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Abstract: Plant growth promoting rhizobacteria (PGPR) are associated with plant roots and augment
plant productivity and immunity by reducing fertilizer application rates and nutrient runoff. Studies
were conducted to evaluate bell pepper transplants amended with formulation of consortium of
two indigenous PGPR isolates (Bacillus subtilis and Bacillus pumilus) in terms of increase in yield
and disease resistance under field conditions. Transplants were planted into plots treated by NPK
(nitrogen, phosphorus and potassium), fungicides, soil solarization, MeBr fumigation, PGPR and
untreated soil. Treatments were assessed for incidence of soil-borne phytopathogens viz. Phytophthora
capsici and Colletotrichum sp. Highly significant increases in bell pepper transplant growth occurred
in response to formulations of PGPR isolates. Transplant vigor and survival in the field were also
improved by PGPR treatments. Consortium of Bacillus subtilis and Bacillus pumilus reduced disease
incidence of damping off by 1.81% and anthracnose by 1.75%. Numbers of colony forming units of
Phytophthora capsici and Colletotrichum sp. were significantly higher in all plots than those treated
with PGPR consortium. Incidence of seed rot and seedling blight on bell pepper was significantly
lower in PGPR-treated plots and highest in untreated plots. Total fruit yield of bell pepper increased
by 379.36% with PGPR consortium (Bacillus subtilis and Bacillus pumilus).

Keywords: bell pepper; anthracnose; damping off; disease suppression; principal component analysis

1. Introduction

Capsicum annuum L. commonly called bell or sweet pepper is among the most popular vegetable
crop cultivated worldwide. It has been widely accepted as a valuable nutritious food due to presence
of vitamins (A, C, E and K1) and antioxidants. Its color, aroma, flavor and crunchy texture are major
attributes for its wide acceptance in various culinary dishes around the world [1]. In the 19" century,
the British introduced bell pepper to the Shimla hills, and since then it is generally been referred to as
“Shimla Mirch” in India and is an important vegetable cultivated chiefly in the mid-hills of Himachal
Pradesh. In India, other commercial primarily capsicum producing regions are Tamil Nadu, Karnataka,
Uttar Pradesh, and the Deccan Plateau. However, due to lesser production rates and small areas under
cultivation, there is not enough for adequate supply in comparison to US, Holland, France and other
capsicum producing countries around the world. Moreover, damping off and anthracnose caused by
Phytophthora capsici and Colletotrichum spp. respectively, are major devastative and destructive diseases
which drastically reduces potential crop yields [2]. Damping off is a soil-borne fungal disease of
seedlings caused by Phytopthora which can be the bane of the amateur seed and occurs on the seeding
table when young plants are just beginning to grow. During pre-emergence damping off, the seeds may
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rot before germinating or seedlings may die prior to emergence. If it is post-emergence damping off,
the young plant seedlings develop a rot at the crown. Later, the tissue becomes soft resulting in wilting
of the plant and its fall over its base [3]. Anthracnose is another common disease and is caused by the
fungus Colletotrichum also called ripe-fruit rot. The disease reduces the productivity of the ripened
fruits of sweet pepper and turns them into rotted waste in just a few days [2]. Symptoms appear mostly
as circular, sunken lesions or spots that appear on the fruit, with black margins and covered with a
pinkish mass of fungal spores. With disease progression, the spots spread, forming concentric lesions
with dark fructifications representing the fungal fruiting structures called acervuli [3]. Various chemical
fungicides provide good results in coping with these soil-borne diseases and fungal pathogens but
excessive use can cause various environmental hazards and carcinogenic and mutagenic effects in
living beings [4]. Hence, plant protection is the need of the hour to maintain sustainable crop yields.
Alternatively, to combat production loss due to harmful diseases, it is essential to consider the need for
biological control agents (BCAs). BCAs are an alternative to chemical fertilizers and are a safe and
efficient tool against phytopathogens [5].

