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High-Grade Gliomas (HGG) are among the deadliest malignant tumors of central nervous
system (CNS) in pediatrics. Despite aggressive multimodal treatment - including surgical
resection, radiotherapy and chemotherapy - long-term prognosis of patients remains
dismal with a 5-year survival rate less than 20%. Increased understanding of genetic and
epigenetic features of pediatric HGGs (pHGGs) revealed important differences with adult
gliomas, which need to be considered in order to identify innovative and more effective
therapeutic approaches. Immunotherapy is based on different techniques aimed to
redirect the patient own immune system to fight specifically cancer cells. In particular,
T-lymphocytes can be genetically modified to express chimeric proteins, known as
chimeric antigen receptors (CARs), targeting selected tumor-associated antigens (TAA).
Disialoganglioside GD2 (GD-2) and B7-H3 are highly expressed on pHGGs and have
been evaluated as possible targets in pediatric clinical trials, in addition to the antigens
common to adult glioblastoma – such as interleukin-13 receptor alpha 2 (IL-13a2), human
epidermal growth factor receptor 2 (HER-2) and erythropoietin-producing human
hepatocellular carcinoma A2 receptor (EphA2). CAR-T therapy has shown promise in
preclinical model of pHGGs but failed to achieve the same success obtained for
hematological malignancies. Several limitations, including the immunosuppressive
tumor microenvironment (TME), the heterogeneity in target antigen expression and the
difficulty of accessing the tumor site, impair the efficacy of T-cells. pHGGs display an
immunologically cold TME with poor T-cell infiltration and scarce immune surveillance. The
secretion of immunosuppressive cytokines (TGF-b, IL-10) and the presence of immune-
suppressive cells – like tumor-associated macrophages/microglia (TAMs) and myeloid-
derived suppressor cells (MDSCs) - limit the effectiveness of immune system to eradicate
tumor cells. Innovative immunotherapeutic strategies are necessary to overcome these
hurdles and improve ability of T-cells to eradicate tumor. In this review we describe the
distinguishing features of HGGs of the pediatric population and of their TME, with a focus
on the most promising CAR-T therapies overcoming these hurdles.
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PEDIATRIC HIGH-GRADE
GLIOMAS (PHGGS)

Pediatric HGGs are among the most common malignant brain
tumors in pediatrics and represent the leading cause of cancer
related death in childhood (1). Traditionally, pediatric and adult
gliomas were commonly classified according to the WHO
grading, with HGGs including WHO grade III and IV
aggressive tumors (2). Over the last years, key differences in
epigenomic and genetic features between pHGGs and their adult
counterparts emerged, despite analogies in aggressiveness and
histology (3). In 2021 WHO Classification of CNS tumors,
pediatric gliomas are differentiated from adults– on the heels
of 2016 WHO classification – and the term “glioblastoma” is
abandoned in pediatric oncologic setting (4). Four groups of
pHGGs are now described: Diffuse midline glioma, H3 K27-
altered; Diffuse hemispheric glioma, H3 G34-mutant; Diffuse
pediatric-type high-grade glioma, H3-wildtype and IDH-
wildtype; and Infant-type hemispheric glioma (Table 1). Diffuse
midline glioma, H3 K27-altered had already been included in
previous classification but the term “altered” aims at including
other mechanisms besides previously reported H3-K27
mutations. This group encompasses DIPG, one of the most
aggressive types of pHGG. Diffuse hemispheric gliomas, H3
G34-mutant typically arise in cerebral hemispheres and are
characterized by a G34R/V substitution of histone H3 due to a
mutation of H3F3A gene (5). Diffuse pediatric-type high-grade
glioma, H3-wildtype and IDH-wildtype encompass a
heterogeneous group of pHGGs not showing either H3 or IDH
mutations. Finally, Infant-type hemispheric glioma include HGGs
occurring in infant and newborns. This latter includes 3
subgroups distinguished by molecular features: subgroup 1
involves alterations in one of the genes ALK, ROS1, NTRK1/2/
3, or MET; subgroup 2, RAS/MAPK pathway alterations and
hemispheric localization; subgroup 3 refers to tumors with RAS/
MAPK mutations arising in midline structures (6–8). Molecular
characterization of the first subgroup of this class promoted
investigation of target therapies, such as Larotrectinib for NTRK-
fusion positive pHGGs (NCT02576431).

Even though our knowledge on biological and molecular
features of pHGGs largely increased during the past years,
therapeutic approaches remain limited and ineffective. Current
multimodal treatments encompass surgery, radiotherapy and
chemotherapy, reaching 5-year survival rate less than 20% (9).
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New therapeutic strategies are necessary and novel
immunotherapies hold great promise for poss ible
effective treatment.
CAR-T CELLS

