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Protozoans of the genus Leishmania are the causative agents of an important neglected
tropical disease referred to as leishmaniasis. During their lifecycle, the parasites can
colonize the alimentary tract of the sand fly vector and the parasitophorous vacuole of the
mammalian host, differentiating into distinct stages. Motile promastigotes are found in the
sand fly vector and are transmitted to the mammalian host during the insect blood meal.
Once in the vertebrate host, the parasites differentiate into amastigotes and multiply inside
macrophages. To successfully establish infection in mammalian hosts, Leishmania
parasites exhibit various strategies to impair the microbicidal power of the host immune
system. In this context, stage-specific class I nucleases play different and important roles
related to parasite growth, survival and development. Promastigotes express 3’-
nucleotidase/nuclease (3’-NT/NU), an ectoenzyme that can promote parasite escape
from neutrophil extracellular traps (NET)-mediated death through extracellular DNA
hydrolysis and increase Leishmania-macrophage interactions due to extracellular
adenosine generation. Amastigotes express secreted nuclease activity during the
course of human infection that may be involved in the purine salvage pathway and can
mobilize extracellular nucleic acids available far from the parasite. Another nuclease
expressed in amastigotes (P4/LmC1N) is located in the endoplasmic reticulum of the
parasite and may be involved in mRNA stability and DNA repair. Homologs of this class I
nuclease can induce protection against infection by eliciting a T helper 1-like immune
response. These immunogenic properties render these nucleases good targets for the
development of vaccines against leishmaniasis, mainly because amastigotes are the form
responsible for the development and progression of the disease. The present review aims
to present and discuss the roles played by different class I nucleases during the
Leishmania lifecycle, especially regarding the establishment of mammalian host infection.
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INTRODUCTION

Leishmania spp. are trypanosomatid parasites that infect humans and other mammalian hosts,
causing one of the most significant of neglected tropical diseases (Chang, 1983). Leishmaniasis
affects more than 350 million people worldwide and is the major insect-borne disease in developing
countries (Vannier-Santos et al., 2002). The manifestations of the disease include cutaneous,
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mucocutaneous, diffuse cutaneous, and visceral leishmaniasis,
which is the most severe form of the disease. These different
manifestations are related to the complex interaction between
the infecting species and the host immune response (Pace, 2014).

During their lifecycle, the parasites alternate between the
promastigote form that resides in the alimentary tract of the
sandfly vector and the amastigote form that is found inside
the parasitophorous vacuoles of mammalian host mononuclear
phagocytes. Promastigotes are transmitted from the sand fly vector
to themammalian host during bloodmeal consumption (Vannier-
Santos et al., 2002). Since their inoculation, parasites face diverse
hostile microenvironments and present various strategies to impair
themicrobicidal power of the host immune system and survive and
proliferate during the course of infection (Podinovskaia and
Descoteaux, 2015). In this context, the current review aims to
present and discuss the roles played by different class I nucleases
during the Leishmania lifecycle, especially regarding the
establishment of mammalian host infection.

Class I nucleases hydrolyze nucleic acidswithRNAas theirmain
substrate and present nucleotidase activity that can hydrolyze the
phosphate group at the 3’ position of 3’-monophosphorylated
nucleotides. Several members of the class I nuclease family have
been identified in plants, protozoa and fungi (Wilson, 1982; Desai
and Shankar, 2003). The P1 nuclease of Penicillium citrinum,
which is considered one of the archetypes of class I nucleases, has
been studied for its three-dimensional structure in more detail.
Crystallographic assays have revealed the presence of three
coordinated Zn2+ ions that delimit the active site of the enzyme.
The proposed mechanism for catalysis involves a nucleophilic
attack of Zn2+ activated by a water molecule (Volbeda et al., 1991;
Romier et al., 1998). The sequential alignment of class I nuclease
family members revealed the existence of five highly conserved
regions, four of which have one or more histidine residues and are
likely to be involved in the binding of Zn2+ ions (Yamage
et al., 2000).

