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A universal mechanism of extreme 
events and critical phenomena
J. H. Wu1,3 & Q. Jia2

The occurrence of extreme events and critical phenomena is of importance because they can have 
inquisitive scientific impact and profound socio-economic consequences. Here we show a universal 
mechanism describing extreme events along with critical phenomena and derive a general expression 
of the probability distribution without concerning the physical details of individual events or critical 
properties. The general probability distribution unifies most important distributions in the field 
and demonstrates improved performance. The shape and symmetry of the general distribution is 
determined by the parameters of the fluctuations. Our work sheds judicious insights into the dynamical 
processes of complex systems with practical significance and provides a general approach of studying 
extreme and critical episodes in a combined and multidisciplinary scheme.

Extreme events and critical phenomena commonly take place in nature and society from extraordinary occur-
rences to critical properties, immensely diverse in types and dissimilar in properties1–3. They can be natural 
and/or anthropogenic in origin and show multifaceted features of rareness, complexity and extremality1–6. The 
occurrence often proves awesomely challenging in forecasting and severe impact on the physical world involving 
loss of properties or even life, but opportunities after shake-up1–3,5–8. Such events and phenomena are pervad-
ing in a wide range of fields as global variables or quantities. Most prominent practical situations are found in 
self-organized critical phenomena7, Darwinian evolution of fitter proteins9, complex spontaneous brain activity10, 
fickle stock exchange11, conductance flux in bacteriorhodopsin films12, acute scenarios in capricious weather13,14, 
power fluctuations in electroconvection15, worldwide seismicity16 and geophysical processes17. Furthermore, inti-
mately related studies and findings are dynamics in glassy systems18 and intermittent imbibition fronting19, aging 
research on maximum lifespan20, ventricular fibrillation in very short electrocardiogram episodes21, non-trivial 
criticality scaling in galaxy distribution22, roughing 1/f noise in a resistor23, instable resistance near electrical 
breakdown24, and non-equilibrium critical point in GaAs25, among many others.

Hence, the importance of comprehensive understanding of underlying mechanisms for the happening of 
extreme events and critical phenomena as well as their connection cannot be over-emphasized. As systems may 
be complicated, great efforts are categorically required to cope with them1–6. In fact, the fluctuating behavior in 
the global quantities as addressed above, though tremendously diverse in variety and different in properties, may 
in principle be described by the statistics of extreme values and/or sums of random variables, regardless of being 
independent or correlated1–8,17. To deal with extreme events, the first theoretical treatment is done by the Gumbel 
distribution (GD) on the extremal sequencing of independent and identical random variables4,7. The Gumbel 
distribution reads4,6
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as one of the Fisher-Tippet-Gumbel (FTG) distributions (λ  is a scale parameter and ω  is the mode). A straight-
forward calculation shows that equation (1) has the mean value of ω +  γλ (γ is the Euler–Mascheroni constant) 
and the standard deviation of πλ/ 6. In contrast, critical behavior in purported correlated systems is similarly 
observed and the corresponding asymmetric distributions emerge in the way that such non-Gaussian 
distributions in those very different systems from turbulence to self-organized criticality, when properly rescaled, 
can collapse to the Bramwell-Holdsworth-Pinton (BHP) distribution7,
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in which y =  b (x −  s) with K, b and s being parameters and π  the ratio of circle’s circumference to diameter, or the 
generalized Gumbel (GG) distribution8
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function).
By and large, the derivation of the distributions as just addressed has arisen either from extremization or 

concrete models, suggestive of a possible connection between a global quantity and extreme value problems asso-
ciated with extreme value distributions4–8. But a clear, universal delineation which bonds the dynamical processes 
of different complex systems in the same vein is still elusive and under active exploitation, to satisfactorily tackle 
questions such as correlation between universal fluctuations of a global variable and extremal statistics, or more 
specifically, finding a general mapping between minmax values for extreme events and the sums of broadly dis-
tributed variables for critical phenomena6–8. Here we show a universal mechanism of extreme events and critical 
phenomena, disregard of a concrete system or property, to establish a general platform to bring together different 
systems in the same perspective. We unveil a more extended expression for the probability distribution, in which 
the GD, BHP, or GG distributions come out as particular cases. The properties like shape and symmetry of the 
general distribution are exclusively determined by the parameters of the fluctuating variables, highlighting that 
asymmetric fluctuations overwhelmingly matter and extreme events as well as critical phenomena can ensue. Our 
work shall put forward a useful framework in the research of different extreme events and critical phenomena in 
the extensive spectrum in the connection with ordinary events.

