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Abstract: The blood-brain barrier (BBB) controls the entry of chemicals from the blood to the brain.
Since brain drugs need to penetrate the BBB, rapid and reliable prediction of BBB penetration (BBBP)
is helpful for drug development. In this study, free-form and in-blood-form datasets were prepared
by modifying the original BBBP dataset, and the effects of the data modification were investigated.
For each dataset, molecular descriptors were generated and used for BBBP prediction by machine
learning (ML). For ML, the dataset was split into training, validation, and test data by the scaffold
split algorithm MoleculeNet used. This creates an unbalanced split and makes the prediction difficult;
however, we decided to use that algorithm to evaluate the predictive performance for unknown
compounds dissimilar to existing ones. The highest prediction score was obtained by the random
forest model using 212 descriptors from the free-form dataset, and this score was higher than the
existing best score using the same split algorithm without using any external database. Furthermore,
using a deep neural network, a comparable result was obtained with only 11 descriptors from
the free-form dataset, and the resulting descriptors suggested the importance of recognizing the
glucose-like characteristics in BBBP prediction.

Keywords: blood-brain barrier penetration (BBBP); free-form dataset; in-blood-form dataset;
machine learning (ML); molecular descriptor; random forest (RF); forward search; deep neural
network (DNN)

1. Introduction

The blood–brain barrier (BBB) function of the brain capillaries protects the brain by
suppressing the entry of chemicals from blood [1–7]. The BBB function is brought from
the endothelial cells, that form the walls of the blood vessels, and the BBB regulates the
movement of ions and molecules between the blood and the brain. In drug development,
since brain drugs need to penetrate the BBB, the BBB permeability has been investigated
in detail. On the other hand, a quick and reliable prediction of BBB penetration (BBBP)
will be helpful for drug development [8,9]. Recently, a BBBP dataset for 2053 compounds
were compiled and a computational prediction study was conducted using the molecular
descriptors derived from the chemical structures [10]. This dataset has been adopted by
MoleculeNet as a benchmark dataset for machine learning (ML) [11,12].

MoleculeNet recommended a methodology in predicting BBBP, especially for data
split and evaluation metric. The most characteristic and important method is to use the
fixed scaffold split. The procedure of this split is as follows: (1) the molecular compounds
are grouped into scaffold sets on the basis of the skeletal ring structures termed scaf-
folds [13]; (2) the compounds are sorted in reverse order (descending sort), and the scaffold
sets are sorted from the largest to the smallest; (3) the dataset are split into training, valida-
tion, and test data in an 8:1:1 ratio from the top. Then, this split remains fixed throughout
the prediction. It should be noted that by sorting the scaffold sets from the largest to the
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smallest, the test data will consist of compounds that are less related to others. Since the
scaffold split is unbalanced, the prediction model easily overfits to the training data; how-
ever, finding a good model under this difficult condition is valuable in predicting unknown
data, because the actual unknown data that emerge in the future are not guaranteed to
be similar to the existing data at all. Of course, the prediction score becomes better using
the random split [14], but the fixed scaffold split, recommended by MoleculeNet, is still
worth challenging.

As an evaluation metric for the BBBP prediction, MoleculeNet recommend the area
under receiver operating characteristic curve (ROC-AUC) score [15]. The ROC-AUC metric
is suitable for the BBBP prediction from the point of view of the brain–drug discovery,
because the metric is probabilistic and sensitive to the prediction quality for both the
positive and negative penetration. In the MoleculeNet paper [11], the best ROC-AUC score
for the test data was 0.729 (KernelSVM). In the recent work, the score has been improved to
0.753 using the multichannel substructure-graph gated recurrent unit (MSGG) method by
Wang and coworkers [16]. This score has been the highest value using the Moleculenet’s
scaffold split algorithm without external training data. In this study, we aim to break
the record.

The original BBBP dataset contains 2053 items with four attributes: the index number
from 1 to 2053 (“num”), the name of the compound (“name”), the penetrating or non-
penetrating properties (“p_np”), and the SMILES [17] string of the compound (“smiles”).
The SMILES strings represent the chemical structures, and from the SMILES strings, useful
features, termed molecular descriptors, are generated by programs, including RDKit [18]
and Mordred [19]. The SMILES strings in the BBBP dataset are, however, usually based on
the reported forms, and most of them are the as-isolated forms. That is, the form in blood or
in permeating the BBB is not necessarily the same as the as-isolated form. In addition, the
crystallographically observed structures are often used, and they are sometimes tautomers
different from the commonly described formal chemical structures, and there are no perfect
tools for converting these tautomers into common chemical structures. Therefore, in this
study, the free-form and the in-blood-form datasets were manually prepared, by modifying
the SMILES strings. The free form corresponds to the form in permeating the BBB by
passive diffusion and is important especially for lipid soluble (hydrofobic) compounds.
The in-blood form is especially important for some polar compounds, such as amino acids.
The in-blood form may be related to the form that permeate the BBB by solute carriers [2].

