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Abstract

Motivation: Mass spectrometry imaging (MSI) characterizes the spatial distribution of ions in com-

plex biological samples such as tissues. Since many tissues have complex morphology, treatments

and conditions often affect the spatial distribution of the ions in morphology-specific ways.

Evaluating the selectivity and the specificity of ion localization and regulation across morphology

types is biologically important. However, MSI lacks algorithms for segmenting images at both

single-ion and spatial resolution.

Results: This article contributes spatial-Dirichlet Gaussian mixture model (DGMM), an algorithm

and a workflow for the analyses of MSI experiments, that detects components of single-ion images

with homogeneous spatial composition. The approach extends DGMMs to account for the spatial

structure of MSI. Evaluations on simulated and experimental datasets with diverse MSI workflows

demonstrated that spatial-DGMM accurately segments ion images, and can distinguish ions with

homogeneous and heterogeneous spatial distribution. We also demonstrated that the extracted

spatial information is useful for downstream analyses, such as detecting morphology-specific ions,

finding groups of ions with similar spatial patterns, and detecting changes in chemical composition

of tissues between conditions.

Availability and implementation: The data and code are available at https://github.com/Vitek-Lab/

IonSpattern.

Contact: o.vitek@neu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Mass spectrometry imaging (MSI) characterizes the spatial distribu-

tion of chemical composition of complex biological samples such as

tissues. It is broadly applied in biological and clinical research,

including diagnosis and prognosis of disease and the study of drug

delivery (Jones et al., 2012; Spengler, 2015). MSI experiments rely

on ionization techniques, among which matrix-assisted laser desorp-

tion ionization (MALDI), desorption electrospray ionization (DESI)

and nano-DESI are the most widely used. In a MALDI-MSI experi-

ment, a tissue section is coated with a matrix, which absorbs the en-

ergy of laser and aids extraction and ionization of molecules from

tissue section (Aichler and Walch, 2015). For DESI-MSI, primary

charged droplets generated by electrospray ionization are sprayed

upon the tissue section and molecules are ionized and desorbed in

secondary droplet (Wu et al., 2013).

The ions of proteins or peptides (for MALDI), or of lipids or

metabolites (for DESI and MALDI) are separated according to their

ratios of mass over charge (m/z). This produces a mass spectrum, i.e.

a graph where the x axis represents the m/z of the ions, and the y

axis is the intensity (related to the abundance of the ions). MSI

experiments collect mass spectra in a raster pattern throughout a tis-

sue. A color representation of the intensities of one m/z across the

locations is referred to as an ion image. Mass spectrometric work-

flows differ in their spatial resolution, mass resolution and the dy-

namic range of the intensity signals (Watrous et al., 2011). A typical

experiment contains spectra with tens of thousands of m/z, collected
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across hundreds to tens of thousands of locations, across multiple

tissues sections of a biological replicate, and across multiple bio-

logical replicates from multiple conditions, thus producing high-

dimensional datasets with complex structures of variation.

Many tissues have distinct morphological structures. For ex-

ample, the cerebral cortex, corpus callosum and caudate putamen

are a few of the hundreds within a mouse brain. Treatments and

conditions affect the ion distributions in the tissue, often in ways

that are morphology-specific (Delcourt et al., 2018; Norris and

Caprioli, 2013). For example, most neurodegenerative diseases have

regionally confined subsets of neurons that are selectively vulnerable

to disease (Cleveland and Rothstein, 2001). Examination of the re-

gional selectivity of a drug delivered to a targeted area in the tissue

helps understand the effectiveness of the treatment (Prasad et al.,

2018). Evaluating the selectivity and the specificity of ion localiza-

tion and regulation is therefore biologically and clinically important.

Despite the name ‘imaging’, MSI differs from other imaging

techniques in its highly quantitative and multivariate nature of the

measurements, large between-experiment differences, and a small

sample size. Therefore, most common methods for image analysis

are inappropriate. Currently the exploration of ion-selective and

morphology-selective patterns is mostly done by hand. As the spatial

resolution, the mass resolution, and the number of biological repli-

cates increase, MSI routinely generates thousands of ion images in a

single experiment (Watrous et al., 2011). A manual exploration of

the images becomes impossible in practice.

Statistical methods complementing manual exploration perform

image segmentation and differential analysis (Jones et al., 2012;

Watrous et al., 2011). Multivariate methods for image segmenta-

tion, e.g. principle component analysis (PCA), hierarchical cluster-

ing and K-means, detect regions (or, components) of the tissues with

homogeneous chemical composition. Their output is a single set of

components for all the ions. For differential analysis, t-test and ana-

lysis of variance (ANOVA) average the abundances of an ion across

all the locations in each tissue. Their output is the change in ion

abundance between tissue replicates from different conditions.

Overall, these methods lose the information on either the heterogen-

eity of the spatial distribution across the ions, or the specificity or se-

lectivity of ion localization within the tissues (de Muller et al.,

2017).

This article contributes an algorithm, and a workflow for the

analyses of individual ion images, that overcomes the limitations

above. The approach, based on Dirichlet Gaussian Mixture Model

(DGMM) that we call spatial-DGMM, detects ion-specific tissue

components with homogeneous spatial composition. This is the first

application of Gaussian mixture models (GMM) in MSI. We show

that spatial-DGMM accurately segments ion images, and can distin-

guish ions with homogeneous or heterogeneous spatial distribution

in experiments in diverse MALDI- and DESI-based MSI workflows.

We also demonstrate that the extracted spatial information is useful

for downstream analyses, such as detecting morphology-specific

ions, finding groups of ions with similar spatial patterns, and detect-

ing changes in chemical composition.