Throughout this review, we provide an overview of the major
biochemical properties of the class I nucleases identified in several
Leishmania species, as well as their differential expression
throughout the parasite lifecycle. We also discuss the
physiological roles that have been attributed to these enzymes,
highlighting their potential uses in leishmaniasis chemotherapy
and prophylaxis.
PROMASTIGOTE STAGE-SPECIFIC
CLASS I NUCLEASE

3’-NT/NU
To successfully establish infection in the mammalian host,
Leishmania parasites must impair the microbicidal repertoire
of neutrophils and macrophages. One of the strategies for
neutrophil-mediated killing is the release of a lattice composed
of DNA associated with histones and granular and cytoplasmic
proteins named neutrophil extracellular traps (NETs). NETs can
ensnare and kill microorganisms, preventing parasitic infection
(Brinkmann et al., 2004; Guimarães-Costa et al., 2012). For
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several microorganisms, the expression of secreted or
membrane-bound nucleases has been reported as a strategy to
escape the toxic effects promoted by NETs (Sumby et al., 2005;
Berends et al., 2010; Seper et al., 2013; Thammavongsa et al.,
2013; Afonso et al., 2021). The bifunctional enzyme 3’-
nucleotidase/nuclease (3’-NT/NU), a unique class I nuclease
present in several Leishmania species, has been considered an
important factor for parasite escape from NET-mediated death
through the hydrolysis of extracellular DNA (Guimarães-Costa
et al., 2014; Freitas-Mesquita et al., 2019).

3’-NT/NU was first described in Leishmania donovani
parasites (Gottlieb and Dwyer, 1983). Acid phosphatase, 5’-
nucleotidase, and 3’-nucleotidase activities were observed in
the surface membrane fraction isolated from L. donovani
promastigotes. Based on biochemical properties, primarily
differential sensitivity to inhibitors, these activities were shown
to correspond to different enzymes (Gottlieb and Dwyer, 1983).
Posterior studies performed with several Leishmania species
have shown that 3’-NT/NU presents stage-specific expression.
While procyclic and metacyclic promastigotes express the
enzyme, no expression is observed in amastigotes (Sopwith
et al., 2002; Lakhal-Naouar et al., 2008).

Due to similarities in biochemical parameters and structure,
the enzyme 3’-NT/NU was classified as a member of the class I
nuclease family (Neubert and Gottlieb, 1990). Sequence analyses
of the gene encoding 3’-NT/NU in L. donovani (Debrabant et al.,
1995; Debrabant et al., 2000), Leishmania mexicana (Sopwith
et al., 2002), Leishmania major (Lakhal-Naouar et al., 2008), and
Leishmania amazonensis (Paletta-Silva et al., 2011) have
confirmed the presence of the five highly conserved regions
associated with the class I nuclease family. 3’-NT/NU is a
unique class I nuclease characterized as a cell surface
membrane-anchored protein (Debrabant et al., 1995). In
accordance with its previously observed ectoactivity, analysis of
functional domains has shown the presence of an N-terminal
signal peptide that targets the enzyme to the endoplasmic
reticulum and a C-terminal transmembrane domain that
anchors the enzyme to the parasite surface (Debrabant et al.,
2000; Yamage et al., 2000).

In terms of biochemical analyses, the 3’-nucleotidase activity
of 3’-NT/NU has been vastly studied, with reports in several
species, including L. donovani (Gottlieb and Dwyer, 1983),
L. mexicana (Hassan and Coombs, 1987), L. major (Lakhal-
Naouar et al., 2008), Leishmania chagasi (Vieira et al., 2011), and
L. amazonensis (Paletta-Silva et al., 2011). However, few studies
regarding the nuclease activity of 3’-NT/NU, which is referred
to as ecto-nuclease activity, are available. The first study to
perform full biochemical characterization of ectonuclease
activity in Leishmania parasites was recently carried out with
L. amazonensis (Freitas-Mesquita et al., 2019). The biochemical
parameters were determined by evaluating the hydrolysis of
extracellular nucleic acids using the purified recombinant
enzyme and living promastigotes. This activity was shown to
be more efficient at alkaline pH values, as previously observed for
the ecto-3’-nucleotidase activities of L. donovani (Gottlieb and
Dwyer, 1983), L. mexicana (Hassan and Coombs, 1987), and
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L. amazonensis (Paletta-Silva et al., 2011). RNA, DNA, and
different polyribonucleotides were efficiently hydrolyzed by
L. amazonensis, which showed a preference for RNA, Poly-U,
and Poly-A, which is consistent with the substrate specificity
previously determined in L. donovani (Campbell et al., 1991).