Some compounds change their chemical forms depending on the environment. For ex-
ample, amine compounds are not always easy to be isolated as their free forms (Figure 1A),
and are often obtained as the hydrochloric salts (Figure 1B,C), for the isolation and purifica-
tion purposes. The pH value of human blood stays between 7.35 and 7.45, and the aliphatic
amines often exist as the protonated forms (Figure 1D) without counter anions. Another
example is carboxylic acid. Sometimes carboxylic acids are isolated as their sodium salts,
but they exist as the deprotonated forms in blood pH.

In addition, we have noticed the following problems in the SMILES strings in the
BBBP dataset when obtaining the molecular descriptors: (1) when the drug is a mixture
of two derivatives of the compound in a certain ratio, the SMILES string contains the
both derivatives, and the calculated molecular weight, for example, will be about double
of the single component; (2) when the compound contains crystal solvents or adducts,
which are used for the isolation purpose in the synthetic procedure, molecular weights
and so on will be different from those of the actual species; (3) when the SMILES string
is simply wrong for some reasons, it cannot be a good datum. These cases are actually
seen in the dataset and should be revised especially when the molecular descriptors are
used. Furthermore, there are duplication and inconsistent problems as follows: (4) when
the same compound appears twice or three times, it is not so preferable; (5) in addition,
when the same compound appears twice and their penetration properties are different, the
learning may be confused to some extent. In this study, we prepared the free-form and
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in-blood-form datasets, solving the above problems, and BBBP prediction was conducted
by several ML methods.
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Figure 1. Chemical forms of an example compound: a free form (A), a frequently used formal salt
form (B), an actual salt form (C), and a protonated form in aqueous solution (D).

2. Results and Discussion
2.1. Free-Form and In-Blood-Form Datasets

At the beginning of this study, two datasets (free-form and in-blood-form datasets)
were manually curated by modifying the SMILES strings in the intact BBBP dataset. In the
free-form dataset, the SMILES strings represent the single free neutral molecules, except
for the quaternary ammonium cations. On the other hand, in the in-blood-form dataset,
the SMILES strings represent the single dominant species expected at blood pH (~7.4). The
intact dataset contains 2053 items, but after removing the duplicate and inconsistent items,
the number of independent items became 1957 in the two new datasets. In the following
comparison, only the corresponding 1957 items in the three datasets (intact, free-form, and
in-blood-form datasets) are used.

With the intension of comparing the three datasets, 200 molecular descriptors were
generated by RDKit from the SMILES strings of each dataset. (These 200 descriptors are so-
called low-dimensional descriptors, which can be readily obtained without 3D structures.)
Then, using the descriptors as input, the BBBP properties (positive (1) or negative (0))
were predicted by popular ML methods with the deep neural network (DNN) and the
random forest (RF) models. For the data splitting, the fixed scaffold split method [11,12]
was used to prepare training, validation, and test data. In this method, the split data were
intentionally fixed to the same data throughout the whole procedure, as mentioned in the
introduction. The resulting ROC-AUC scores are shown in Figure 2, where the scores are
the averages of five trials (at the 100th epoch for the DNN results). The ROC-AUC scores
for the validation and the test data fell in the ranges of 0.90–0.97 and 0.67–0.77, respectively,
and the test scores were lower than the validation scores. This tendency is in concordant
with that of the MoleculeNet results (validation: 0.94–0.97; test: 0.67–0.73) [11], indicating
that the slight decrease in the number of items has little effect on the prediction tendency.
Comparing the ROC-AUC scores for the test data (ROC-AUC(test)) in the DNN results, the
free-form dataset was slightly better than the others. The ROC-AUC(test) scores for the RF
results were slightly better than those for the DNN results, and no variance was observed
in the RF scores (standard deviation = 0). The ROC-AUC(test) score of the intact dataset
was the highest (0.770(0)); however, we do not consider the intact dataset anymore because
it contains the inappropriate SMILES strings, as mentioned previously.
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Figure 2. The ROC-AUC scores in comparison of the three datasets: intact, free-form, and in-blood-
form datasets, using a DNN model (a) and a RF model (b) with 200 molecular descriptors.

The importance of the top 50 molecular descriptors, from the RF results, is shown in
Figure 3 for the free-form and in-blood-form datasets. For both of the two datasets, nine
descriptors with clear chemical meaning were found to be prominent, as summarized in
Table 1. These descriptors are easy to interpret and immediately remind us of the factors
in “the Lipinski’s rule of five” [20], for evaluating drug-likeness: H-bond donors, H-bond
acceptors, molecular weight, and calculated LogP [21], although the molecular weight was
less prominent in the results. The Lipinski’s rule is an empirical rule that relates the ease of
absorption of orally administered drugs to the structures of the compounds; however, the
rule was confirmed to be important also in the BBBP prediction of this study. According to
the Lipinski’s rule, the drug absorption becomes poor when there are more than 5 H-bond
donors, 10 H-bond acceptors, the molecular weight is greater than 500 and the calculated
LogP is greater than 5. The BBBP showed the tendency to follow the Lipinski’s rule, as
shown in Figure 4. It can be easily confirmed from the data, but we would like to emphasize
that the important factors in ML prediction directly point us to the Lipinski’s rule.
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Table 1. Nine descriptors with clear chemical meaning obtained by the random forest method.