2 Background

2.1 Multivariate analyses of MSI
2.1.1 Classical multivariate analyses

Unsupervised multivariate analyses are commonly used for MSI

visualization and segmentation. High-dimensional spectra are

visualized in lower dimensions, e.g. by PCA (Bonnel et al., 2011;

Jones et al., 2011) and non-negative matrix factorization (Jones

et al., 2011). For image segmentation, K-means and hierarchical

clustering are most commonly used (Bonnel et al., 2011; Jones et al.,

2011). However, the classical multivariate analyses do not account

for the spatial dependence of the locations, or for the fact that ions

may have subtle but important differences in the spatial distribution

in the tissue. As a motivating example, Figure 1a presents a sample

of known composition, an oil painting (described in greater details

in Section 4). Figure 1b illustrates that a PCA analysis of the MSI ex-

periment of the painting, although useful, failed to effectively distin-

guish subregions of homogeneous color.

2.1.2 Spatial multivariate analyses

Spatial K-means (Alexandrov and Kobarg, 2011) and spatial cen-

troid segmentation (Bemis et al., 2016), designed specifically for

MSI, account for the spatial dependency between locations and for

the similarity of mass spectra at each location. As shown in

Figure 1c and d, these methods provide less noisy image segmenta-

tion, and preserve sharp edges. However, the segmentation does not

uncover the differences of spatial distribution between the ions. For

example, the ion images in Figure 2a and c show that m/z 650.17

and m/z 321.25 are color-specific. Such specificity of ion localiza-

tion cannot be deduced from Figure 1c and d.

2.2 Univariate analyses of MSI
2.2.1 Capturing morphological patterns of individual ions

Univariate methods analyze ion images as in Figure 2a and c, one

image at a time. Many analyses first specify a region of interest

(a) (b)

(c) (d)

Painting

Spatial centroid 
segmentation (k = 11)

Spatial K-means 
segmentation (k = 11)

PCA (k = 5)

Fig. 1. Multivariate analysis of the MSI experiment with an oil painting. (a)

The painting representing the ground truth. Each color has a unique chemical

composition, and is a homogeneous component of the image. (b) PCA ana-

lysis of all the ions. k represents the number of principle components. Colors

are principle components, and intensity of each color is the score of the loca-

tion in that principle components. (c) Spatial K-means segmentation of all the

ions. k represents the number of segments. Colors are segments. (d) Spatial

shrunken centroid segmentation of all the ions. k represents the number of

segments. Colors are segments. k in (b–d) was chosen to best visualize the

structure of the painting
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(ROI) selected by an optical image of the tissue, or determined by

the location of a pre-defined marker ion. Then, the colocalization of

the ion image and of the ROI is manually examined. Alternatively,

computational methods define ROI as a binary vector containing

the values of 1 for tissue locations inside the ROI, and 0 outside. A

correlation coefficient between the binary matrix and the ion inten-

sity quantifies the extent of colocalization (Alexandrov et al., 2010;

Trede et al., 2012). The method is simple and fast, but fails when an

ion is localized in multiple regions of the tissue, when the ROI is

relatively small, or when the ion contains outlying intensity values

(Bemis et al., 2016).

Another group of methods quantitatively capture the spatial dis-

tribution of individual ions. One example is a homogeneity index

based on a texture analysis technique (Prasad et al., 2018). It pro-

vides automated measure of homogeneity, but cannot comprehen-

sively capture ions selective to multiple areas of the tissue. Another

example is morphometric analysis (de Muller et al., 2017). It charac-

terizes the number of objects in the total surface of an ion image;

however, the biological interpretation of the ‘number of objects’ and

of the ‘total surface’ may be a challenge.

2.2.2 Differential analysis

To examine changes in ion abundance between conditions, it is com-

mon to average the intensity of a m/z in each replicate tissue, and

use the averages as input to t-test or ANOVA. Alternative tissue

summaries, more complex than the averaging, have also been pro-

posed (Bemis et al., 2019; Cassese et al., 2016). However, these

summaries are not designed to distinguish patterns of ion distribu-

tion within a tissue.

2.3 Mixture models
Mixture modeling has long been a popular approach for finding pat-

terns in data; however, it has not yet been adopted for MSI. A

popular class is GMM (Zivkovic, 2004). GMM assume that the

data contain sub-structures, each following a Gaussian distribution.

GMM have a small number of parameters, estimated by the expect-

ation maximization (EM). However, GMM assume that the individ-

ual data points (such as locations of the tissue) are independent, and

do not make use of the spatial information.

A common way to relax the assumption of independence, and to

incorporate the spatial information is to use a Markov random field

(MRF; Blekas et al., 2005). GMM can also be extended with

Dirichlet priors to form DGMMs (Nikou et al., 2010). This simpli-

fies parameter estimation as compared to GMM when incorporating

spatial dependence using an MRF. Instead of using MRF, spatial de-

pendence can also be incorporated to the Dirichlet priors (Nguyen

and Wu, 2011). However, these methods assume that neighboring

locations contribute to spatial smoothness equally, which is not true

in MSI data.

This article adapts DGMM to MSI experiments, by incorporat-

ing spatial dependence in a way that is specifically designed for MSI.

The proposed method, spatial-DGMM, assigns spatial weights to

neighboring locations based on both spatial proximity and spectral

similarity. Since MSI experiments have many m/z features, and since

different m/z have different spatial distributions, spatial-DGMM

estimates the number of Gaussian components separately for each

m/z. The output of spatial-DGMM, which we call spatial-DGMM

map, is illustrated in Figure 2b and d. Spatial-DGMM uncovers ions

m/z 650.17 and m/z 321.25 of spatial distributions specific to colors,

which is hidden in the results of multivariate segmentation (Fig. 1c

and d). Below, we show that it delimits ion images in ways that are

specific to the underlying structures, and provides meaningful infor-

mation for downstream statistical analyses.

3 Materials and methods

In this section, we first introduce the notation and the existing

DGMM. Then, we introduce the proposed extension, and the itera-

tive Expectation-Maximization algorithm for spatial-DGMM par-

ameter estimation. Finally, we review the overall proposed data

analysis workflow.