Trypanosomatids do not express the enzymes responsible for
de novo synthesis of purines; therefore, they are strictly
dependent on host sources. As nucleotides and nucleic acids
cannot be transported across the plasma membrane, their
sequential hydrolysis to nucleosides constitute an important
step in the purine acquisition process (Hammond and
Gutteridge, 1984; Gottlieb, 1989). Through its nucleotidase
activity, 3’-NT/NU can generate extracellular nucleosides
through dephosphorylation of 3’-monophosphorylated
nucleotides. Moreover, hydrolysis of extracellular nucleic acids
generates 5’-monophosphorylated nucleotides that can be
converted to nucleosides by the action of ecto 5’-nucleotidase,
another ectoenzyme present in the plasma membranes of several
trypanosomatids (Gottlieb, 1989), as summarized in Figure 1A.

Studies with L. donovani and L. amazonensis have shown that
the expression and activity of 3’-NT/NU are stimulated when
parasites face purine deprivation during growth, corroborating
their involvement in the purine salvage pathway (Gottlieb, 1985;
Freitas-Mesquita et al., 2019). The starvation of inorganic
phosphate (Pi), which is one of the products of the reactions
catalyzed by 3’-NT/NU, can also positively modulate ecto-3’-
nucleotidase activity, as observed in L. donovani (Sacci et al.,
1990) and L. chagasi (Vieira et al., 2011).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
The role of 3’-NT/NU in the significant generation of
extracellular adenosine, which is promoted by 3’-AMP
hydrolysis or even by the sequential hydrolysis of nucleic acids
to nucleosides, is also important from an immunological
perspective. A adenosine can interact with purinergic
receptors, triggering the release of anti-inflammatory cytokines
and impairing the production of proinflammatory cytokines,
thus favoring the establishment of parasite infection, as shown in
Figure 1A (Paletta-Silva and Meyer-Fernandes, 2012; Freitas-
Mesquita and Meyer-Fernandes, 2014; Freitas-Mesquita and
Meyer-Fernandes, 2017).

Parasite and macrophage in vitro interaction assays have
shown that the addition of 3’-AMP to the coculture medium
promotes an increase in association indices, as observed in
L. chagasi and L. amazonensis. The positive modulation
promoted by 3’-AMP was equivalent to that observed with the
same concentration of adenosine (Paletta-Silva et al., 2011;
Vieira et al., 2011). Moreover, when 3’-AMP was added
together with 3’-NT/NU inhibitors, such as tetrathiomolybdate
(TTM) and guanosine 5’-monophosphate (5’-GMP), the
stimulatory effect was completely reverted (Paletta-Silva et al.,
2011; Freitas-Mesquita et al., 2016). Taken together, these results
confirm that the modulation exerted by 3’-AMP is related to its
conversion to adenosine by the action of 3’-NT/NU.

Although ectonuclease activity may indirectly contribute to
adenosine generation, its major biological role seems to be
related to parasite escape from NETosis (Figure 1A). An
increase in the survival rate upon interaction with neutrophils
A B