Results
We first consider a global variable (quantity) of a system as the sum over infinite many random variables (fluc-
tuations) around its mean value at different levels of stochastic cascading with exponential distributions8,23,26. 
Suppose Xn (n =  1, 2, 3, …, m, m →  + ∞) are these independent distributed random variables (constructing a 
harmonic-like series of α, α +  β, α +  2β, α +  3β, …), with the exponential distribution of
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 and otherwise zero, with two parameters of α >  0 and β >  0. 

Evidently, Xn has the expectation of ( ) =E X 0n  and a standard deviation (Xn) or σn for brevity of 
α β+ ( − )

1
n 1

. With 
the zero mean value and the limited magnitude of the standard deviation, Xn represents a fluctuating contribution 
to the global quantity of the system. The fluctuation strength of Xn may be quantified through its standard devia-
tion. As n increases, the measure of σn shows a harmonic-like dwindle.

We are interested in the limiting probability density distribution of the global variable X defined as
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as m →  + ∞. In the equation, X0 is a constant random variable and has the same value as the mean (µ) of the 
global variable because of E (X) =  E (X0), or the mean value is originated from the constant random variable. 

Moreover, X has a finite standard deviation square of σ = ∑
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is a useful remark that the sum ∑ α β= + ( − )n 1
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n 1  is divergent when m →  + ∞, so X goes over the domain (− ∞, 
+ ∞). For Xn is defined over a domain depending on n, it facilitates to carry out a variable transform by 
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 (n =  1, 2, 3, …, m, m →  + ∞) as new random variables, with the modified exponential 
distribution of
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, rather than zero for Xn, but the standard deviation 
remains the same for both Xn and Yn. Therefore, the computation of the probability of equation (5)
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As the probability distribution of sum of many independent random variables is the convolution of each of 
their distributions, the probability distribution of the convolution = ∑ =Y Yn 1

m
n, under the condition of equation 

(6), may be deduced to take the form of 27
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after the substitution of equation (9). To calculate the integral part of equation (10), we introduce the variable 
z =  e−βy and then obtain
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Substituting equation (11) into equation (8), we get
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required to compute equation (12) 28, that is, ( )= 

+ 


Γ( + )

( − ) !
Om 1c cm

m 1
1
m

, ( )ψ ( + ) = ( + )

+ 


c c Om ln m 1 1

m
 

(here ψ ( ) = Γ( )a d a
da

ln  being the digamma function) and ψ ψ∑ = ( + ) − ( )= ( − ) +
c cn

cn 1
m 1

n 1
. Thus, )(Γ +

( − ) !

α
β

m

m 1
 is 

simplified to 
α
βm , and ∑ β

α β= + ( − )n 1
m

n 1
 in η(x) turns out to be ψ α β ψ α β∑ = ( + / ) − ( / )

α β= / + ( − )
mn 1

m 1
n 1

 
α β ψ α β( + / ) − ( / )~ ln m . As a result, η( ) =

α β
β ν

+ /
− ( − )x e x1

m
, with ν µ β ψ α β= + ( / )−1 .

After the asymptotic changes, we may formulate equation (12) in an asymptotical expression as
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To simplify the manipulation and get the limiting formulas, we make a new variable substitution by τ =  mz 
and use the relation of ( − / ) =→∞
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By directly differentiating equation (14), we in effect arrive at the general probability distribution function of 
the global quantity X as

α β ν β
α β

( , , , ) =
Γ( / ) ( )

α ν− ( − )− β ν− ( − )
f x e

15
x e x

or equivalently,

α β µ β
α β

( , , , ) =
Γ( / ) ( )

α µ
β
ψ α
β

−





− − 











−

β µ βψ
α
β−






− − 












f x e
16

x 1 e
x 1

with the mode at ( ) ( ) ( )ν µ ψ= − = + −
β

α
β β

α
β β

α
β

x ln ln1 1 1 . A straightforward check shows that f (x) meets 
the conditions as a probability density function with three parameters.
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Discussion
In terms of equation (15), the major probabilistic properties of the global variable are solely determined by the 
properties of the infinite many small asymmetric fluctuations around the mean value from the constant random 
variable, characterized by the parameters, α and β, describing the fluctuations. The mean, µ, shifts the location of 
the probability density distribution, but does not affect the shape and symmetry of the distribution. Moreover, α 
and β may contribute to the location of the distribution by a magnitude of ( )ψ

β
α
β

1 .
We come to discuss several special cases of this more extended probability distribution of equation (15). As 

indicated that the Gumbel distribution of equation (1) is first proposed for the successful description of extreme 
events1,4,8, we show that equation (1) can be obtained from equation (15). In point of fact, if we set α =  β =  1/λ 
and ν =  ω, equation (15) becomes equation (1), in other words, we may get the Gumbel distribution from the new 
general distribution4,8.