3.1 Notation
Let xi i ¼ 1;2; . . . ;Nð Þ denote the ion intensity at location i at one of

the N locations. Let pi ¼ pi
1; . . . ; pi

K

� �
and yi ¼ yi

1; . . . ; yi
K

� �
denote

the vector of prior and posterior probabilities of ith location to be-

long to each of the K Gaussian components. Let zi ¼ zi
1; . . . ; zi

K

� �
de-

note the discrete label of the ith location, where zi
j ¼ 1 if location i

belongs to component j, and 0 otherwise; and l ¼ l1; l2; . . . ; lKð Þ
and r ¼ r1; r2; . . . ; rKð Þ denote the mean intensity and the standard

deviation of each Gaussian component.

3.2 Dirichlet gaussian mixture model
Ion images (such as in Fig. 2a and c) have regions of distinct aver-

age intensity. Within each region, the ion intensity is relatively

homogeneous, and the variation is random. Gaussian mixture mod-

els represent such regions as components, and assume that the ion

intensity within each component approximately follows a Gaussian

distribution. In a Gaussian mixture model, the probability density

at xi is

p xið Þ ¼
XK

j¼1

pi
jp xijlj; rj

� �
; (1)

Ion image of m/z = 650.17

Ion image of m/z = 321.25

(a) (b)

(c) (d)

Spatial DGMM map

Spatial DGMM map

Fig. 2. Univariate analysis of the MSI experiment of an oil painting. (a) Ion

image of m/z 650.17 specific to the color black. (b) Spatial-DGMM segmenta-

tion of the ion selects the color-specific locations, K¼2 and K
0 ¼ 2. (c) Ion

image of m/z 321.25 specific to the grass area in the painting. (d) Spatial-

DGMM segmentation of the ion selects the grass-specific locations, K¼2 and

K
0 ¼ 2. K is the number of components estimated by GMM and K 0 is the num-

ber of components estimated by spatial-DGMM

i210 D.Guo et al.



where p xijlj; rj

� �
is defined as

p xijlj; rj

� �
¼ 1ffiffiffiffiffiffi

2p
p

rj

exp �
xi � lj

� �2

2r2
j

8<
:

9=
;: (2)

The parameters of interest are H ¼ lj; rjf g, and the log-likelihood is

L Hð Þ ¼
XN
i¼1

log
XK

j¼1

pi
jp xijlj; rj

� �
: (3)

Dirichlet Gaussian mixture models extend the basic GMM

by assuming that the indicators of component membership zi
j

are random variables (Nikou et al., 2010). Each zi
j is one realization

from a multinomial distribution with parameters ni ¼

ni
1; n

i
2; . . . ; ni

K

� �
; ni

j

� �
� 0;

PK
j¼1

ni
j ¼ 1. Therefore, the probability dis-

tribution of the vector zi is

p zijni
� �

¼ 1QK
j¼1

zi
j

� �
!

YK
j¼1

ni
j

� �zi
j
: (4)

The hyperprior distribution of ni is defined as a Dirichlet process

p nijai
� �

¼
C
PK
j¼1

ai
j

 !

QK
j¼1

C ai
j

� � Y
K

j¼1

ni
j

� � ai
j�1ð Þ

; (5)

where ai ¼ ai
1; . . . ; ai

K

� �
; ai

j > 0, is the vector of Dirichlet parameters.

Integrating Equations 4 and 5, the probability distribution of com-

ponent membership zi simplifies to

p zijai
� �

¼
C
PK
j¼1

ai
j

 !

QK
j¼1

zi
j

� �
!C

PK
j¼1

ai
j þ zi

j

� � !YK
j¼1

C ai
j þ zi

j

� �
C ai

j

� � : (6)

In particular, the probability of the event where the ith location on

the tissue belongs to component j is

p zi
j ¼ 1jai

� �
¼

ai
jPK

k¼1

ai
k

: (7)

It is the prior probability before knowing xi, thus pi
j ¼ pðzi

j ¼ 1jaiÞ.
In DGMM the parameters of interest are H ¼ flj;rj; ai

jg. An it-

erative optimization such as the expectation maximization (EM) al-

gorithm is typically used for parameter estimation. At the iteration t

of the algorithm, the parameters of H tð Þ are updated, and the poster-

ior probability of the event where location i belongs to component j

is derived

yi tð Þ
j ¼

pi tð Þ
j p xijl tð Þ

j ; r
tð Þ

j

� �
PK
k¼1

pi tð Þ
k p xijl tð Þ

k ;r
tð Þ

k

� � : (8)

3.3 Spatial-DGMM
Since biological tissues have spatial substructures, the ion intensities

in neighboring locations are correlated. Therefore, the probabilities

of locations belonging to each Gaussian component should also be

spatially dependent. To incorporate spatial dependence, we were

inspired by the work in Nguyen and Wu (2011), which incorporated

a linear filter to the posterior probabilities of DGMM. At each iter-

ation t of the EM algorithm, the linear filter �yi tð Þ
j linearly combines

the posterior probabilities yi tð Þ
j of the neighboring locations to

achieve spatial smoothing. Unlike Nguyen and Wu (2011), we de-

fine weighted linear combinations

�yi tð Þ
j ¼ 1P

m�N i wi
m

X
m�N i

wi
mym t�1ð Þ

j ; (9)

where N i is the vector of indexes of neighboring locations of loca-

tion i. The weights wi
m express the proximity of location m to loca-

tion i.