FIGURE 1 | Class I nucleases of Leishmania spp. and their possible roles during the establishment and maintenance of parasite infection. To successfully establish
infection in the mammalian host, Leishmania promastigotes must impair the microbicidal repertoire of neutrophils and macrophages. One of the strategies for
neutrophil-mediated killing is the release of NETs. The parasite can escape from the traps by DNA hydrolysis performed by 3’-NT/NU (1), a membrane-bound class I
nuclease. Hydrolysis of extracellular nucleic acids generates 5’-monophosphorylated nucleotides, including 5’-AMP, that can be converted to adenosine by the
action of ecto 5’-nucleotidase (2). Adenosine can be uptaken by parasites through nucleoside transporters (3) to supply the purine salvage pathway or bind to
purinergic receptors (4) of host macrophages, thus favoring parasite infection (A). To maintain the infective process, the parasites must differentiate into amastigotes,
which can survive and proliferate inside parasitophorous vacuoles. Amastigotes express a secreted nuclease (5) that may mobilize extracellular nucleic acids located
around the parasite and convert them to nucleotides, thus contributing to the purine salvage pathway. Another class I nuclease selectively expressed by amastigotes
is P4/LmC1N nuclease (6). Located at the endoplasmic reticulum, this nuclease is probably involved in gene expression through mRNA degradation. Due to its
endonuclease activity, this enzyme may also promote DNA repair, subverting the eventual damage caused by the oxidative burst (B). NETs, neutrophil extracellular
traps; 5’-AMP, adenosine-5’-monophosphate; ADO, adenosine; RNA, ribonucleic acid; DNA, deoxyribonucleic acid; ROS, reactive oxygen species.
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was correlated with deprivation of Pi and purines during the
growth of L. infantum (Guimarães-Costa et al., 2014) and L.
amazonensis (Freitas-Mesquita et al., 2019), respectively. As
previously reported, 3’-NT/NU activity is sensitive to Pi and
purine contents in culture medium and is increased when
parasites are starved of these nutrients (Gottlieb, 1985; Sacci
et al., 1990; Vieira et al., 2011). Furthermore, pretreatment of L.
infantum parasites with TTM and 5’GMP, two 3’-NT/NU
inhibitors, resulted in a decrease in NET degradation
(Guimarães-Costa et al., 2014). These correlations strongly
suggested the participation of 3’-NU/NU in NET hydrolysis,
which was confirmed by the results obtained with the purified
recombinant protein. The addition of r3’-NT/NU increased
parasite survival after coculture with neutrophils and after
incubation with NET-enriched supernatant. The effect
promoted by r3’-NT/NU was similar to that obtained by
DNase, which is known to be able to destroy NETs (Freitas-
Mesquita et al., 2019).
AMASTIGOTE STAGE-SPECIFIC CLASS I
NUCLEASES

P4/LmC1N
Several different drugs are available for the treatment of
leishmaniasis , but pentavalent antimony-containing
compounds remain to be used as the standard treatment,
mainly in Latin America (Herwaldt and Berman, 1992;
Berman, 1997; Ashutosh et al., 2007). However, an increase in
therapeutic failure has been noted in the past few years due to the
emergence of resistant parasites (Croft and Olliaro, 2011). In this
context, the development of a vaccine against leishmaniasis is an
extremely important aspect for the control of this disease, which
affects millions of people worldwide. Although no effective
vaccines against human leishmaniasis are currently available,
hundreds of potential candidates are being studied (Singh and
Sundar, 2012), including a class I nuclease selectively expressed
by amastigotes of different Leishmania species (Kar et al., 2000;
Campbell et al., 2003; Fakhraee et al., 2016).

Previous studies have shown that inoculation of living
promastigotes is effective for preventing Old World cutaneous
leishmaniasis (CL) (Greenblatt, 1980; Modabber, 1995).
However, vaccination with virulent parasites is currently
considered ethically unacceptable due to adverse reactions in
susceptible individuals (Stober et al., 2006). First-generation
vaccines have shown low efficacy since they are based on the
use of killed parasites that do not mimic natural infection and are
less immunogenic (Dunning, 2009; Fakhraee et al., 2016). On the
other hand, second-generation vaccines induce protection using
parasite antigens that may be obtained from native fractions
purified from parasites (Rachamim and Jaffe, 1993; Borja-Cabrera
et al., 2009; Moreno et al., 2014) or from recombinant bacteria or
viruses carrying Leishmania antigen genes (De Oliveira et al.,
2000; Smooker et al., 2004; Palatnik-de-Sousa et al., 2008; Miura
et al., 2015). As amastigotes represent the parasite stage
responsible for the pathology associated with leishmaniasis,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
amastigote-specific antigens are of particular interest for the
development of an efficient vaccine (Kar et al., 2000; Farajnia
et al., 2004). One of the first studies to investigate stage-specific
purified antigens reported that three antigens selectively
expressed amastigotes (P2, P4, and P8) to confer partial to
complete protection against infection with Leishmania pifanoi
and L. amazonensis in BALB/c mice (Soong et al., 1995).