A broad variety of critical phenomena have been described quite satisfactorily by the BHP distribution of 
equation (2) or the GG distribution of equation (3). For example, the distribution of equation (2) or equation (3) 
is capable of describing the fluctuations of a global quantity in correlated equilibrium and nonequilibrium sys-
tems, from 2D XY model, modeling of forest fires, the dynamics of sandpiles and avalanches, percolation phe-
nomena, Ising and a coupled rotor models, and self-organized critical granular media. Nevertheless, we have 
pointed out that these valuable, well-founded distributions may be derived from the general probability distribu-
tion of equation (15) or equation (16) as proposed in this work. If we put α/β  =   π  /2, β  =   b, 
ν = − , =β

α ββ
α
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α
βs Kln and e1 ln , we may recover the BHP distribution equation (2) from equation 

(15) 7,8. If we set α/β =  a, β =  θa, and ν ν= − −
β

α
β

lna
1 , we may obtain the GG distribution expressed in equa-

tion (3) from equation (15) 8. Accordingly, the extended distribution of equation (15) is a more general probability 
distribution, including the GD, BHP, or GG distributions as special cases, which can describe extreme and critical 
events from exceptional episodes to criticality concerned.

There are three parameters in the general probability density distribution, so plotting the function f (x, α, β, μ) 
or f (x, α, β, ν) is of necessity to restraint the parameters. As previously noted, the change of the mean μ may 
translate the relevant curve horizontally, rather than the symmetry and shaping characteristics, we may set it to 
zero in the elucidation below. Consequently, we have the two remaining parameters, α and β, to tackle. The appre-
ciation of the effects of the parameters on the behavior of the general probability density distribution is revealed 
by dividing the parametric space in particular scenarios. In Fig. 1, the 3D plots are calculated by f (x, α, β, 
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 as a function of x and α for a specified β from 0.1, 0.2, 0.5, 1.0, 3.0 to 
5.0 (more examples are given in the Supplementary Information). Overall, the probability distribution shows 
cap-like surface mapping and the sliced section along x-axis at a given α, namely, a probability distribution curve 
as a function of x at the chosen α and β, monotonically increases, reaches the maximum and then decreases. The 
skew shape and symmetry is clearly dependent on the α parameter and the location of the sliced curve shifts with 
α. In addition, the position of the peak value (the mode) is evidently dependent on α and β in general, as deter-
mined by ( ) ( )ψ= −

β
α
β β

α
β

x ln1 1  when µ is set to 0.

In the same vein, 3D plots are obtained by considering )(α β µ( , , , = ) = β
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as a function of x and β for a specified α from 0.2, 0.5, 0.8, 1.0, 2.0 to 5.0, as shown in Fig. 2 (more examples are 
given in the Supplementary Information). The probability distribution demonstrates camping-tent-like or half 
snail-like surface diagrams. Analogous to Fig. 1, a sliced section along x-axis for a selected β, i.e., a probability 
distribution curve at the given α and β, monotonically increases, attains the peak value and then declines. 
Obviously, the parameters α and β have different effects on the behavior of the general probability distribution.

A useful, more direct intuition of the behavior of the universal probability density distribution is attained in 
2D plotting by further fixing α or β, as shown in Fig. 3. In the calculation of the curves, the general probability 
density distribution function equation (15) is used and the curves are presented in the scaled form of f (x, α, β, ν)
Γ (α/β) vs. (x −  ν). Figure 3a shows the case of α/β =  5 (α >  β) and α ∈  (0.5, 1.25, 2.5, 5, 12.5). The function 
strongly depends on the parameters and tightens the distribution as the parametric values increase. More sym-
metric distribution is found with the case of α/β =  1 (α =  β) and α ∈  (0.2, 0.5, 1, 2, 5), as given in Fig. 3b. Figure 3c 
illustrates the situation of α/β =  1/2 (α <  β) and α ∈  (0.1, 0.25, 0.5, 1, 2.5), revealing a similar narrowing spread 
of the distribution with an increasing value of α. We then fix one of the two parameters, α or β. Figure 3d is the 
result of setting β =  1 and α ∈  (0.2, 0.5, 1, 2, 2.5), characterized by the collapse of the curves on the narrow zone 
on the left. In contrast, Fig. 3e shows the outcome of setting α =  1 and β ∈  (0.2, 0.5, 1, 2, 5), featured by the close 
descendency of the curves on the narrow zone on the right. The GG distribution is comparatively displayed in 
Fig. 3f, with the parametric selection of α ∈  (0.2, 0.5, 1, 2, 5), which is in conformity with the characteristics of the 
curves from the new general distribution. More examples are shown in the Supplementary Information.