The weights wi
m are designed specifically for MSI. Similarly to

Alexandrov and Kobarg (2011), we consider the fact that neighbor-

ing locations may be similar in chemical composition, but they may

also be different, e.g. if they fall on opposite sides of edges separat-

ing distinct morphological structures. The similarity of chemical

composition of the two locations can be quantified by the similarity

of their mass spectra. Specifically, denote x0 i; y0 i
� �

the spatial coord-

inate of the location i, and Si¼ s1
i ; s

2
i ; . . . ; sD

i

� �
the spectrum of inten-

sities of all the m/z values at that location. The weights wi
m combine

the spatial distance and the spectrum similarity as:

wi
m ¼ exp � x0i � x0mð Þ2 þ y0i � y0m

� �2

k2
1

 !
�

exp �kSi � Smk2

k2
2

 !
: (10)

The tuning parameters k1 and k2 reflect the scale and the relative im-

portance of spatial and spectrum similarities.

Following Nguyen and Wu (2011), we incorporate �yi
j to the

Dirichlet parametrization, such that the prior probability of the lo-

cation i to belong to component j can depend on the posterior prob-

abilities yi tð Þ
j of the neighboring locations. The revised Dirichlet

distribution is

p nijai
� �

¼
C
PK
j¼1

a2
j �y ið Þb

j

 !

QK
j¼1

C a2
j �y ið Þb

j

� � YK
j¼1

ni
j

� � a2
j
�y ið Þb

j
�1

� �
: (11)

The parameter b represents the extent of spatial dependence, and is

estimated from the data. Similar to Equations 4–7, the prior pi
j is:

pi
j ¼ p zi

j ¼ 1jai

� �
¼

ai
j�y

ið Þb
jPK

k¼1

ai
k
�y ið Þb

k

: (12)

3.4 Parameter estimation
The process of parameter estimation is summarized in Algorithm 1.

The inputs are a vector of ion intensities xi i ¼ 1; 2; . . . ;Nð Þ, a N�N

matrix W of weights of location i relative to location j, Kmax is the

maximum number of Gaussian components, tmax is the maximum

number iterations, and e is the stopping tolerance. The parameters

of interest are H ¼ lj;rj; aj; b
� �

. Although spatial-DGMM has more

parameters than DGMM, the complexity of the parameter space is

reduced by the spatial smoothing. We initialize the parameters lj;rjf g

MSI segmentation i211



with either GMM or K-means and initialize aj ¼ 1 and b¼1.

The negative log-likelihood is

�L Hð Þ ¼ �
XN
i¼1

log
XK

j¼1

ai
j�y

ið Þb
jPK

k¼1

ai
k
�y ið Þb

k

p xijlj;rj

� �
: (13)

The estimation relies on EM algorithm, an iterative method for min-

imizing the negative log likelihood with respect to all the parameters

in presence of latent variables. At the iteration t in the E step, we cal-

culate yi tð Þ
j as in Equation 8 and write the expectation of negative

log-likelihood as

E Hð Þ¼�
XN
i¼1

XK

j¼1

yi tð Þ
j

log a2
j �y ið Þb

j

� �
� log

XK

k¼1

a2
k�y ið Þb

k

0
@

1
A�1

2
log 2pð Þ� log rjð Þ�

xi�lj

� �2

2r2
j

8><
>:

9>=
>;:
(14)

The M step of the algorithm minimizes the function above with re-

spect to parameters H by gradient descent. Each parameter is

updated with respect to its partial gradient

H tþ1ð Þ ¼ H tð Þ � g�E H tð Þð Þ; (15)

where g is the learning step. All �E H tð Þð Þ have closed form and are

subject to the constrains. The partial gradients of each parameter

are

@E

@lj

¼
XN
i¼1

yi
j lj � xi
� �

=r2
j ;

@E

@rj
¼
XN
i¼1

yi
j 1=rj � lj � xi

� �2
=r3

j

	 

;

@E

@aj
¼ �

XN
i¼1

2yi
j

aj
þ 2aj

Xn

i¼1

XK

m¼1

yi
m�y ið Þb

jXK

l¼1

a2
l �y ið Þb

l

;

@E

@b
¼
Xn

i¼1

XK

j¼1

yi
j �log �yi

j

� �
þ

XK

l¼1

a2
l �y ið Þb

l log�yi
l

XK

l¼1

a2
l �y ið Þb

l

0
BBBBB@

1
CCCCCA:

(16)

The algorithm alternates between the E step and the M step, until it

reaches either the stopping criterion or tmax.

To avoid local optima, we enhanced the M step with simulated

annealing. At each iteration the step randomly picks a Gaussian

component kc, and randomly assign another value to its mean. The

proposal for the random assignment is a Gaussian distribution cen-

tered at the current mean, with variance proportional to a tempera-

ture parameter T. The current mean is replaced by the new mean if

its log-likelihood increased. The parameter T decreases after each it-

eration, making it less likely to sample a new mean far away from

the current mean after each iteration. Our evaluations indicate that

the simulated annealing prevents the EM algorithm from being

trapped in local optima when the initialization is poor.

The approach is implemented in R and is available open-source.

Analysis of the datasets in this article on a laptop with 2.7GHz CPU

and 12G RAM took between 2 and 5 s per ion image.

3.5 Proposed data analysis workflow
The overall proposed spatial-DGMM workflow is overviewed in

Figure 3. It consists of data pre-processing (black boxes), fitting the

spatial-DGMM model to the observed intensities of an ion in a tis-

sue (red boxes) and model-based inference from the output of

spatial-DGMM (blue boxes).

3.5.1 Data pre-processing

Typical MSI pre-processing steps include baseline correction, nor-

malization, peak picking, peak alignment and peak binning (Ràfols

et al., 2018). Since the technical variance between different MS anal-

yses can be quite large, normalization of spectra across locations

and tissues reduces this variation. Different normalization methods

can be used, such as total ion current (TIC) normalization, median

normalization and normalization based on an internal standard.

Smoothing eliminates non-systematic noise in the mass spectra. Peak

picking summarizes the mass spectra, and reduces the m/z features

to a subset of meaningful analytes. In the following, we assume that

the input to spatial-DGMM are pre-processed m/z features across

locations on one or multiple tissues, from one or several conditions.