The principle of immunotherapy relies on restoring the
physiological ability of immune system to recognize and
eliminate tumor cells. This goal can be achieved through a
wide variety of approaches and, so far, development of
chimeric antigen receptor (CAR) expressing T cells is one of
the ultimate advances in this field. CAR-T cells are T
lymphocytes genetically modified by either viral vectors
(retroviral or lentiviral) or by non-viral approaches (sleeping
beauty transposition) to express a chimeric construct deriving
from the fusion of the variable portions of a monoclonal
antibody single chain to the signal transduction domains of the
CD3 z chain (10). This structure combines the specificity of
MHC-independent antibody recognition with the anti-tumor
potential of T lymphocytes, thus allowing to transfer any
antigenic specificity to T cells. In order to potentiate the
antitumor efficacy of these constructs, second-generation CAR-
T cells have been created by the inclusion of one costimulatory
domain, such as the CD28, 41BB or OX40 molecules, resulting in
a higher capacity for cytokine production, a greater expansion
and a longer persistence (11). Subsequently, the combination of
two signal domains into third-generation CAR-T constructs
showed a further increase in the activation profile (12). CAR-T
therapy has given outstanding results against several B-cell
malignancies and myeloma, in both adults and children.
Currently, the clinical trials reported so far on CAR-T cells
directed towards the CD19 antigen, widely expressed by acute
lymphoblastic leukemia cells (ALL), has documented a strong
tumor activity (13, 14) even in patients highly resistant to
conventional treatments or relapsed after allogeneic
transplantation, obtaining CR rates of approximately 80%.
Unfortunately, the results obtained so far with CAR-T cells in
solid tumors have been less effective and fewer clinical trials or
case reports have been reported in the literature. Several limits
can hinder the development of CAR-T in solid tumors,
including: the difficulty of finding a suitable target antigen (the
so-called “antigen dilemma”), the strongly immunosuppressive
TME, the limited persistence in vivo and finally, the insufficient T
TABLE 1 | Pediatric-type High Grade Gliomas according to new 2021 WHO CNS classification.

Group Molecular Features Localization References

Diffuse midline glioma, H3 K27-altered H3 K27 mutations, EZHIP overexpression, other H3 K27
alterations.

Thalamus, brainstem, spinal cord (4)

Diffuse hemispheric glioma, H3 G34-mutant H3 G34 mutations. Cerebral hemispheres (4, 5)
Diffuse pediatric-type high-grade glioma, H3-wildtype
and IDH-wildtype

Wild-type H3 and IDH gene families. Cerebral hemispheres and midline
structures

(4)

Infant-type hemispheric glioma. Subgroup 1: RTK- driven Fusion genes involving ALK,
ROS1, NRK and MET

Cerebral hemispheres (4, 6–8)

Subgroup 2: RAS/MAPK pathway mutations Cerebral hemispheres
Subgroup 3: RAS/MAPK pathway mutations Thalamus, brainstem, spinal cord
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cell trafficking and homing to tumors and the limited persistence
of exhausted T cells.
ACTUAL AND PROMISING TARGET
ANTIGENS IN PHGGS

The first antigens proposed for targeting pHGGs derive from
studies conducted on adult gliomas, in particular HER-2, EphA2
and IL-13Ra2 (15).

HER-2 is a tyrosine kinase receptor overexpressed in HGGs,
whose levels of expression correlate to poor outcome not only in
GBM but also in other pediatric tumors, such as medulloblastoma
(16, 17). HER-2 is detected at low levels in normal, healthy brain
whereas is overexpressed on CNS cancer stem cells, making it an
effective and safe target for the treatment of HGGs (18).
Monoclonal antibodies (moAbs) recognizing HER-2 showed
extraordinary results in the treatment of breast cancer, but the
presence of blood brain barrier (BBB) limits their use for brain
tumors. Differently from moAbs, T-cells can cross the BBB and
traffic to brain tissue and cerebrospinal fluid from blood flow to
recognize tumor cells, as demonstrated by clinical response of
melanoma brain metastasis after intravenous infusion of adoptive
tumor-infiltrating lymphocytes and by the detection of CD19-
CAR-T in cerebrospinal fluids of patients with ALL (19, 20).
Indeed, Ahmed et al. tested the safety of intravenous injection of
virus-specific (VS) CAR-T cells directed to HER-2 in a phase I
clinical trial on patients affected by high grade gliomas: with 17
patients treated, including 7 children <18 years, the approach
resulted to be safe, without any dose-limiting toxicity (DLT)
Frontiers in Immunology | www.frontiersin.org 3
reported (21). Interestingly, one of the adolescent patients with
unresectable right thalamic HGG showed the reduction of 30% of
the longest tumor diameter lasted for 9.2 months and an Overall
Survival (OS) of 34.2 months after two infusions of CAR-T cells
(21). In order to target CNS tumors, CAR-T can be delivered
locally in tumor resection cavity or in the ventricular system with
improved tumor control, even at lower doses, and reduced
systemic circulation and toxicity, as recently highlighted by
Theruvat et al. and Donovan et al. (22–24). Currently, two
clinical trials are evaluating intracranial injection of Anti-HER-
2 CAR-T for treatment of pHGGs (NCT02442297;
NCT03500991) (Table 2). Preliminary results of the phase 1
trial “BrainChild-01” showed that repetitive intracranial infusion
of HER-2 CAR-T on a cohort of pediatric and young adult
patients with CNS tumors is safe, well tolerated, and able to
induce immune response (18). Two other clinical trials, namely
“Brainchild-02” and “BrainChild-03”, are evaluating the
effectiveness of locoregional infusion of CAR-T cells targeting
EGFR and B7-H3, respectively (NCT03638167 NCT04185038).