Plant growth promoting rhizobacteria (PGPR) such as Bacillus and Pseudomonas are very
well-known for biological control against various soil-borne phytopathogens. They colonize plant
roots and provide direct and indirect effects. Various mechanisms of PGPR include increased nitrogen
uptake, synthesis of indoleacetic acid (IAA), phosphate solubilization, suppression of soil-borne
pathogens by producing siderophores, etc., which enhance plant growth and yield [6,7]. Plant disease
resistance is again supposed to be a dynamic and multifactorial process. It is assumed that Bacillus
spp. suppress soil borne fungal pathogens by a mechanism called induced systemic resistance [8].
Positive impacts of PGPR on the initial growth of cauliflower and other vegetable crops and its ability
to attenuate various soil-borne diseases has been described previously [9]. Many researchers found
that among selected PGPR isolates, four significantly decreased gray leaf spot disease severity with
PGPR Brevibacterium iodinum (KUDC1716) providing the highest disease suppression in bell pepper
(Capsicum annuum) [10]. In another greenhouse study, lower degrees of root rot and taller plants were
found by the application of Burkholderia cepacia (BRB21) in pepper [11]. However, few studies have
been reported for suppression of diseases caused by Phytophthora capsici and Colletotrichum spp. in bell
pepper and are restricted to net/glasshouse studies. In this study, we systematically investigated the
biocontrol efficacies of a consortium of two already isolated PGPR strains (Bacillus pumilus, YSPMK11
and Bacillus subtilis, MKs) against damping off and anthracnose diseases on field grown peppers.
Hence, the present investigation was planned and executed with two objectives. First, to evaluate the
growth promotion efficacies by a consortium (Bacillus pumilus, YSPMK11 and Bacillus subtilis, MK5) on
bell pepper. Second is to test the efficacy of a consortium in controlling damping off and anthracnose
diseases in bell pepper under field conditions.

2. Materials and Methods

2.1. Procurement and Mass Culturing of Microbial Strains

The isolates of PGPR’s (Bacillus pumilus and Bacillus subtilis) were procured from Soil Microbiology
Lab of Dept. of Soil Science and Water Management, Dr. Y S Parmar, University of Horticulture
and Forestry, Solan (Himachal Pradesh), India. Both strains are indigenous and isolated from our
previous study [9,12] and were multiplied on nutrient broth medium (MM 244, HiMedia Laboratories).
The nutrient broth medium containing 0.5% of peptone and sodium chloride and 0.3% of beef extract
were suspended in 1 L of distilled water and autoclaved at 15 Ibs of pressure (121 °C) for 15 min.
For making the stock solution, each bacterial strain (Bacillus pumilus and Bacillus subtilis) was grown
for 24 h at 30 °C with rotation at 120 rpm until reaching the exponential phase. After centrifugation, the
cultures were again resuspended in sterile water and adjusted to a final concentration of ~10° CFU/mL
for use as inoculum.



Microorganisms 2019, 7, 89 3o0f12

2.2. Characterization of PGPR Isolates

Both the isolates (Bacillus pumilus and Bacillus subtilis) were characterized for their in vitro
multifarious plant growth promoting traits (phosphate solubilization, IAA and siderophore production).
Cultures were also tested for their antagonistic activities against Phytophthora capsici and Colletotrichum
spp. Phosphate solubilization potential was detected utilizing PVK (Pikovskaya’s) broth. Quantitative
estimation of water extractable free inorganic P (Pi) was then carried out. IAA and siderophore
production were determined [9,12]. IAA production was analysed using a colorimetric method.
The isolates were incubated in yeast malt dextrose broth at 28 °C for 96 h followed by centrifugation.
Thereafter, 1 mL of supernatant was mixed with 2 mL of Salkowski reagent and optical density was
recorded at 530 nm. For siderophore production overnight cultures of both isolates were inoculated
onto chrome azurol S (CAS) agar plates and incubated at 28 °C for 72 h. Isolates with an orange halo
zone were considered positive for siderophore production and the diameter of halo zone was measured.

Seed of cv. California Wonder obtained from the Seed Technology and Production Centre of Dr. Y
S Parmar University of Horticulture and Forestry. Seeds were surface sterilized in 0.2% of HgCl, for
3 min and washed with sterilized distilled water several times. Seed emergence was also analysed
in a growth chamber using consortia of bacterial strains and compared with an uninoculated control.
Nitrogen fixing capacities of both the indigenous strains were quantified indirectly by an acetylene
reduction assay (ARA) [13].