3.5.2 Model fitting

The number of Gaussian components in an ion image corresponds

to the number of morphological sub-structures in the spatial

Algorithm 1. Expectation maximization algorithm

1. procedure DGMM(xiði ¼ 1; 2; . . . ;NÞ;W;Kmax; tmax; e)
2. Initialization:

3. if Initialization¼“km” then

4. lj  kmeans(xi)

5. r2
j ¼ ð0:15ljÞ2

6. end if

7. if Initialization¼“gmm” then

8. ðlj;r
2
j Þ  gmm(xi;K)

9. end if

10. aj ¼ 1; b ¼ 1;T ¼ 1

11. pj ¼ 1=K; yi
j (Equations 12 and 8)

12. parameter estimation:

13. for t ¼ 1 to tmax do

14. compute �yi
j (Equation 9)

15. compute pi
j (Equation 12)

16. compute yi
j (Equation 8)

17. Hðtþ1Þ  HðtÞ � g�EðHðtÞÞ
18. if Simulated Annealing then

19. pick kc from ð1; . . . ;KÞ
20. l0kc

 Nðlkc
; rTÞ and H0  Hðl0kc

; . . .Þ
21. if LðH0Þ > LðHÞ then

22. H H0

23. end if

24. T  T � dT

25. end if

26. Stop when g�EðHðtÞ < e
27. end for

28. return ðlj;rj; aj;b; yi
jÞ

29. end procedure

i212 D.Guo et al.



distribution of the ion. A single Gaussian component implies a

homogeneous spatial distribution, and multiple Gaussian compo-

nents imply a heterogeneous spatial distribution of that ion. Since

different ions have different spatial distributions, we estimate the

ion-specific number of Gaussian components from the data, as

follows.

The Bayesian information criterion (BIC) is a common approach

to estimating the number of components K in GMM. Therefore, we

use it to initialize K in spatial-DGMM. However, BIC tends to over-

estimate the model complexity and K. Our simulations demon-

strated that when K is too large, spatial-DGMM tends to return

empty components, i.e. components with no mapped locations.

Based on these observations, the proposed workflow estimates K

using GMM and BIC, fits spatial-DGMM with multiple initializa-

tions and multiple neighborhood radii given K, and selects the mode

K0 of the numbers of non-empty Gaussian components in these initi-

alizations. Finally, spatial-DGMM is re-fit using the number of com-

ponents K0.

3.5.3 Model-based inference

Model-based inference summarizes the fit of spatial-DGMM in

ways that are useful for downstream statistical analyses. It consists

of predicting component labels for each location i, estimating an

overlap between a component with a pre-defined ROI, estimating

distances between the spatial-DGMM maps of two ions, and esti-

mating the mean ion intensities of each component.

The component labels for each location i are predicted as the

label of component with highest posterior probability:

labeli ¼ arg maxj yi
j

� �
: (17)

The overlap between the components detected by spatial-DGMM

map and a pre-determined ROI is quantified by a match score

match ROI; jð Þ ¼
P

i 1 if i 2 ROI and labeli ¼ j; 0 otherwise
n o

P
i 1 if i 2 ROI or labeli ¼ j; 0 otherwise
n o :

(18)

Ions with a Gaussian component of high matching score are viewed

as morphology-specific.

Distances between the spatial-DGMM maps of two ions are

estimated as the proportion of locations belonging to component j

with identical component labels between two spatial-DGMM

maps. Mathematically, we define the distance between two spatial-

DGMM maps M1 and M2 as:

distance M1;M2ð Þ ¼

PN
i¼1

di

N
; (19)

where di ¼ 0 if labeliM1
¼ labeliM2

and 1 otherwise. This is used as in-

put to clustering ions with similar spatial patterns.

The mean intensities of each component l1; . . . ;lK estimated

from the model are used as input for differential analysis with t-test

or ANOVA. In an unsupervised manner, as the components are

ranked by their mean intensities in each condition, the compared

components are mapped between conditions by their relative order.

In a supervised manner, the compared components can be mapped

manually between conditions or guided by other source of images.

4 Data

4.1 Simulated Data 1
To evaluate the accuracy of ion spatial-DGMM in presence of noise,

we simulated 10 ion images with complex morphology. The images

had three morphological components: 1 ¼ circle, 2 ¼ background

and 3¼ triangle, with mean intensities of l1 ¼ 100; l2 ¼ 150 and

l3 ¼ 225. The spatial variation in each ion was simulated according

to the intrinsic conditional auto-regression (ICAR) model (Bemis

et al., 2019), namely xi ¼ lki þ /i þ �i, where xi is the intensity of

location i, and lki the mean intensity of morphological component k

of location i. The term /i expressed the spatial auto-correlation

/i � ICAR s2;W
� �

, with standard deviation s ¼ 5. W is the N�N

matrix that takes values of 1 for pairs of locations that are

direct neighbors, and 0 otherwise. �i is the random noise of location

i, �i � N 0; r2
�

� �
; r� varied from 0:05li to 0:32li.

4.2 Simulated Data 2
To evaluate the utility of spatial-DGMM for finding ions with simi-

lar patterns, we simulated four groups of ions with different mor-

phologies, 10 ions per group. m/z 1–10 had three morphological

components: 1¼ circle, 2¼background and 3¼ triangle, with l1

varying from 65 to 116, l2 ¼ 150 and l3 varying from 200 to 512.

m/z 11–20 had two morphological components: 1¼background

and 2¼ triangle, with l1 ¼ 150 and l2 varying from 265 to 571.

m/z 21–30 had two morphological components: 1¼ circle and

2¼background, with l1 varying from 72 to 124 and l2 ¼ 150. m/z

31–40 had homogeneous spatial distribution with l varying from

134 to 193. The spatial variation was simulated with the ICAR

model as above, and r� ¼ 0:1l for all m/z.