To obtain more information on this potential prophylactic
target, the gene encoding the P4 antigen of L. pifanoi was cloned
and sequenced (Kar et al., 2000). Comparative analyses using DNA-
derived protein sequences have revealed significant levels of identity
with the 3’-NT/NU of L. donovani (33.7%) and the P1 zinc-
dependent nuclease of Penicillium citrinum (20.8%), suggesting
that the P4 antigen possesses nuclease activity (Kar et al., 2000).
This biological property was further confirmed by biochemical
assays. Using different substrates to measure the enzymatic
activity of affinity-purified L. pifanoi P4, the protein was observed
to display endo- and exonuclease activity and can hydrolyze single-
stranded DNA and RNA. 3’-monophosphorylated nucleotides are
also substrates for P4 nuclease, revealing the presence of
phosphomonoesterase activity (Kar et al., 2000).

Despite the level of homology and the similarities in substrate
specificity, P4 nuclease differs from 3’-NT/NU in several aspects
(Gottlieb and Dwyer, 1981; Gottlieb and Dwyer, 1983; Debrabant
et al., 1995; Kar et al., 2000).While 3’-NT/NU is an external surface
membrane protein, P4 nuclease appears to have a perinuclear
location. Immunofluorescence analyses showed that P4 protein
colocalizes with a binding protein (BiP), a marker of the
endoplasmic reticulum (Bangs et al., 1996). Notably, nuclease
activities associated with the endoplasmic reticulum are involved
inmRNA stability (Bandyopadhyay et al., 1990; Ross, 1996). In this
context, P4 nuclease can be speculated to play a role in gene
regulation and expression. Due to its endonuclease activity, the
P4 protein may also be involved in nucleotide excision and repair.
This propertymaybe crucial for parasite survival in themammalian
host once inside the phagolysosome of a macrophage. Leishmania
parasites are constantly subjected to the oxidative burst that
promotes DNA damage (Kar et al., 2000). These possible
biological roles are schematized in Figure 1B.

In addition to localization, the most remarkable difference
between 3’-NT/NU and P4 nuclease is their differential
expression during the parasite lifecycle. The expression of 3’-
NT/NU and P4 nuclease is virtually restricted to the
promastigote and amastigote stages, respectively. Northern blot
analyses using RNA purified from L. pifanoi and L. amazonensis
have confirmed previous reports that P4 protein is exclusively
expressed by amastigotes (Soong et al., 1995; Kar et al., 2000)

Southern blot analyses have shown that homologs of the P4
gene are present in other Leishmania species, including
L. amazonensis, L. braziliensis, L. major and L. donovani (Kar
et al., 2000). A novel class I nuclease was posteriorly identified
in L. major (LmaC1N), presenting high similarity (87%) to the
P4 nuclease of L. pifanoi (Farajnia et al., 2004). The gene
encoding LmaC1N was cloned using primers specific for
conserved regions of class I nucleases of trypanosomatids, and
deduced sequence analyses confirmed the existence of all five
October 2021 | Volume 11 | Article 769933
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conserved regions (Farajnia et al., 2004). Similar to P4 nuclease
and in contrast to 3’-NT/NU, LmaC1N was selectively expressed
in amastigotes rather than promastigotes, as observed by RT–
PCR and Western blotting assays (Farajnia et al., 2004).