2.3. Field Experiments to Evaluate Performance of PGPR’s Consortia

Field experiments were conducted during 2010-2011 at the Research Farm in Solan (Himachal
Pradesh), replicated thrice. The elevation is 1523 m above mean sea level and the site has moderate-to-
heavy monsoon rains. Seedlings, approximately six-weeks-old, were transplanted into beds with plants
spaced at 30 cm intervals within the row. Each plot consisted of two 7.5 m rows, spaced 0.8 m apart with
25 plants per row. Main plots consisted of seven soil treatments arranged in a randomized complete
block design with five replications. Main plot treatments were: (1) Control—PM1, (2) Benomyl
(fungicide)}—PM3, (3) Captan (fungicide)—PM4, (4) Recommended dose of NPK—PMS6, (5) Soil
fumigation with MeBr (425 kg /ha broadcast 98:2 MeBr:chloropicrin)—PM?7, (6) PGPR’s consortium
(Bacillus pumilus and Bacillus subtilis)—PM9, (7) Soil solarisation—PM10. Doses of fungicides and
NPK (5-10-10) used in these treatments were as commonly used by local bell pepper growers.
The plants were watered by a micro-irrigation system [14] to maintain a 50% moisture content in
soil. Rhizobacterial cultures were incubated for 72 h and then diluted to a final concentration of
9 x 108 CFU/mL in 10% nutrient broth. Seeds were inoculated with rhizobacterial consortia by soaking
in a Petri dish before nursery sowing for 30 min at 1 mL/seed. The liquid cultures of rhizobacterial
consortia were also used for inoculations as soil drench at 50% bloom stage at 10 mL/plant [9]. Plants
were harvested after 90 days and recorded for height and root length recorded. Dry weight of shoots
and roots was determined after drying in an oven at 65 £ 5 °C for 72 h. Numbers of fruits/plant
were counted, and average fruit yield/plant was calculated. The incidence of damping off and
anthracnose were assessed in the field based on the percentage of stems with disease symptoms.
Ten randomly selected bell pepper plants with disease symptoms from each treatment plots were
chosen. Disease severity and control efficacy were calculated as follows: Disease severity = [} (The
number of diseased plants in this index x Disease index)/(Total number of plants investigated x The
highest disease index)] x 100%. Control efficacy = [(Disease severity of control-Disease severity of
treated group)/Disease severity of control] x 100%.

2.4. Statistical Analysis

Statistical analysis was done using the statistical package SAS version 9.3 (SAS Institute Inc., Cary,
NC, USA). Data were analyzed by analysis of variance (ANOVA) and compared using least significant
difference at 5% level of significance (« = 0.05). Principal component analysis was performed to
compare the means of the treatments with yield parameters and diseases suppression.
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3. Results and Discussion
3.1. Characterization of PGPR Isolates

