Mutagenesis was carried out using a QuikChange II kit (Agilent) and the manufacturer’s
protocol. Mutagenesis was confirmed by Sanger sequencing. Mutated fragments were cloned back into
pNL4.3 or pNL4.3.deltaENV.EGFP (both from the NIH AIDS Reagent Program). pCMV-VSVG (Addgene) was
used to supply vesicular stomatitis virus envelope glycoprotein for pseudotyping the GFP-expressing
virus.

Cell culture. SupT1-CCR5 cells were a kind gift from James Hoxie of the University of Pennsylvania.
Jurkat cells and SupT1-CCR5 cells were maintained in RPMI medium supplemented with 10% fetal calf
serum and 100 units/ml penicillin and streptomycin (all from Gibco). HEK 293T cells and Tzm-bl cells were
both maintained in Dulbecco’s modified Eagle’s medium (DMEM) (Gibco) supplemented as described
above. Transfection of 293T cells was carried out using the calcium phosphate method. Transfection of
Tzm-bl cells was carried out with Lipofectamine 2000 (Thermo Fisher).

Luciferase assay. Tzm-bl cells were harvested 4 days after transfection. Culture supernatant was
removed, and the cells were washed with phosphate-buffered saline (PBS) before lysis with CCLR
(Promega). Luciferase activity was detected by GloMax analysis using a standard luciferase detection kit
(Promega). Transfection experiments were conducted in duplicate, and for each transfected well,
luciferase detection was also conducted in duplicate. Specific signal data were calculated by subtracting
the readout from mock-transfected wells from the readout from wells transfected with viral constructs,
and data were normalized to the WT virus.
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Virus stocks. Virus stocks were prepared from the supernatants of transfected HEK 239T cells. The
virus was concentrated by ultracentrifugation, and titers were determined using p24 enzyme-linked
immunosorbent assay (ELISA). Stocks were frozen at �70°C after the titers were determined.

RNA extraction and qPCR. RNA was extracted from cells 48 h after infection using an RNeasy Plus
minikit (Qiagen) according to the manufacturer’s protocol. cDNA was prepared using a High-Capacity
cDNA reverse transcription kit (Thermo Fisher) and cleaned up using a DNA purification kit (Qiagen).
Water-only and no-RT controls were included in the experiments as negative controls. Quantitative PCR
was carried out with qPCR Mastermix (Applied Biosystems) following the manufacturer’s instructions on
a StepOnePlus real-time PCR system (Applied Biosystems) using the following cycling parameters: 1 cycle
at 95°C for 8 min and 45 cycles at 95°C for 10 s followed by 60°C for 1 min. The primers and probes
(Sigma) used were as follows: Tat1 forward, 5=-AGA TCT CTC GAC GCA GGA CT-3=; Tat1 reverse, 5=-GGC
TGA CTT CCT GGA TGC TT-3=; D1A3 probe (tat1), 5=-6-carboxyfluorescein (FAM)-TCG ACA CCC AAT TCA
GTC GC-6-carboxytetramethylrhodamine (TAMRA)-3=; Tat2 forward, 5=-GGA CAG CAG AGA TCC AGT
TTG-3=; Tat2 reverse, 5=-GAT GCT TCC AGG GCT CTA GTC-3=; D2A3 probe (tat2), 5=-FAM-GTC GAC ACC
CAA TTC TTT CCA G-TAMRA-3=; All-tat/vpr forward, 5=-TCC TAT GGC AGG AAG AAG CG-3=; All-tat/vpr
reverse, 5=-AGC TTG ATG AGT CTG ACT GT-3=; All-tat/vpr probe, 5=-FAM-TCT GAT GAG CTC TTC GTC GCT
GTC TC-TAMRA-3=.

DNA extraction and qPCR. DNA was extracted from cells 4 days after transduction using a DNeasy
blood and tissue minikit (Qiagen). DNA extract was diluted 1:10 and subjected to Alu-PCR as previously
described (11). Briefly, first-round PCR was conducted with a lambda-long terminal repeat (lamba-LTR)
primer with or without Alu primer. The reaction parameters for first-round PCR were as follows: 1 cycle
at 95°C for 8 min followed 12 cycles at 95°C for 30 s, 60°C for 10 s, and 72°C for 3 min followed by 1 cycle
at 72°C for 7 min. The levels of integrated constructs are expected to increase exponentially with this
round of PCR, while the levels of unintegrated construct are expected to increase linearly. PCR products
were cleaned up using a PCR purification kit (Qiagen) and subjected to specific lambda-LTR quantitative
PCR, with cycling parameters as described in the previous section. The sequences for primers and probes
were identical to previously published sequences (11), with the only modification being the use of FAM
and TAMRA as fluorophores. To control for variations in DNA extraction efficiency, the readout was
normalized to that of a total LTR PCR, using the following primers and probe (Sigma): for primer 457F,
5=-TGG GAG CTC TCT GGC TAA CT-3=; for primer 615R, 5=-GGC GCC ACT GCT AGA GAT TT-3=; for probe
520R, 5=-FAM-CAC TCA AGG CAA GCT TTA TTG AGG C-TAM-3=.

Replication kinetics analysis. A total of 5 to 8 million SupT1-CCR5 cells were infected with 15 ng p24
per virus by spinoculation. Infected cells were washed three times with PBS to remove the inoculum
before resuspension in culture media. Supernatant was sampled every 24 h after infection and stored; at
the end of the experiment, supernatant p24 levels were determined by ELISA.

Reactivation assays. A 50-ng volume of p24 of pseudotyped virus was used to infect 5 � 105 Jurkat
cells. After 72 h, the cells were seeded into 12 wells of a 96-well plate. The medium was removed from
the cells and replaced with medium containing 100 nM raltegravir and 15 nM efavirenz together with any
latency reversal agents to be tested in serial 2-fold dilutions. An infected but unstimulated well was
included in each experiment as a measure of baseline GFP expression. PMA (Sigma), panobinostat
(Sigma), and JQ1 (Cayman) were used at the indicated concentrations. Efavirenz and raltegravir were
obtained from the NIH AIDS reagents program. Flow cytometry data were collected using an Attune NXT
flow cytometer (Thermo Fisher), and flow cytometry plots were analyzed using FlowJo 10.
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