Molecular Descriptor Meaning 1

NumHeteroatoms the number of heteroatoms
NOCount the number of nitrogen and oxygen atoms
MolLogP Wildman-Crippen LogP value [21]

NHOHCount the number of NH and OH bonds
NumHDonors the number of hydrogen bond donors

fr_lactam the number of β-lactams
NumHAcceptors the number of hydrogen bond acceptors

fr_COO2 and fr_COO the number of carboxylic acids
fr_Al_OH_noTert the number of aliphatic hydroxyl groups excluding tert-OH

1 The description is based on the RDKit documentation [18].
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Figure 4. Distribution of positive and negative BBBP properties in the free-form dataset with respect
to the number of hydrogen bond donors (a), the number of hydrogen bond acceptors (b), the
molecular weight (c), and the MolLogP value (d).

What can be seen beyond the Lipinski’s rule is the lower limit in the MolLogP value
(Figure 4d). That is, some compounds possessing the negative MolLogP values are per-
meable. The lipophilicity (or hydrophobicity), evaluated by LogP, is known to increase
the permeability of lipophilic (or hydrophobic) compounds to some extent by passive
diffusion [22], and the lipophilicity is one of the most important factors in BBBP [23,24].
However, the exceptional permeable hydrophilic compounds should be considered. We
will discuss some of the related results in the next section.

2.2. Forward Search for Molecular Descriptor Sets by DNN

To conclude this section in advance, in the following descriptor search process, the
obtained descriptors suggest the importance of the glucose transporter in BBBP prediction,
in addition to the importance of hydrogen bonds. The prediction score generally depends
on the features as inputs. For the purpose of finding the efficient molecular descriptor set
as features, the forward search was conducted by a DNN in the so-called low-dimensional
descriptors, which can be readily obtained from the chemical structures of the compounds.
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The forward search method is suitable for finding good combinations of molecular de-
scriptors. In this method, the most efficient descriptors are determined one by one on the
basis of the ROC-AUC (validation) or the ROC-AUC (training + validation) score, until
the score saturates. During this forward search the training data were used for training
and the validation data for evaluation, in order to keep the test data uncontaminated for
later fair model evaluations. The obtained four descriptor sets are included in Table 2,
and the resulting ROC-AUC scores are shown in Figure 5. In each forward search, the
ROC-AUC score almost converged when nine or ten descriptors had been found. The two
descriptor sets, FreeV11 and FreeTV10 were obtained when the free-form dataset was used,
and the other two, BloodV9 and BloodTV11, were obtained when the in-blood-form dataset
was used. The characters “V” and “TV” stand for validation and “training + validation”,
respectively, and indicate the criteria in choosing descriptors. The results with the 200 RDKit
descriptors and the 61 RDKit descriptors (RDKit61 in Table 2) are also included in Figure
5, for the purpose of comparison. The 200 RDKit descriptors are all of the molecular
descriptors that RDKit generates, and the 61 RDKit descriptors were obtained by filtering
the 200 RDKit descriptors by removing the number-of-functional-group descriptors and the
similar descriptors. For example, the “ExactMolWt” descriptor has been removed because
it is similar to the “MolWt” descriptor.

Table 2. Set of molecular descriptors.

Name of
Descriptor Set Molecular Descriptors

FreeV11
NumHeteroatoms, NumHDonors, NHOHCount, NumHAcceptors,

NumSaturatedHeterocycles, fr_Al_OH_noTert, NumAliphaticHeterocycles,
nH, NOCount, qed, nO

FreeTV10 NumHDonors, NumSaturatedHeterocycles, nO, NumAliphaticRings,
MolWt, MolLogP, nN, fr_Al_OH, fr_SH, fr_ketone

BloodV9 NumHeteroatoms, MaxAbsPartialCharge, NOCount, NumHDonors,
NumAliphaticHeterocycles, nS, fr_C_S, fr_unbrch_alkane, fr_ester

BloodTV11
NOCount, MaxAbsPartialCharge, NumHDonors,

NumAliphaticHeterocycles, nO, MolWt, NumHeteroatoms, qed,
NumHAcceptors, HeavyAtomCount, nN

RDKit61
(Free61, Blood61)

MaxEStateIndex, MinEStateIndex, MinAbsEStateIndex, qed, MolWt,
MinPartialCharge, MaxAbsPartialCharge, FpDensityMorgan1, BalabanJ,
BertzCT, Chi0, HallKierAlpha, LabuteASA, PEOE_VSA1, PEOE_VSA10,