As addressed above, extreme events alongside critical phenomena may have been appropriately elucidated by 
the GD distribution of equation (1) and the BHP distribution of equation (2) or the GG distribution of equation 
(3). As a result, improved effect is expected from the newly derived universal distribution. For substantiation, 
the experimental data of 2D XY modeling were comparatively evaluated by equation (15) vs. equation (2) 29. As 
shown in Fig. 4, the function of equation (15) (real line) adequately describes the experimental data (solid circles), 
much better than that of equation (2) (dash line). The parameters as obtained from the calculation of equation 
(15) are α =  1.42078, β =  0.78065 and ν =  1.42078 when the magnetization is interpreted as a negative variable 
instead. The derived exponent from equation (15) is 1.8200, much larger than π /229. We point out that both the 
GG distribution of equation (3) and the BHP distribution of equation (2) have an analogous form, but the former 
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seems to have less freedom than the latter. So, it is expected that the GG distribution may have a poorer fit of the 
data.

Since the extended distribution of equation (15) as a more general probability distribution function is derived 
from the two-parametric fluctuations as well as the mean value of the global quantity, it is of interest to  
elaborate a bit more about the choice of the parameters and the consequent reduction to a specific  
probability density function. As mentioned above, the peak value of equation (15) is specified at 

( ) ( ) ( )ν µ ψ= − = + −
β

α
β β

α
β β

α
β

x ln ln1 1 1 , so all the three parameters together determine the maximum 
density position of the distribution, showing the non-Gaussian characteristics of the global quantity. As shown in 
Figs 1–3, the skew shape and asymmetric attribute of the probability density distribution in contrast is obviously 
dependent on the selection of the α and β parameters but not the mean, µ. When we choose the parameters under 
the condition of α =  β, the fluctuations are reduced to one-parametric ones, a series of α, 2α, 3α, …, and corre-
spondingly, equation (15) turns to be the GD distribution describing extreme events. Alternatively, the extreme 
events can be equivalently handled in the context of both extreme value theory and special correlated cases. 
Nonetheless, it is quite obvious that the condition of α =  β isn’t satisfied in general, so that the parameters are not 
reducible to the same single one, giving the description of correlated events.

The approach and results as obtained in this work may have broad implications and useful applications in 
addressing extreme events and correlated phenomena since pertinent physical systems may be appropriately 
represented by global quantities (variables), for example, fluid turbulent transport, percolation phenomena, 
modeling of forest fires, 2D XY model, Darwinian evolution of fitter proteins, spontaneous brain activity, stock 
exchange, capricious weather, and seismicity. As a matter of fact, a global quantity (variable) which is handled 
as the statistics of sum of infinite many random variables about its mean value is a proper descriptor of additive 
properties of a physical system, such as magnetization and total energy, and the corresponding probability dis-
tribution function is of significance to manifest information on the physics of the system. In the case of the 2D 
XY model as previously discussed, spins fluctuate around their mean value as spin magnetic momentum vari-
ables Xn with the expectation of E (Xn) =  0 according to the asymmetric exponential distributions of equation 
(4), in which the constants have a definite relation with respect to the two parameters of α and β, featuring the 
characteristic of a correlated system. The magnetization of the model system has proved to follow the general 
probability distribution function of equation (15) (Fig. 4), revealing a common feature of an extreme event and a 

Figure 1.  3D Plots of the general probability density distribution as a function of the variable x as well as 
the parameter α under the conditions of μ = 0 and a specified β value. (a) β =  0.1. (b) β =  0.2. (c) β =  0.5. 
 (d) β =  1.0. (e) β =  3.0. (f) β =  5.0.
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correlated system. Clearly, this approach, when suitable global variables are selected, is extendable to other phys-
ical systems, including the situations which have been successfully elucidated by the Gumbel distribution (GD), 
the Bramwell-Holdsworth-Pinton (BHP) distribution, and the generalized Gumbel (GG) distribution. It may be 
worthwhile to stress that the probability distribution function of a global quantity of a physical system is uniquely 
governed by the characteristics of its local fluctuating variables.