4.3 Farmhouse painting
The experiment was used to evaluate spatial-DGMM in a real-life

situation with known truth. In the oil painting on paper each color

has a unique chemical composition, representing a component of the

image. The painting was affixed to a glass slide. A DESI-MSI experi-

ment with an LTQ linear ion trap mass spectrometer (Thermo

Finnigan) acquired mass spectra from 12 600 locations, with m/z

range 100–1000, and produced 10 800 m/z features. The data were

analyzed with Cardinal (Bemis et al., 2015). At each location, the

intensities were normalized with TIC and smoothed using Gaussian

kernel. About 187 m/z features with signal to noise ratio >6 and

occurring in >1% of the locations were retained for the analyses.

The m/z in the original spectra were binned to the selected 187 m/z

features.

4.4 Amyotrophic lateral sclerosis mouse brain
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease

of the brain and spinal cord (Cleveland and Rothstein, 2001). The

brain of one mouse expressing a human ALS mutation (G93A) was

Raw data
imzML

Pre-process
normalize, 

peak pick, etc

Initialize
GMM, 

choose K w/BIC

Spatial DGMM
choose K’

Model-based inference
spatial heterogeneity 

per-component summaries 

If
K’>1

Fig. 3. The proposed workflow of data analysis with spatial-DGMM. Black: data processing; red: model fitting; and blue: model-based inference
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collected at Day 45 after birth, sectioned, mounted, coated with 2,5-

Dihydroxybenzoic acid (DHB) matrix using the TM Sprayer (HTX

Technologies) and analyzed by MALDI-MSI using solariX 9.4 T

FTICR MS (Bruker Daltonics) in positive mode. The spatial reso-

lution was 100 lm with a mass range of m/z 609.44–1400. The data

were converted from flexImaging (Bruker Daltonics) to imzML for-

mat and processed with Cardinal (Bemis et al., 2015). There were

�1800 locations on the tissue and �1733 m/z features per location.

For each location, the m/z were binned to a mass resolution of 2500.

After the same pre-processing procedure as for the Farmhouse paint-

ing, 60 m/z features were retained for the analyses.

4.5 CpG and saline pre-conditioned mouse brain
CpG is an unmethylated oligodeoxynucleotide that stimulates the

toll-like receptor 9 and induces neuroprotection against ischemic

damage. Brain tissue sections of three saline (control) and four CpG

pre-conditioned mice were collected and analyzed by nano-DESI MSI

using an LTQ-orbitrap (Thermo Fisher Scientific) in positive mode

(Bemis et al., 2019). The spatial resolution was approximately

40�200lm with the mass range of 100–1500. The data in RAW for-

mat were converted to NetCDF format using Xcalibur (Thermo

Fisher Scientific) and processed with Cardinal (Bemis et al., 2015).

There were �2000 locations on the tissue and �7475m/z features per

location. For each location, m/z were binned to a mass resolution of

5800, and processed as above. About 433 m/z features were retained.

5 Results

5.1 Spatial-DGMM accurately segments ion images
We evaluated the accuracy of spatial-DGMM at varying levels of

noise, in terms of estimates of the mean intensity of each compo-

nent, and in terms of classifying tissue locations to their components

(Section 3.5). Figure 4 compares the performance of spatial-DGMM

to that of GMM on Simulated Data 1 (For comparison of spatial-

DGMM and GMM on experimental data in section 4.4 and 4.5,

Supplementary Figs. S1 and S2). With low noise, both GMM and

spatial-DGMM suggest the correct number of morphological com-

ponents (K ¼ K0 ¼ 3), have low estimation errors, and low mis-

classification rates.

As the noise increases, the component map derived by GMM

becomes uncertain, and the estimation error and the misclassifica-

tion rate rapidly increase. Spatial-DGMM, on the other hand, lever-

ages the information from the neighboring locations, has a lower

estimation and misclassification error. In this particular simulation

the 1.5-fold change between the mean intensities of the components

is obscured when the noise exceeds 20%. GMM and spacial GMM

only detect two morphological components, thus inflating the esti-

mation and the misclassification errors.

5.2 Spatial-DGMM uncovers ion distributions hidden by

multivariate segmentation
The experimental datasets allow us to evaluate the ability of spatial-

DGMM to uncover ion-specific and morphology-specific informa-

tion, in experiments with DESI (farmhouse painting), MALDI (ALS

mouse brain) and nano-DESI (saline and CpG mouse brain)

acquisitions.

5.2.1 Farmhouse painting

Although the multivariate analyses in Figure 1 uncovered the general

outlines of the painting, the results lacked color specificity. For ex-

ample, the spatial shrunken centroids in Figure 1d highlighted color

red (walls), color blue (sky) and color dark green (leaves), but failed

to distinguish colors light green (grass), color brown (earth) and

color gray (windows). In contrast, images of individual ions in

Figure 2 reflect color localization: m/z 650.17 (Fig. 2a) was specific

to color black, and m/z 321.25 was selective (i.e. had a higher inten-

sity) for color light green (Fig. 2c). Spatial-DGMM (Fig. 2b and d)

automatically detected these ion-specific patterns.

5.2.2 ALS mouse brain

Figure 5 leads to the same conclusion. Spatial shrunken centroids

and spatial K-means were strongly affected by the noisy ions, and

missed the anatomic sub-structures of the mouse brain tissue.

Spatial-DGMM successfully distinguished ions with informative

(i.e. heterogeneous) spatial distribution from those with uninforma-

tive (i.e. homogeneous) spatial distribution. For example, DGMM

finds characteristic patterns in m/z 868.33 and 838.63, which can be

lipids (phosphatidylcholines) known to be present in both gray and

white matter. DGMM detects relatively homogeneous distributions

of m/z 896.57 and 681.14 across the tissue. We can interpret m/z

896.57 as driven not by the anatomic structure but by the cellular

organization. m/z 681.14 is not known to be associated with the

brain, and may arise from the matrix.