Posteriorly, a homolog of P4 nuclease was identified in L.
infantum, the causative agent of visceral leishmaniasis. The P4
nuclease genewas cloned, sequenced, andheterologously expressed
for further characterization (Farajnia et al., 2011). Comparative
sequence analyseshave shownhighhomology to theP4nucleasesof
L. donovani, L. major and L. pifanoi. The alignment results
confirmed the existence of the five conserved domains of class I
nucleases (Farajnia et al., 2011). Western blot analyses have shown
that the P4 nuclease of L. infantum is expressed in both
promastigotes and amastigotes. However, in accordance with
previous studies involving this enzyme, its expression is
significantly higher in amastigote parasites (Farajnia et al., 2011).

The high conservation among several Leishmania species, as
well as the extensive expression found in the amastigote stage,
renders P4 nuclease an excellent target for the development of a
pan-Leishmania vaccine (Kar et al., 2000; Coler and Reed, 2005;
Farajnia et al., 2011; Fakhraee et al., 2016). The first observations in
this area showed that intraperitoneal injections of P4 antigen
administered with Corynebacterium parvum as an adjuvant
provided significant protection to BALB/c mice challenged with
L. pifanoi promastigotes (Soong et al., 1995). The immunized mice
developed smaller or no lesions, showing a significant parasite
burden reduction after two weeks of infection. An increase in the
levels of interferon gamma (IFN-g) production was observed when
immunizedmicewere stimulatedwith parasite antigens, suggesting
that the resistance induced by P4 antigen is associated with a T
helper 1 (Th1) cell-mediated immune response (Soong et al., 1995).
Posteriorly, CD4+ T cells of P4-vaccinated mice were observed to
produce not only IFN-g but also macrophage migration inhibitory
factor (MIF) and tumor necrosis factor/lymphotoxin (TNF/LT),
leading to intracellular parasite destruction in vitro (Kar 2005).

A few years later, a DNA-based vaccine was tested using the L.
amazonensis gene encoding the P4 nuclease associated with
adjuvant constructs encoding murine interleukin-12 (IL-12) and
L. amazonensis heat-shock protein 70 (HSP70) (Campbell et al.,
2003). Both IL-12 andHSP70 have been reported to elicit Th1-type
responses (Mattner et al., 1996; Wang et al., 2002). P4/IL-12-
immunized BALB/c mice developed potent immune protection
against L. amazonensis but remained susceptible to L. major
infection. On the other hand, the P4/HSP70 vaccine only delayed
the emergence of lesions in L. amazonensis-infected mice but was
highly efficient against L.major, leading to a self-healing phenotype
in infectedmice (Campbell et al., 2003). To develop a DNA vaccine
that promotes cross-protection against different Leishmania
species, determining the optimal combination of several parasite
genes and an appropriate adjuvant is crucial. Based on these results,
P4 and HSP70 appear to be promising candidates for the
development of a DNA-based vaccine for both New and Old
World Leishmania species (Campbell et al., 2003).

Other studies in this field were performed based on LmaC1N
protein, the P4 nuclease homolog from L. major. To evaluate
LmaC1N as a potential human vaccine candidate, cellular
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
immune responses to recombinant LmaC1N (rLmaC1N) were
examined in individuals who had recovered from Old World
cutaneous leishmaniasis (Farajnia et al., 2005). In addition to
being recognized in 90% of the individuals tested, rLmaC1N was
shown to elicit strong Th1-like responses characterized by high
levels of IFN-g, low levels of IL-10, and minimal IL-5 production
(Farajnia et al., 2005). Later, the first report using animal models
showed that the use of liposome-polycation-DNA (LPD) as an
immunoadjuvant renders rLmaC1N an appropriate candidate for
developing a suitable vaccine against leishmaniasis (Fakhraee et al.,
2016). BALB/c mice vaccinated with rLmaC1N plus LPD
nanoparticles showed delayed emergence of skin lesions as well as
a delay in the spread of L. major from the inoculation site to the
spleen. The statistically significant advantageous effects observed
for rLmaC1N’s association with LPD nanoparticles compared to
the effects obtained without coadministration of this adjuvant
demonstrate the importance of selecting an efficient antigen
delivery system for better protection (Fakhraee et al., 2016).