PEOE_VSA11, PEOE_VSA12, PEOE_VSA13, PEOE_VSA14, PEOE_VSA2,
PEOE_VSA3, PEOE_VSA4, PEOE_VSA5, PEOE_VSA6, PEOE_VSA7,
PEOE_VSA8, PEOE_VSA9, SMR_VSA1, SMR_VSA10, SMR_VSA2,

SMR_VSA3, SMR_VSA4, SMR_VSA5, SMR_VSA6, SMR_VSA7,
SMR_VSA9, TPSA,

EState_VSA1, EState_VSA10, EState_VSA11, EState_VSA2, EState_VSA3,
EState_VSA4, EState_VSA5, EState_VSA6, EState_VSA7, EState_VSA8,

EState_VSA9, VSA_EState1, VSA_EState10, VSA_EState2, VSA_EState3,
VSA_EState4, VSA_EState5, VSA_EState6, VSA_EState7, VSA_EState8,

VSA_EState9, FractionCSP3, MolLogP, MolMR

RDKit200 200 RDKit descriptors [18]

Large RDKit200 + {nH, nC, nN, nO, nS, nP, nF, nCl, nBr, nI, nX} from Mordred [19]

Large212 RDKit200 + {nH, nB, nC, nN, nO, nS, nP, nF, nCl, nBr, nI, nX} from
Mordred [19]
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The ROC-AUC(test) scores with the resulting forward-searched descriptor sets
(0.730(11)–0.760(10)) were much higher than those with the 200 or 61 RDKit descriptors
(0.68(2)–0.70(3)), and the score was found to vary greatly depending on the descriptors
used. Among the single model results, the FreeV11 descriptor set with the free-form
dataset showed the highest ROC-AUC(test) score (0.760(10)), and the BloodTV11 with
the in-blood-form dataset the second-highest score (0.755(13)). If the average predicted
probabilities between the highest and the second-highest results were calculated by an
ensemble method, the score largely improved to 0.767(5) (Ensemble1 in Figure 5). When
considering the nth power average, the smaller the n, the higher the ROC-AUC(validation)
score, and the score almost converged when n = 1/32. In the ensemble method with the
1/32 power average, the ROC-AUC(test) score slightly improved to 0.767(4) (Ensemble2 in
Figure 5).

In all the four forward-searched molecular descriptor sets, “the number of hydro-
gen bond donors (NumHDonors)” appeared, indicating the importance of hydrogen
bonds in BBBP prediction. Other major descriptors are “the number of heteroatoms
(NumHeteroatoms)” and “the number of oxygen atoms (nO)”, which are also related to the
number of hydrogen bonds. These findings are consistent with the earlier reports claiming
the importance of hydrogen bonds; that is, compounds forming more than six hydrogen
bonds tend to have restricted entry into the central nervous system [2,23].

Another major descriptor is “number of aliphatic heterocycles (NumAliphaticHetero-
cycles)”, which is a new finding. The aliphatic heterocycles quickly remind us of glucose,
which is the primary energy substrate of the brain [25]. Actually, in the descriptor set
FreeV11, which gave the best score (ROC-AUC (test): 0.760(10)), most descriptors seem
important for recognizing glucose. Yet another characteristic feature is “the number of
aliphatic hydroxyl groups excluding tert-OH (fr_Al_OH_noTert)”, and this is also related
to glucose. The BBBP ratio (penetrating and non-penetrating ratio) with respect to the
number of aliphatic heterocycles and the number of aliphatic hydroxy groups is shown
in Figure 6. In general, the larger the number of aliphatic hydroxy groups, the smaller
the hydrofobicity, and the small hydrofobicity leads to the non-penetrating property. This
tendency is observed also in Figure 6. However, there are some exceptions. The chemi-
cal structures of the typical three exceptions are depicted in Figure 7 with the chemical
structure of β-glucose.
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excluding tertiary alcohol OH, showing BBBP positive (blue) and negative (pink) for n = 0 (a), 1 (b), 2 (c), 3 (d), 4 (e),
and 5 (f).
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Figure 7. Chemical structures of β-glucose (A), salicin (B), amikacin (C), and plicamycin (D).

The exceptions (salicin, amikacin, and plicamycin) and β-glucose are all rich in hy-
droxy groups and hydrophilic; however, they all have the positive BBBP properties. The
typical structural feature of the three exceptions is to have the glucose or glucose-derivative
functional groups. The glucose transporter in BBB has been crystallographically charac-
terized [26], and the transporter has been found to have a rather large cavity with dozen
asparagine and glutamine residues. This suggests that the exceptions penetrate the BBB by
being selectively incorporated in the glucose transporter.