Both the isolates (Bacillus pumilus and Bacillus subtilis) were found positive for phosphate-
solubilizing assays, IAA, and siderophore production. An increase in phosphorous-solubilization
occurred between 48-72 h of incubation. The maximum amount of P-solubilization (287.50 pg/mL)
with Bacillus pumilus and (279.35 ug/mL) by Bacillus subtilis, was at 96 h of incubation. Indole
acetic acid production by Bacillus pumilus and Bacillus subtilis was found to increase with increasing
concentration of L-tryptophan supplementation from 0 to 500 pg/mL. The highest level, 78.7 ug/mL,
was produced by isolate Bacillus pumilus followed by Bacillus subtilis (72.0 ug/mL) when the media
was supplemented with 500 pug/mL of L-tryptophan. It was investigated that IAA is the most
important plant hormone produced by rhizobacterial strains which is directly involved in plant growth
promotion [15]. The production of siderophores, low molecular weight iron chelating compounds, was
detected in both isolates, conferring them a competitive merit to biocontrol agents. This contributed to
disease suppression due to the limited supply of essential trace elements in the soil [16]. The production
of siderophores was confirmed by 8 mm to 10 mm yellowish orange zone produced by Bacillus
pumilus and Bacillus subtilis. The potential of beneficial rhizobacteria with multifarious plant growth
promoting attributes to improve plant growth, including root growth, shoot growth, fresh weight, dry
weight, branches/tillers, root biomass, shoot biomass, flowering, pods/grains etc. was investigated
in various studies [17,18]. In in vitro tests, consortium of both the isolates showed varied levels of
inhibition in mycelia growth of Phytophthora capsici and Colletotrichum sp. (Figure 1). The surface
of the uninoculated control plates were completely covered by the phytopathogens, displaying no
inhibition. But the inoculated plates with consortium of both native bacterial strains showed 85%
and 88.50% inhibition of mycelia growth for Phytophthora capsici and Colletotrichum sp., respectively.
Data indicated that rhizobacterial consortium inhibits Phytophthora capsici and Colletotrichum sp. by
means of antibiosis [19,20] as the fungal antagonists B. subtilis and B. pumilus have been shown to
be effective biocontrol agents in prior studies. The comparison of nitrogenase activity of both the
efficient nitrogen-fixing isolates (Bacillus pumilus and Bacillus subtilis) over reference strain (Azotobacter
chroococcum) procured from the Institute of Microbial Technology, Chandigarh is shown in (Figure 2).
Both the rhizobacterial strains showed higher nitrogenase activity, i.e., 435.26 nmole CoH; h™! mg ™!
protein (108 mg of N fixed /ha/day) by Bacillus subtilis and 424.25 nmole C,Hy4 h—! mg’l protein
(106 mg of N, fixed/ha/day) by Bacillus pumilus as compared to standard strain of Azotobacter
chroococcum, i.e., 372.85 nmole CoHy h~! mg~! protein (93.0 mg of N, fixed /ha/day).

Rhizobacterial consortia +
Phytophthora capsici

Figure 1. Cont.
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Figure 1. Growth inhibition of mycelia Phytophthora capsici and Colletotrichum sp. by rhizobacterial
consortium.

500
m Nitrogenase activity ~m N2 fixation (mg/ha/day)
a

Nitrogenase activity (nmole C,H, h"' mg"' protein)

Azotobacter chroococcum Bacillus subtilis Bacillus pumilus

Rhizobacterial isolates

Figure 2. Nitrogenase activity of the PGPR’s isolates over reference strain. Different letters mean
significant differences among categories (p < 0.05). Error bars indicate £ SD.

3.2. Field Experiments to Evaluate Performance of PGPR’s Consortia

Rhizobacterial consortium significantly increased plant growth for almost all parameters
measured during every replication of the study. Plants treated with PM9 produced a maximum
of 242.1% increase in shoot biomass and 119.6% increase in root biomass over uninoculated controls
(Figure 3). Plots inoculated with PM9 also increased shoot length (113.2%) and root length (92.8%) over
inoculated control which was maximum among all the other applied treatments (Figure 4). Increase
in root growth was due to the plant growth stimulating phytohormones produced by rhizobacterial
consortium in the vicinity of roots. Rhizobacterial consortium also stimulated the adventitious root
development and thus increased the density and length of roots including the number of root hairs [21].
This also increased the root surface area with improved potential for water and nutrient uptake by the
host plant and led to enhanced shoot growth [22]. In addition to highly significant growth promotion
in pepper, transplant vigor and survival in the field improved with PGPR’s formulations (PM9). This
is best illustrated by the significant enhancement of pepper transplant survival at 15 DAP (days after
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planting). Yield of pepper was also uplifted by rhizobacterial consortium (PM9) by 397.36% over
uninoculated controls. The most dramatic effect was observed with PM6, which resulted in increases in
fruits/plant by 173.17% (maximum) however, it was significantly at par with the PM9 (172.7%) treated
plot (Figure 5). This enhancement could be due to the growth of pepper plants in PM6 occurring
because of the applied recommended dose of NPK fertilizers (Figure 5). Production of IAA plant
hormones by both the rhizobacterial strains are the major impacting factor responsible for direct
stimulation of shoot and root growth as well as improvement of host health [23].