LdNucs
Beyond the membrane-bound 3’-NT/NU and the intracellular P4
nuclease, a secretory class I nuclease has also been identified and
shown to be conserved in different geographic isolates of
L. donovani and L. infantum (Joshi and Dwyer, 2007; Joshi et al.,
2012). First, L. donovani promastigotes were observed to
constitutively synthesize and release this nuclease, named LdNucs,
into their growth medium. Then, this activity was identified in
axenic amastigotes as well as in vivo-derived amastigotes isolated
from infected hamster spleen tissue (Joshi and Dwyer, 2007).
Analyses of the LdNucs-derived protein have confirmed the
presence of the five conserved domains of class I nucleases (Joshi
and Dwyer, 2007). Zymogram gels of cell lysates and culture
supernatants showed marked differences between 3’-NT/NU and
LdNucs activities. While 3’-NT/NU is ~43 kDa and insensitive to
dithiothreitol (DTT) inhibition, LdNucs is a 35-kDa, DTT-sensitive
nuclease. As previously described, 3’-NT/NU is a membrane-bound
enzyme; therefore, its activity was detected only in cell lysates. On
the other hand, LdNucs activity was detected in both cell lysates and
concentrated cell-free culture supernatants (Joshi and Dwyer, 2007).

Coupled immunoprecipitation-enzymatic assays using
epitope-tagged recombinant enzyme were performed to
analyze other biochemical properties of LdNucs activity. The
enzyme was capable of hydrolyzing RNA, single- and double-
stranded DNA and a variety of synthetic polynucleotides.
LdNucs appears to have a broad pH tolerance since nucleic
acid hydrolysis occurred under both acidic (pH 5.0) and alkaline
conditions (pH 8.5), suggesting that LdNucs may be completely
functional within the different microenvironments faced by
parasites during their lifecycle (Joshi and Dwyer, 2007).

Sera collected from infected visceral leishmaniasis patients
from different geographic locations were able to recognize
LdNucs, which clearly indicates that the enzyme is synthesized
and expressed by in vivo amastigotes during the course of human
infection (Joshi et al., 2012). The biological role played by
LdNucs remains to be completely elucidated; however, the
enzyme was postulated to participate in the purine salvage
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pathway. As a secreted protein, LdNucs can function far away
from the parasite in the mobilization of host-derived nucleic
acids. Together with 3’-NT/NU and other enzymes involved in
purine salvage, LdNucs may contribute to the availability of
extracellular nucleosides and nucleobases that can be uptaken
by the parasite (Joshi and Dwyer, 2007) (Figure 1B).
CONCLUDING REMARKS

Since the 1980s, with the first study describing the occurrence of 3’-
NT/NU in L. donovani, several works have identified class I
nucleases in different Leishmania species. Throughout this review,
we discussed the occurrence and the major biochemical features of
membrane-bound (3’-NT/NU), intracellular (P4/LmC1N), and
secreted (LdNucs) nucleases of this pathogenic parasite. The main
properties and the proposed biological functions of these class I
nucleases are summarized in Table 1. Beyond their different
localization, these enzymes were also observed to display
differential expression throughout the parasite lifecycle. While 3’-
NT/NU is selectively expressed in promastigotes, P4/LmC1N and
LdNucs predominated at amastigotes (Kar et al., 2000; Sopwith
et al., 2002; Farajnia et al., 2004; Joshi and Dwyer, 2007; Lakhal-
Naouar et al., 2008; Farajnia et al., 2011).