Actually, 150 g of glucose are consumed per day in a brain [27]. Although glucose is
hydrophilic, a large amount of glucose enters the brain using the glucose transporter. In
the forward-search study using the DNN model, the permeability related to glucose was
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found by the combination of molecular descriptors, and the high ROC-AUC (test) score
(0.760(10)) was achieved with only the eleven descriptors. Recognizing the permeability of
the glucose-related compounds is of importance in distinguishing permeable hydrophilic
compounds from the rest of the impermeable hydrophilic compounds, including mannitol.

2.3. BBBP Prediction by Some Other Models

Further RF-model prediction was conducted for the free-form and in-blood-form
datasets by changing the set of molecular descriptors. The resulting ROC-AUC scores are
depicted in Figure 8. Despite the improvement in the score by the descriptor selection
for the DNN models, the scores for the RF models were not so improved with the sets
of selected descriptors. On the other hand, for the RF model, the larger the number of
descriptors, the higher the score seems to be. Furthermore, the addition of the twelve
“Mordred” molecular descriptors gave the best ROC-AUC(test) score (0.773(0)) for the
free-form dataset. The RF method was found to be fast and generally gave good scores
without selecting descriptors. The CatBoost (CB) [28] method also gave good results
without selecting descriptors, but the RF method was faster and better in the score.
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2.4. Best Single Models and Their Ensemble

The top six single models with respect to the ROC-AUC (test) score are summarized
in Table 3. The best score was obtained by the random forest (RF) model with Large212.
The receiver operating characteristic (ROC) curves of this model are shown in Figure 9a.
The training score was close to 1.00; the validation score was more than 0.96; and the test
score was 0.773(0). The order of these scores was reasonable; however, the model might
have slightly overfitted to the training data. Similar ROC curves were also obtained for
other RF results. A result by the CB model, ranked 5th, was somewhat similar to those of
the RF models. A good result was obtained with a large descriptor set, and the tendency of
the ROC curves (Figure 9b) was also similar to that of the RF models. For the DNN models
(Figure 9c,d), on the contrary, the obtained ROC curves for the training and the validation
were similar to each other in each case (free-form dataset ranked 3rd and in-blood-form
dataset ranked 6th). The DNN results were not so good with large descriptor sets, but
descriptor selection was quite efficient in improving the score. The 3rd ranked DNN result
was obtained, using only the eleven descriptors, while the 1st and 2nd RF results needed
more than 200 descriptors.
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Table 3. Top six single models.

No Method Dataset Descriptor Set ROC-AUC(Training) ROC-AUC(Validation) ROC-AUC(Test)

1 RF Free-form Large212 0.999(0) 0.963(0) 0.773(0)
2 RF In-blood-form Large 0.999(0) 0.964(0) 0.762(0)
3 DNN Free-form FreeV11 0.948(4) 0.944(3) 0.760(10)
4 RF Free-form RdKit200 0.999(0) 0.966(0) 0.757(0)
5 CB Free-form Large212 0.990(0) 0.948(0) 0.755(0)
6 DNN In-blood-form BloodTV11 0.934(14) 0.923(17) 0.755(13)
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Figure 9. ROC curves for RF:Free(Large212) (a), CB:Free(Large212) (b), DNN:Free(FreeV11) (c), and
DNN:Blood(BloodTV11) (d).

Ensembles of the single-model results often give better results. As far as we have
tried, the best combination is the 1st RF(Free-form), 3rd DNN(Free-form), and the 6th
DNN(In-blood-form) results, which are included in Figure 10 together with the single
model results. In the equally weighted simple average (Ensemble3), the ROC-AUC (test)
score was improved to 0.782(4). In the 1/32 power average, the ROC-AUC (test) score was
improved to 0.784(4) (Ensemble4). Furthermore, if the clipping was introduced, modifying
the probabilities less than 0.02 to 0 and the probabilities larger than 0.98 to 1, the score was
improved to 0.785(4) (Ensemble5).

2.5. Comparing the Predictive Ability with Other Works

Both the best single model score (0.773(0)) and the best ensemble score (0.785(4)) in
our study were higher than the existing best score (0.753 [16]) using the Moleculenet’s fixed
scaffold split, without using any external database for training. In order to confirm the
excellence of our model, the confidence interval was estimated for the best single model,
using 100 scaffold-split sets (Figure 11). (Note that these scaffold-split sets are different
from that of MoleculeNet. See Section 3.5.) The 95% confidence interval was obtained as
(0.914, 0.923), and its lower limit value was much larger than the earlier best score (0.753).
This indicates that the best single model in our study gave really better score than the earlier
model. In addition, this confidence interval investigation indicated that the MoleculeNet’s
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scaffold split is really a difficult task. That is, the score using the MoleculeNet’s scaffold
split (0.773(0)) is well below the confidence interval and looks like an outlier. The difficulty
is primarily due to the order of the original dataset [10] and is caused by the reverse sorting
in the MoleculeNet’s algorithm. Such a difficulty may be appropriate for finding a good
model. However, it is important to know that the scaffold split of the BBBP dataset with
the MoleculeNet’s algorithm is much more difficult and gives a much lower score than
other scaffold splits. If there is a model that can give a good score using the very difficult
MoleculeNet’s algorithm, it will be a model with really great predictive ability. On the
other hand, if we use random split for the “RF:Free(Large212)” model, for instance, the
95% confidence interval of the ROC-AUC score becomes (0.927, 0.935), and this is better
than that using the scaffold split. The recently reported high-scoring results were not
based on the MoleculeNet’s scaffold split [14,29–31] or with using the external biological
database [32].
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Figure 11. Distribution of ROC-AUC scores for RF:Free(Large212) with scaffold split.