300
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Figure 3. Impact of PGPR’s consortium on shoot and root biomass under field conditions. Different
letters mean significant differences among categories (p < 0.05). Error bars indicate + SD. PM1—Control,
PM3—Benomyl, PM4—Captan, PM6—Recommended dose of NPK, PM7—Soil fumigation with MeBr
(425 kg/ha broadcast 98:2 MeBr:chloropicrin), PM9—PGPR'’s consortium (Bacillus pumilus and Bacillus
subtilis), PM10—Soil solarization.
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Figure 4. Cont.
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Figure 4. Impact of PGPR’s consortium on (a) root growth and (b) shoot and root length under
field conditions. Different letters mean significant differences among categories (p < 0.05). Error
bars indicate + SD. PM1—Control, PM3—Benomyl, PM4—Captan, PM6—Recommended dose of
NPK, PM7—Soil fumigation with MeBr (425 kg/ha broadcast 98:2 MeBr:chloropicrin), PM9—PGPR’s
consortium (Bacillus pumilus and Bacillus subtilis), PM10—Soil solarization.
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Figure 5. Impact of PGPR’s consortium on (a) growth of plants (b) growth and yield of capsicum
under field conditions. Different letters mean significant differences among categories (p < 0.05). Error
bars indicate &+ SD. PM1—Control, PM3—Benomyl, PM4—Captan, PM6—Recommended dose of
NPK, PM7—Soil fumigation with MeBr (425 kg/ha broadcast 98:2 MeBr:chloropicrin), PM9—PGPR’s
consortium (Bacillus pumilus and Bacillus subtilis), PM10—Soil solarization.

The consortium of isolates was further evaluated for their efficacy to suppress damping off
and anthracnose of pepper under field conditions. For comparative analysis, a set of treatments
(fertilizers, locally used fungicides, soil solarization and fumigation) were maintained in different plots.
It was observed that PM9 was the only treatment that significantly reduced incidence of damping off
and anthracnose mixed diseases on pepper and improved root colonization [24]. The consortium of
rhizobacteria exhibited distinct differences in their efficacy for controlling damping off and anthracnose
(Table 1). Before seven days of harvesting the crop, incidence and severity of damping off in
uninoculated control plots were 7.06% and 8.75%, respectively, while those of anthracnose ranged from
8.01% and 9.70%. However, plots that received bio-inoculation of Bacillus pumilus and Bacillus subtilis
had incidence and severity of 1.81% and 0.62% for damping off and 1.75% and 0.69% for anthracnose.
Bio-inoculated plots also observed reduced incidence and severity by 94.50% (damping off) and 95.64%
(anthracnose). This suggested that the consortium exhibited better disease control efficacy over the
commercially available fungicides (78.80-79.26% for damping off and 80.32-82.65% for anthracnose),
fumigation (77.35% for damping off and 81.80% for anthracnose) and soil solarization (74.56% for
damping off and 84.40% for anthracnose) practices utilized for disease control. It is because of the
antagonistic microbes (Bacillus pumilus and Bacillus subtilis) in the rhizosphere which protect the host
plant by directly suppressing the growth and proliferation of phytopathogens [25,26]. Competitive root
tip colonization by rhizobacterial strains might play a crucial role in the efficient control of soil-borne
diseases [27]. Under field conditions, it was also investigated whether Bacillus isolates have a potential
to be used as biobacteriocides [28] and for the control of red rot [29]. Principal coordinate analysis
(PCA) was used to investigate the relationships between applied treatments with growth and yield of
bell pepper as well as disease suppression of damping off and anthracnose.