5.2.3 Saline and CpG mouse brain

Figure 6 makes a similar point for a Sal pre-conditioned mouse brain

tissue. Spatial shrunken centroids and spatial K-means produced

Components       1       2      3

Ion image Intensity GMM Spatial DGMM

Ion image Intensity GMM Spatial DGMM
100 200 3000.

00
0.

12

100 150 200

0.
00

0.
03

(b)

(a) Low noise level

High noise level

(c) (d)

Spa�al DGMM GMM

250

Fig. 4. Accuracy of spatial-DGMM on the Simulated Dataset 1. (a) Ion image,

histogram of ion intensities, GMM segmentation and spatial-DGMM segmenta-

tion for the simulated dataset with a low noise (r� ¼ 0:05l). (b) As in (a), for the

simulated dataset with a high noise (r� ¼ 0:17l). (c) Estimation error of mean

intensity of each morphological component versus noise (in % of intensity). (d)

Misclassification rate versus noise level (in % of intensity). Only two Gaussian

components were inferred with noise above 20%. K¼3 for noise level smaller

than 20% of mean intensity and K¼2 for noise level equal or greater than 20%

of mean intensity. In all the cases Kmax ¼ 4 and K
0 ¼ K . Kmax is the initialized

maximum number of components, K is the number of components estimated

by GMM and K 0 is the number of components estimated by spatial-DGMM
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three structured segments (and an additional segment stochastically

distributed across the tissue). However, the multivariate segments

could not fully represent the ion-specific spatial distributions. m/z

756.51 had a higher intensity in the upper and the central parts of

the tissue, and spatial-DGMM highlighted that. For m/z 798.50,

spatial-DGMM only detected two morphological components, and

was consistent with the ion image.

5.3 Spatial-DGMM maps the distribution of ions to mor-

phologically relevant regions
In many applications it is important to map the spatial distributions

of an ions as present in (or absent from) a ROI (such as a known

morphological region) of the tissue. Therefore, we evaluated the

overlap between the components of ion distributions selected by

spatial-DGMM and the regions of interest (Equation 18). We com-

pared the results to those of Pearson correlation between the ion

intensities and the binary vector indicating the region.

Figure 7 illustrates the results in the case of a Sal mouse brain tis-

sue. The ROI in Figure 7a, obtained by spatial shrunken centroid

segmentation, approximated corpus callosum. The image of m/z

844.67 shows a clear selectivity for this segment; however, it is also

systematically over-represented in other regions of the brain

(Fig. 7b). As the result, the Pearson correlation is relatively low

(�0.51). Spatial-DGMM, on the other hand, had the matching score

of 0.78, indicating a high ion selectivity for this region (Fig. 7c).

5.4 Spatial-DGMM helps cluster ions with similar spatial

distributions
Grouping ions with similar spatial distributions helps understand

the biological processes in the tissue. We evaluated the ability of

hierarchical clustering to group such ions in Simulated Data 2, using

two types of inputs. The first input was the intensities of the individ-

ual locations in the image. In this simulation, this input for each ion

was a 1600-dimensional vector of noisy measurements lacking

m/z = 868.33 m/z = 838.63 m/z = 681.14 m/z = 896.57(a)

(b)

Spatial centroid 
segmentation (k = 4)

Spatial K-means 
segmentation (k = 4)

(c) (e) (g) (i)

(d) (f) (h) (j)Spatial DGMM map Spatial DGMM map Spatial DGMM map Spatial DGMM map

Fig. 5. Segmentation of an ALS mouse brain. (a) Multivariate segmentation with spatial shrunken centroids, neighborhood radius¼ 1 and shrinkage parameter ¼
3. (b) Multivariate segmentation with spatial K-means. (c) Ion image of m/z 868.33. (d) Univariate spatial-DGMM of m/z 868.33, Kmax ¼ 5, K¼ 4 and K

0 ¼ 4. (e) Ion

image of m/z 838.33. (f) Univariate spatial-DGMM of m/z 838.33, Kmax ¼ 5, K¼4 and K
0 ¼ 3. (g) Ion image of m/z 681.14. (h) Univariate spatial-DGMM of m/z

681.14, Kmax ¼ 5, K¼4 and K
0 ¼ 2. (i) Ion image of m/z 896.57. (j) Univariate spatial-DGMM of m/z 896.57, Kmax ¼ 5, K¼5 and K

0 ¼ 1. In d, f, h and j, Kmax is the ini-

tialized maximum number of components, K is the number of components estimated by GMM and K
0

is the number of components estimated by spatial-DGMM

(c) (d)

(b)Spatial centroid 
segmentation (k = 4)

Spatial K-means 
segmentation (k = 4)

m/z = 756.51 Spatial DGMM map

m/z = 798.50 

(a)

Spatial DGMM map(e) (f)

Fig. 6. Segmentation of a Sal pre-conditioned mouse brain. (a) Multivariate

segmentation with spatial shrunken centroids, neighborhood radius¼1,

shrinkage parameter ¼ 3. (b) Multivariate segmentation with spatial K-means.

(c) Ion image of m/z 756.51. (d) The spatial-DGMM map of m/z 756.51

ðKmax ¼ 4;K ¼ 3;K
0 ¼ 3Þ. (e) Ion image of m/z 798.50. (f) The spatial-DGMM

map of m/z 798.50 ðKmax ¼ 4;K ¼ 3;K
0 ¼ 2Þ. In d and f, Kmax is the initialized

maximum number of components, K is the number of components estimated

by GMM and K
0

is the number of components estimated by spatial-DGMM

(a)

(b) Spatial DGMM map
Match score =  0.78

m/z = 844.67
Correlation= -0.51

(c)

Fig. 7. Selectivity of ion localization to a morphological structure in a Sal

mouse brain tissue. (a) A region of interest, obtained by spatial shrunken cen-

troid segmentation and approximating corpus callosum. (b) Ion image of m/z

844.67, the correlation is calculated between ion image and binary matrix

indicating the area of interest. (c) Morphological component map of (b) mod-

eled by spatial-DGMM
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spatial information, and the ions were compared using Euclidean

distance. The second input was the spatial-DGMM map generated

by the proposed model. In this simulation, the input for each ion

was a categorical 1600-dimensional vector, where the entries were

the component labels of each location. The ions were compared as

defined in Equation 19.