Here we compare our best single model result with the results of the two most recently
published papers [30,31]. Shakel and coworkers used 10-fold cross-validation to achieve
the ROC-AUC score of 0.93 [30]. Then, they evaluated their model using an external test
set of 74 compounds to achieve the ROC-AUC score of 0.90. On the other hand, Liu and
coworkers achieved the ROC-AUC score of 0.957 using 5-fold cross-validation and the
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ROC-AUC score of 0.966 with their ensemble model [31]. They evaluated their ensemble
model using an external test set of 213 compounds to achieve the ROC-AUC score of
0.834. Of the 74 items in the first external test set [30], 70 items were readable by RDKit;
among them, after removing duplication with the MoleculeNet’s BBBP dataset, 31 items
were unique. The ROC-AUC score in reference [30] was 0.90, while our 95% confidence
interval of the ROC-AUC score was (0.884, 0.890) for the 31 items. Since the ROC-AUC
score in reference [30] is included in our distribution (Figure 12a), the results can be said to
be comparable. On the other hand, of the 213 items in the second test set [31], 204 were
readable, and after removing duplication with the MoleculeNet’s BBBP, 95 unique items
were obtained. The ROC-AUC score in reference [31] was 0.834 for the external test set,
while our 95% confidence interval was (0.941, 0.946) for the 95 items (Figure 12b). Since
our 95% confidence interval is higher than the ROC-AUC score in reference [31], our result
seems to be better. In this study, the incorrect data were manually corrected in advance.
This may be one of the reasons for the good score.
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The ROC-AUC score of our best single model was 0.773(0) using the MoleculeNet’s
scaffold split, and this score looks inferior to the scores of 0.93 and 0.966 in the recently
reported k-fold cross-variation and ensemble results [30,31]. However, by comparing the
ROC-AUC scores using the two external test sets, our single-model result was found to
be comparable or better than the recently reported results. This may indicate that the
MoleculeNet’s scaffold split algorithm is useful for finding good models. The score is
strongly dependent on the test set, and if the training set contains data similar to the test
set, the resulting score will be very high. We should be aware of this fact and pay close
attention to the evaluation of the models. Once a new type of compound is adopted as an
effective therapeutic agent, a group of similar compounds will be a new test set. In such
a case, it is not possible to include similar data in the training set in advance. Machine
learning is good at interpolation. However, the population of drug candidates may change
in the future and extrapolation may be required. The MoleculeNet’s scaffold split seems
to assume this extrapolation to some extent. From this point of view, it is worth using the
scaffold split algorithm proposed by MoleculeNet.

2.6. Comparing the Results of Free-Form and In-Blood-Form Datasets

When comparing the free-form dataset and the in-blood-form dataset, the free-form
dataset was found to give slightly better results in this study. This seems to be consistent
with that the passive diffusion is dominant in BBB permeability and that lipophilicity
(hydrophobicity) is an important factor for BBB permeability [22–24]. For hydrophilic
compounds, the in-blood form seems to be more appropriate, but in fact it turns out to
be better represented by free-form descriptors. The idea of the most populated neutral
tautomer at pH 7.0 was tried earlier [33], but using the free form was found to be better in
our present study.
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3. Materials and Methods
3.1. Computations

All the computations were conducted with Python (3.7.9) [34] under Anaconda
(2020.02) [35] and Jupyterlab (1.2.6) [36] environment on a Windows 10 computer with
Intel Core i7-10510U CPU, Inspiron 7391 (Dell, Round Rock, TX, USA).

3.2. Dataset and Preprocessing

The BBBP dataset, provided on the MoleculeNet website [12], is based on the original
2053 data compiled by Falcao and coworkers [10]. The BBBP dataset contains 2050 items,
presumably because the three duplicate data have been removed (num = ‘63’ (=‘73’), ‘1086’
(=‘1741’), and ‘1161’ (=‘435’)). (Note: “num” is the identification number in the dataset).
The original 2053 data are provided as the supporting information of reference [10].

In the first preprocessing stage of the BBBP dataset, the three missing data were added
from the original data. In addition, since eleven of the data (num = ‘60’, ‘62’, ‘393’, ‘616’,
‘644’, ‘647’, ‘648’, ‘649’, ‘650’, ‘651’, ‘687’) cannot be handled by RDKit (2019.09.3.0) [18],
their SMILES strings were modified to be processed by RDKit. In this paper, this dataset is
called intact dataset. This dataset is deposited as an electronic file named “bbbp_intact.csv”
(Supplementary Materials).