Due to its ecto-localization, 3’-NT/NU can hydrolyze
extracellular substrates, which is also true for LdNucs because it is
a secreted enzyme. Because of this feature, the first biological role
proposed for these nucleases was their involvement in the purine
acquisition process (Sopwith et al., 2002; Joshi and Dwyer, 2007;
Lakhal-Naouar et al., 2008) (Figures 1A, B). In addition to the
nutritional viewpoint, 3’-NT/NU has also been related to the
establishment of parasite infection in mammalian hosts, as
represented in Figure 1A. By hydrolyzing extracellular nucleic
acids through its ecto-nuclease activity, Leishmania promastigotes
can escape from NETs, thus avoiding a hostile microenvironment
andbeing able to infectmacrophages (Guimarães-Costa et al., 2014;
Freitas-Mesquita et al., 2019). 3’-NT/NU can provide extracellular
adenosine directly by 3’-AMP hydrolysis or by converting nucleic
acids to 5’-monophosphorylated nucleotides, which culminates in
adenosine generation by conjugate action with ecto-5’-
nucleotidase. Adenosine can interact with purinergic receptors of
the host immune system, favoring Leishmania-macrophage
interactions (Paletta-Silva et al., 2011; Vieira et al., 2011; Paletta-
Silva and Meyer-Fernandes, 2012; Freitas-Mesquita and Meyer-
Fernandes, 2014; Freitas-Mesquita et al., 2016).
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The roles played by 3’-NT/NU are significantly relevant at the
early stages of infection, which is consistent with its expression in
the promastigote form of the parasite. Metacyclic promastigotes
are the infective form for mammalian hosts; thus, they face the first
strategies of the immune system to impair the establishment of
infection. However, parasites must differentiate into amastigotes to
continue the infective process, subverting the killing repertoire of
macrophages. The survival and proliferation of amastigotes inside
the phagolysosome vacuole determine the success of parasite
infection (Pace, 2014). In this context, enzymes important for
amastigote development and survival are considered potential
targets for chemotherapy against leishmaniasis. LdNucs is
conserved in different geographical isolates of L. donovani and
L. infantum, is expressed by in vivo amastigotes during the course
of human infections, and is an interesting chemotherapeutic
target due to its possible role in the purine salvage pathway
(Joshi and Dwyer, 2007; Joshi et al., 2012).

Another nuclease expressed in amastigotes, named P4 nuclease,
was first described in L. pifanoi and was shown to be located in the
endoplasmic reticulum of the parasite. Due to its cellular location
and its endonuclease activity, P4 nuclease is probably involved in
mRNA stability and nucleotide excision and repair (Figure 1B).
Homologs of P4 nuclease were described in several Leishmania
species, including L. major, which was named LmC1N. By being a
protein conserved among different species, P4/LmC1N emerges as
an interesting target for the development of vaccines promoting
cross-protection against different manifestations of leishmaniasis
(Soong et al., 1995; Farajnia et al., 2005; Fakhraee et al., 2016).
Although the results obtained thus far have suggested possible
cross-protection triggered by the employment of P4/LmC1N
antigens, different combinations of parasite genes and appropriate
adjuvants must be investigated to reach optimal conditions.

Based on all data discussed throughout this review, class I
nucleases seem to play different and important roles in parasite
growth, survival, and development, including the establishment and
maintenance of infection in mammalian hosts. It is noteworthy that
more advanced approaches in the fields of molecular biology and
bioinformatics would be crucial to providemore precise information
about these enzymes. The silencing or overexpression of the genes
encoding these proteins would be remarkably helpful to fully
comprehend their physiological roles. The availability of the
genome of different Leishmania species allows determining the
structurally and functionally conservation of the class I nucleases
throughout the parasites’ evolution. Additional studies are certainly
required to deepen the knowledge about this important class of
October 2021 | Volume 11 | Article 769933
TABLE 1 | Class I nucleases of Leishmania parasites.

Class I
Nuclease

Expression during
lifecycle

Localization Potential physiological roles/
applications

References

3’-NT/NU Promastigote Membrane-
bound

Purine salvage pathway
Purinergic signaling
NETs hydrolysis

(Gottlieb, 1985; Debrabant et al., 1995; Lakhal-Naouar et al., 2008; Vieira et al.,
2011; Guimarães-Costa et al., 2014)

P4/LmC1N Amastigote Perinuclear Gene expression
DNA repair
Vaccine target

(Soong et al., 1995; Kar et al., 2000; Campbell et al., 2003; Farajnia et al., 2004;
Fakhraee et al., 2016)

LdNucs Amastigote Secreted Purine salvage pathway (Joshi and Dwyer, 2007; Joshi et al., 2012)
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enzymes that has been considered a potential target for
chemotherapy and prophylactics against leishmaniasis.
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