It may be constructive to give a brief comparison between previous fruitful investigation (cf. ref. 6 and ref-
erences cited therein) and our work. We first point out that our approach is original and more general. The cor-
responding result is new, based on the sound mathematical derivation and supported by experimental data. For 
instance, equation (15) in our work isn’t reported in the precedent publication, which is a more general formula 
for extreme value events and correlated phenomena. The assumption we have used is exponential fluctuations, 
but Gaussian or other tail fluctuations are used in the previous papers. Moreover, our derivation is mathematically 
justified and the expression is exact, in contrast to possible use of numerical analyses and even heuristic argu-
ments in the previous papers and that the derivation is usually proceeded case by case or discussed in different 
values of α  in the case of 1/fα noise, with results expressed in the sum or product of terms of some infinite series 
which is hard to evaluate. Furthermore, we have demonstrated the fitting of equation (15) to experimental data 
better than other distributions, while no such comparison is done in other researches yet. A more significant 
difference lies in the fact that, as presented in the above, the general probability distribution function of equation 
(15) or equation (16) we have initiated can take well-known extreme distributions as particular cases, but not 
otherwise.

In conclusion, the general probability distribution of equation (15) or (16) may pertinently unify the most 
famous probability distributions in the subject and shows a universal mechanism of extreme events and critical 
phenomena. The behavior of the global variable is dictated by the superimposing dynamical interaction of the 
infinite many asymmetric fluctuations in the system. Our approach to deriving the general probability distribu-
tion can cast light on imminent issues like climate change, stock exchanges and earthquake on the important role 
of fluctuations on the devastating dynamical processes and provides a more general unifying and multidiscipli-
nary frame underpinning the study of widespread, different extreme events and critical properties. It offers new 
thinking and opportunities for the study, risk management and control of extreme events and critical phenomena.

Figure 2.  Plots of the general probability density distribution as a function of the variable x as well as the 
parameter β under the conditions of μ = 0 and a specified value of α. (a) α =  0.2. (b) α =  0.5. (c) α =  0.8.  
(d) α =  1.0. (e) α =  2.0. (f) α =  5.0.
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Methods
Plotting of the general equation.  As the general equation (15) or (16) has three parameters, α, β, and μ, 
3D plotting requires to fix two of them. Since μ is the mean in the probability distribution and shifts the location 
of the corresponding curve but not the shape feature or symmetric property, so we set it to zero. Then, we fix one 
of the remaining two parameters, β at several discrete values and plot the distribution as a function of x and α. In 
turn, we set α at a fixed value and then plot the distribution as a function of x and β. Explicitly, in the calculation 
of Figs 1 and 2, the following function of the general probability density distribution is used and μ is set to 0,

Figure 3.  Effects of the parameters α and β on the behavior of the general probability density distribution. 
(a) Curves 1 ~ 5 correspond to α ∈  (0.5, 1.25, 2.5, 5, 12.5) for α/β =  5. (b) Curves 1 ~ 5 indicate the plots of 
α ∈  (0.2, 0.5, 1, 2, 5) for α/β =  1. (c) Curves 1 ~ 5 illustrate α/β =  1/2 and α ∈  (0.1, 0.25, 0.5, 1, 2.5). (d) Curves 
1 ~ 5 are the results of setting b =  1 and α ∈  (0.2, 0.5, 1, 2, 2.5). (e) Curves 1 ~ 5 describe the outcomes of setting 
α =  1 and β ∈  (0.2, 0.5, 1, 2, 5). (f) Curves 1 ~ 5 show the GG distribution for α ∈  (0.2, 0.5, 1, 2, 5).
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Particularly, in the calculation of Fig. 1, β is set to a given number and then f (x, α, β, μ) is calculated as a function 
of x and α. In the calculation of Fig. 2, α is set to a specified number and then f (x, α, β, μ) is calculated as a func-
tion of x and β.

2D plotting is given to get more intuitive comprehension of the behavior of the universal probability density 
distribution by further fixing α in Fig. 1 or β in Fig. 2 Overtly, in the calculation of Fig. 3, the following function 
of the general probability density distribution is used,

α β ν β
α β

( , , , ) =
Γ( / )

α ν− ( − )− β ν− ( − )
f x e x e x

The curves were plotted with relative locations of x-ν and scaled probability densities of α β µ α β β( , , , )Γ( / )/f x . 
For the GG distribution, the curves are presented in the form of θ( )Γ( ) /−G x a aa

a
a vs. x +  νa.

Comparison analysis of experimental data.  To evaluate the improved functioning of the newly derived 
universal distribution, the experimental data were extracted from the documented report29 and equation (15) vs. 
equation (2) was comparatively examined. The magnetization (M-< M> )/σM is interpreted as a negative variable 
x in equation (15) in accordance with the positive definition of the parameters, α and β. The probability density 
is scaled by a magnitude of σM.
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