In the second preprocessing stage, adducts, biproducts, and counter ions were man-
ually removed from the SMILES strings, because some molecular descriptors cannot be
correctly obtained with the adducts and so on. At the same time, some mistaken struc-
tures were corrected (e.g., num = ‘653’ and ‘1506’), according to the original literature [37].
Then functional groups of the compounds were changed to their free forms to provide
neutral molecules, except for quaternary ammonium cations. (Here, “free form” means
a chemical form that is not ionized and is electrically neutral.) Furthermore, duplication
and inconsistent data were removed to obtain 1957 independent data. The duplication
removed here also includes the duplication of the same main components with different
counter ions. Removed items by duplication are summarized in Table 4. In the twelve
duplicate pairs, the identical items were found to show different BBBP properties, and
these inconsistent pairs were removed from the dataset as shown in Table 4. In this paper,
the obtained dataset is called free-form dataset, which is deposited as an electronic file
named “bbbp_free.csv”.

In the third preprocessing stage, deprotonation and protonation were taken into
account at blood pH (7.35–7.45) on the basis of the general pKa values of the functional
groups and the total charge. In this process, the SMILES strings in the free-form dataset
were manually modified one by one. (Actually, H.S. worked 1–2 h a day and took 2 months).
In this paper, the resulting dataset is called in-blood-form dataset, which is deposited as an
electronic file named “bbbp_blood.csv”.

The external test sets [30,31] were obtained from the “LightBBB” web site [38] and
the supporting information of reference [31]. The datasets were used after removing
duplications with the MoleculeNet BBBP data. The resulting datasets are deposited as
electronic files nemed “lbbb31.csv” and “tx95.csv”.

3.3. Molecular Descriptors

The molecular descriptors were generated by two programs, RDKit [18] and Mor-
dred [19]. Since the descriptor ‘Ipc’ contains extremely large numbers, the descriptor values
were divided by 1 × 1041. In the forward search by DNN, the descriptors were divided by
each maximum value.
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Table 4. List of removed 93 items.

Category Removed Items

One of each two-identical-compound set
(60 sets, 60 items)

‘63’ (=‘73’), ‘154’ (=‘129’), ‘312’ (=‘97’), ‘337’ (=‘29’), ‘384’ (=‘62’), ‘388’
(=‘96’), ‘394’ (=‘70’), ‘415’ (=‘3’), ‘422’ (=‘105’), ‘435’ (=‘13’), ‘453’ (=‘87’),
‘457’ (=‘52’), ‘468’ (=‘467’), ‘488’ (=‘46’), ‘489’ (=‘56’), ‘508’ (=‘50’), ‘533’

(=‘34’), ‘535’ (=‘75’), ‘562’ (=‘140’), ‘591’ (=‘72’), ‘593’ (=‘2’), ‘607’ (=‘490’),
‘616’ (=‘62’), ‘619’ (=‘567’), ‘644’ (=‘26’), ‘646’ (=‘60’), ‘649’ (=‘40’), ‘650’
(=‘58’), ‘651’ (=‘393’), ‘667’ (=‘4’), ‘668’ (=‘33’), ‘669’ (=‘93’), ‘670’ (=‘89’),
‘671’ (=‘69’), ‘672’ (=‘79’), ‘673’ (=‘23’), ‘690’ (=‘55’), ‘959’ (=‘450’), ‘966’
(=‘691’), ‘1073’ (=‘523’), ‘1085’ (=‘564’), ‘1086’ (=‘1741’), ‘1111’ (=‘555’),

‘1388’ (=‘296’), ‘1462’ (=‘139’), ‘1471’ (=‘585’), ‘1508’ (=‘191’), ‘1567’
(=‘344’), ‘1583’ (=‘654’), ‘1597’ (=‘219’), ‘1662’ (=‘437’), ‘1782’ (=‘45’), ‘1882’
(=‘700’), ‘1906’ (=‘15’), ‘1947’ (=‘101’), ‘1961’ (=‘142’), ‘1971’ (=‘664’), ‘1979’

(=‘189’), ‘2031’ (=‘245’), and ‘2045’ (=‘252’)

Two of each three-identical-compound set
(6 sets, 12 items)

‘269’ (=‘83’ =‘569’), ‘435’ (=‘13’ =‘1161’), ‘534’ (=‘85’ =‘1541’), ‘565’ (=‘59’
=‘617’), ‘566’ (=‘49’ =‘618’), ‘569’ (=‘269’ =‘569’), ‘617’ (=‘59’ =‘565’), ‘618’

(=‘49’ =‘566’), ‘713’ (=‘315’ =‘1916’), ‘1161’ (=‘13’ =‘435’), ‘1541’ (=‘85’
=‘534’), and ‘1916’ (=‘315’ =‘713’)

Inconsistent pair
(12 pairs, 24 items)

(Note: The number “1” represents penetrating, and “0”
non-penetrating properties.)