PCA1 of growth and yield parameters of bell pepper revealed that principal component (PC1)
and principal component (PC2) accounted for 94.42% and 5.58% of the data variation, respectively
(Figure 6). PC1 comprised treatments with PM6 and PM7, and it showed a strong relation with fruit
yield/plants. In PC2, PGPR’s consortium (Bacillus pumilus and Bacillus subtilis) showed more influence
on yield/plant. PCA2 of disease suppression of damping off and anthracnose in bell pepper revealed
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that principal component (PC1) and principal component (PC2) accounted for 98.07 and 1.24% of the
data variation, respectively (Figure 7). PC1 allowed the comparison of two treatments: Recommended
dose of fertilizers and no fertilizers. Both treatments showed more influence on diseases severity and
incidence for damping off and anthracnose. PC2 showed that PGPR’s consortium (Bacillus pumilus and
Bacillus subtilis) had a significant influence on control efficacy of both damping off and anthracnose
diseases. High impact of disease incidence and severity were seen in PC2 for both damping off and
anthracnose. The second component was related to the very low disease control efficacy exhibited
by control and recommended dose of fertilizers. This analysis showed that inoculation with PGPR'’s
consortium (Bacillus pumilus and Bacillus subtilis) had significant effect not only on growth and yield
enhancement of bell pepper but also against the diseases (damping off and anthracnose diseases)
caused by soil-borne fungal pathogens.

Table 1. Efficacy of PGPR’s consortium to control damping off and anthracnose in capsicum under
field conditions.

Damping Off Anthracnose
Treatments Disease Disease Control Disease Disease Control
Incidence (%)  Severity (%) Efficacy Incidence (%)  Severity (%) Efficacy
PM1 7.06 +0.38 875+024 2483 +1.89 8.01 £ 0.41 970 £026  22.75+2.01
PM3 296 £0.21 3.47 £041 78.80 £ 0.46 270 £0.23 241 +0.24 80.32 £1.25
PM4 2.86 = 0.17 3.10 £ 0.03 79.26 £ 0.38 2.79 £ 0.36 1.78 = 0.28 82.65 £ 2.46
PM6 5.80 £ 0.34 644 £021  29.60 +1.05 6.10 £ 0.37 720+£022 31294121
PM7 3.44 £0.31 3.96 £ 0.42 7735 £251 322 £0.20 3.90 £ 0.25 81.80 £ 3.48
PM9 1.81 = 0.31 0.62 £ 0.01 94.50 & 1.08 1.75 £ 0.29 0.69 £0.10 95.64 £+ 1.07
PM10 298 £0.19 355+037  74.56 +1.63 3.29 £0.67 341+£029 84404244
LSD 0.905 0.702 7.532 0.916 0.605 8.364

PM1—Control, PM3—Benomyl, PM4—Captan, PM6—Recommended dose of NPK, PM7—Soil fumigation with
MeBr (425 kg /ha broadcast 98:2 MeBr:chloropicrin), PM9—PGPR'’s consortium (Bacillus pumilus and Bacillus subtilis),
PM10—Soil solarization

Biplot (axes F1 and F2: 100.00 %)

0.8 T Fruits/ plant

0.6 +
- PM6
0.4 4 °

PM10
0.2 e

0

F2 (5.58 %)

°
0.2 PMI.PMS. PM4 1
-0.4 <+

06 T PM9
-0.8 1 Yield/plant
2 15 1 05 0 05 1 15 2 25 3
F1 (94.42 %)

e Active variables e Active observations

Figure 6. Principal component analysis (PCA) of growth and yield characteristics of capsicum.
PM1—Control, PM3—Benomyl, PM4—Captan, PM6—Recommended dose of NPK, PM7—Soil
fumigation with MeBr (425 kg/ha broadcast 98:2 MeBr:chloropicrin), PM9—PGPR’s consortium
(Bacillus pumilus and Bacillus subtilis), PM10—Soil solarization.
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Figure 7. Principal component analysis (PCA) for control of damping off and anthracnose.
DO—damping off, A—anthracnose.

4. Conclusions

This study underlines the importance of PGPR’s consortium (Bacillus pumilus and Bacillus subtilis)
for multiple PGP (plant growth promoting) and biocontrol traits and evaluates their potential through
field experiments in the bell pepper. In this study, based on in vitro and field experiments, PGPR’s
consortium (Bacillus pumilus and Bacillus subtilis) markedly enhanced growth, suppressed damping
off and anthracnose disease incidence, and increased fruit yield in bell pepper compared to other
fertilizers and fungicidal treatments. Therefore, it is apparent that PGPR’s consortium (Bacillus pumilus
and Bacillus subtilis) receives strong assurance as a viable substitute to chemical fertilizers and can be
integrated into pertinent nutrient and disease management schedules for bell pepper.
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