Figure 8a shows the simulated ion images of the four ion groups,

where 10 replicate ions per group have a same spatial distribution.

Figure 8b illustrates that, due to the noise and to the high dimen-

sionality of the input data, the hierarchical clustering failed to con-

sistently group some of the ions with the same spatial distribution.

Clustering the ions in the space of the spatial-DGMM components,

on the other hand, could more fully characterize the similarity be-

tween the spatial distributions.

5.5 Spatial-DGMM uncovers differences in ion abun-

dance between conditions
Many MSI experiments characterize changes in chemical composi-

tions of tissues between conditions. We evaluated the utility of

spatial-DGMM for this purpose in the CpG and saline pre-condi-

tioned mouse brains experiment. Figure 9 illustrates the comparison

for m/z 826.76. Figure 9a and b highlights the heterogeneity of the

distribution of this ion in a CpG and a saline tissues. Spatial-

DGMM detected three morphological components with distinct

mean values in the tissues (Fig. 9c and d).

When the analysis averaged the intensities of this ion separately

in each tissue and over all the replicate tissues, we found no appar-

ent difference in abundance between the two conditions (black

boxes in Fig. 9e). However, when comparing the mean intensities of

the components detected by spatial-DGMM the differences were

more pronounced, and revealed that in Components 1 and 2 the ion

was regulated in the direction opposite to that in Component 3 (col-

ored boxes in Fig. 9e).

Finally, as an alternative way to gain insight into the regulation,

we compared the relative mean intensities of the ion between pairs

of components in each group (Fig. 9f). The ratio is an indicator of

the difference between the two morphological components within

each tissue. As we can see from Figure 9d, the mean intensity of

Component 3 relative to Component 1 was visibly regulated be-

tween two conditions. This information is overlooked when not tak-

ing the tissue morphology into account.

6 Discussion

We proposed a novel workflow spatial-DGMM for MSI experi-

ments. Spatial-DGMM segments an ion image of a tissue into a

data-driven number of Gaussian components, that reflect morpho-

logical sub-structures in the analyzed tissue. We showed the applica-

tion of GMM in MSI for the first time. The number of Gaussian

components can be used to distinguish ions with homogeneous or

heterogeneous spatial distributions. In addition, spatial-DGMM

(a) m/z 1-10 m/z 11-20 m/z 21-30 m/z 31-40

… … … …

(b) Clustering m/z in intensity space

Clustering m/z in Gaussian components space(c)

m/z 1-10 m/z 11-20 m/z 21-30 m/z 31-40

Fig. 8. Hierarchical clustering of ions with similar spatial distributions in

Simulated Dataset 2. (a) Simulated morphological components for ions 1–10,

11–20, 21–30 and 31–40. (b) Hierarchical clustering of ions in the location

space. (c) Hierarchical clustering of ions in the Gaussian components space

generated by spatial-DGMM. K ¼ 3;K
0 ¼ 3 for m/z 1–10, 16; K ¼ 2;K

0 ¼ 2 for

m/z 11–15, 17–30; K ¼ 1;K
0 ¼ 1 for m/z 31–40. K is the number of components

estimated by GMM and K 0 is the number of components estimated by spa-

tial-DGMM

(b)

CpG Sal (d)

CpG(a)

(c)

Sal 

CpG Sal

(e) (f)

m/z = 826.76

Fig. 9. Changes in chemical composition in mouse brains between CpG and

Sal conditions. (a) Ion image (m/z 826.76) of one of the four biological repli-

cates of CpG pre-conditioned mouse brain. (b) Image of the same ion of one

of the three biological replicates of saline pre-condition. (c) Spatial-DGMM

component map of (a). (d) Spatial-DGMM component map of (b). (e)

Comparison between the CpG and the Saline pre-conditioned mice. Black

boxplots summarize the average intensities of m/z 826.76 in each tissue.

Color boxplots summarize the average intensities of m/z 826.76 in each com-

ponent detected by spatial-DGMM. (f) Paired comparison between the CpG

and the Saline pre-conditioned mice. The boxplots summarize relative mean

intensities of the components in a same tissue. The CpG pre-conditioned

group had a smaller intensity of Component 3 relative to Component 1
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quantitatively extracts statistical summaries of the Gaussian compo-

nents, such as their mean intensities and variances, spatial location

and overlap with a pre-defined ROI.

We demonstrated using simulated data that spatial-DGMM accur-

ately estimates the correct number of Gaussian components, and their

properties. Applied to experimental data from different experimental

workflows, specifically DESI-MSI, MALDI-MSI and nano-DESI MSI

with diverse characteristics, spatial-DGMM uncovered ion-specific

patterns that could not be found via multivariate analysis. We also

explored downstream applications of spatial-DGMM, and demon-

strated its utility for selecting ions colocalizing with a region-of-

interest, clustering ions with similar spatial patterns and detecting

morphology-specific changes in ion abundance between conditions.

The limitations of spatial-DGMM are related to its assumptions.

Spatial-DGMM assumes that ion intensities within a unique mor-

phological sub-structure approximately follow a Gaussian distribu-

tion. In reality, the data may have more complex distributions. The

accuracy of estimating the number of morphological components

and their properties depends on the extent of differences of the

intensities in these components, and on the associated noise. Despite

the limitations, we believe that spatial-DGMM will help gain useful

information from ion images, and will become an important tool for

practical applications of MSI.
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