(‘1’ [1], ‘380’ [0]), (‘17’ [1], ‘552’ [0]), (‘53’ [1], ‘648’ [0]), (‘102’ [0], ‘1009’ [1]),
(‘128’ [0], ‘1701’ [1]), (‘176’ [0], ‘1645’ [1]), (‘267’ [0], ‘1314’ [1]), (‘284’ [0],

‘1881’ [1]), (‘305’ [0], ‘1361’ [1]), (‘325’ [0], ‘1910’ [1]), (‘326’ [0], ‘1381’ [1]),
and (‘571’ [0], ‘1338’ [1])

3.4. Models

The models used in this study were as follows: a DNN model with four layers, a
random forest (RF) model, and a CatBoost (CB, 0.24.1) [28] model. The DNN model was
built with TensorFlow (2.1.0) [39] and Keras (2.3.1) [40]; each hidden layer consisted of
256 units. The activation function was the scaled exponential linear unit (SELU) [41] in
the first three layers and sigmoid in the last layer. The model optimizer was AdaMax [42],
and the loss function was binary cross entropy. The batch size was 32. The RF model
was introduced from scikit-learn [43]; the number of trees in the forest was 90 and the
maximum depth of the tree was 10. The hyperparameters were manually tuned at an early
stage in this study and were used unchanged throughout this study. The tuning was done
on the basis of the ROC-AUC value for the validation data.

3.5. Confidence Interval

The 100 scaffold-split sets, used for calculating the confidence intervals, were obtained
as follows. As the result of the MoleculeNet’s scaffold split, the numbers of training,
validation, and test data were 1565, 196, and 196, respectively. Of the 1565 training data,
1179 belonged to the scaffold/non-scaffold groups with two or more elements, and the
remaining 386 belonged to the scaffold groups containing only a single element. Both
the 196 validation data and the 196 test data belonged to the scaffold groups containing
only a single element. The 778 (=386 + 196 + 196) data, belonging to the single-element
groups, were randomly split into 386:196:196, and the 386 data were used as training data
along with the 1179 data belonging to the multi-element groups. The remaining two 196
datasets were used as validation and test sets, respectively. By repeating the above series
of operations 100 times, the 100 scaffold-split sets were prepared. The confidence intervals
were calculated by SciPy [44].

4. Conclusions

In this study, aiming for quick and reliable blood–brain-barrier penetration (BBBP)
prediction, machine learning (ML) was conducted, using readily prepared molecular
descriptors. Since the actual unknown compounds that will appear in the future are not
al-ways similar to the existing compounds, we intentionally used unbalanced data split,
generated by the MoleculeNet’s scaffold split algorithm.
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At the beginning, the molecular structures in the provided BBBP dataset were modified
to create free-form and in-blood-form datasets. In this process, data defects were fixed,
mistakes were corrected, and duplicates were removed, reducing the number of the data
to 1957. Up to 212 molecular descriptors were generated by RDKit and Mordred for each
molecular structure and used as inputs for ML. Each dataset was split using the scaffold
split algorithm MoleculeNet used, and the split was maintained throughout the learning
and prediction processes.

In the BBBP prediction by several ML methods, the random forest (RF) model per-
formed well (ROC-AUC: 0.773 with the 212 descriptors from the free-form dataset), and the
obtained score was better than the existing best scores (0.753 [16]). The obtained important
descriptors suggested the importance of the Lipinski’s rule in predicting BBBP. For the RF
model, the larger the number of descriptors, the higher the score, and the RF method was
found to be fast and gave good scores without selecting descriptors. Using the Molecu-
leNet’s scaffold-split set, the ROC-AUC score was 0.773, but using 100 scaffold-split sets
for comparison yielded the ROC-AUC score of 0.918 with the 95% confidence interval of
(0.914, 0.923). It turned out that the model can predict the dataset with high accuracy, and
outperformed all other models on this benchmark.

On the other hand, a deep neural network (DNN) was found to be suitable for the
forward search of molecular descriptors. As a result, forward search using DNN gave com-
parable predictive performance with only 11 descriptors (ROC-AUC: 0.760(10)), indicating
the importance of the proper combination of molecular descriptors. The combination of the
obtained descriptors suggested the importance of recognizing glucose-like characteristics,
suitable for the glucose transporter.

Comparing the free-form dataset with the in-blood-form dataset, the free-form dataset
was found to give slightly better results. This seems to be consistent with that the passive
diffusion is dominant in BBBP, indicating the importance of considering the molecular
descriptors for the free form in predicting BBBP.

Finally, the created datasets in this study are expected to be useful in future studies.

Supplementary Materials: The following are available online. Electronic files named “bbbp_intact.csv”,
“bbbp_free.csv”, “bbbp_blood.csv”, “lbbb31.csv”, “tx95.csv”.
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