EphA2 is a tyrosine kinase receptor involved in oncogenic
pathways in several tumors, including breast cancer, lung cancer
and HGG (25). High expression of EphA2 has been correlated to
worse clinical outcomes in adult HGG and recently the same
association was confirmed in pediatric HGGs (26). Preclinical
studies reported a promising antitumoral activity of EphA2-
redirected CAR-T-cells for the treatment of HGG. Recently,
results of the first-in-human trial of intravenous administration
EphA2-CAR-T in patients with high grade gliomas showed safety
and transient clinical responses (27). However, the trial enrolled
patients >18 years, therefore the efficacy of EphA2- CAR-T in
pediatric cohorts remains to be investigated.
TABLE 2 | Ongoing clinical trials evaluating CAR-T therapies for pHGGs.

Official title Antigenic
target

Administration Responsible party NCT

T Cells Expressing HER2-specific Chimeric Antigen Receptors (CAR) for
Patients With HER2-Positive CNS Tumors (iCAR)

HER-2 Locoregional delivery Nabil Ahmed,
Baylor College of
Medicine

02442297

HER2-specific CAR-T Cell Locoregional Immunotherapy for HER2-positive
Recurrent/Refractory Pediatric CNS Tumors

HER-2 Locoregional delivery Julie Park, Seattle
Children’s Hospital

03500991

Genetically Modified T-cells in Treating Patients With Recurrent or Refractory
Malignant Glioma

IL13Ra2 Locoregional delivery City of Hope
Medical Center

02208362

EGFR806-specific CAR-T Cell Locoregional Immunotherapy for EGFR-positive
Recurrent or Refractory Pediatric CNS Tumors

EGFR Locoregional delivery Julie Park, Seattle
Children’s Hospital

03638167

GD2 CAR-T Cells in Diffuse Intrinsic Pontine Gliomas (DIPG) & Spinal Diffuse
Midline Glioma(DMG)

GD-2 Intravenous injection after
Lymphodepletion with
Cyclophosphamide/Fludarabine
Chemotherapy

Crystal Mackall,
Stanford University

04196413

C7R-GD2.CAR-T Cells for Patients With GD2-expressing Brain Tumors
(GAIL-B)

GD-2 Intravenous injection Lymphodepletion
with Cyclophosphamide/Fludarabine
Chemotherapy

Bilal Omer, Baylor
College of Medicine

04099797

Study of B7-H3-Specific CAR-T Cell Locoregional Immunotherapy for Diffuse
Intrinsic Pontine Glioma/Diffuse Midline Glioma and Recurrent or Refractory
Pediatric Central Nervous System Tumors

B7-H3 Locoregional delivery Julie Park, Seattle
Children’s Hospital

04185038

B7-H3-Specific Chimeric Antigen Receptor Autologous T-Cell Therapy for
Pediatric Patients With Solid Tumors (3CAR)

B7-H3 Intravenous injection
Lymphodepletion with
Cyclophosphamide/Fludarabine
Chemotherapy

St. Jude Children’s
Research Hospital

04897321
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IL13Ra2 is a monomeric, high-affinity, IL13 receptor,
detected at high levels in more than 50% of HGGs, whose
overexpression is associated with poor outcomes (28). Brown
et al. started a clinical trial to evaluate the efficacy of intracranial
infusion of IL13Ra2-CAR-T in adult and pediatric patients with
HGGs (NCT02208362). The first published results show safety of
the therapeutic approach and documented a complete
radiographic response in a patient for up to 7.5 months (29).

Recently, both GD2 and B7-H3 were found to be highly
expressed in pediatric diffuse midline glioma (DIPG).
Interestingly, Haydar et al. established a hierarchy of antigens
expressions in pediatric brain tumors showing that, despite a
high heterogeneity, GD2 and B7-H3 maintain the highest
expression as compared to IL-13Ra2, HER2 and EphA2 (30).
These data suggest the importance of focusing on these targets
for pHGGs rather than antigens mostly relevant in adult gliomas.

GD2 is involved in mechanisms of cell growth, motility and
invasiveness of several pediatric tumors like neuroblastoma,
Ewing’s Sarcoma and pHGGs (31). After the promising results
of clinical trials using several generations of GD2-CAR-T cells to
treat patients affected by neuroblastoma, first, and other GD2+

solid tumors, after, (NCT03373097; NCT04099797) this
approach is currently under preclinical and clinical evaluation
also for pHGG (32, 33); NCT05298995). In particular, Mount
and Majzner et al. demonstrated uniform and high levels of GD2
on H3-K27 diffuse midline glioma cells and developed a second-
generation GD2 CAR construct which showed efficient anti-
tumor activity in DMG PDXs models (34), leading to the
activation of a phase I clinical trial, currently enrolling
pediatric patients. They published the results of the first 4
patients with H3K27-altered diffuse midline glioma (DMG)
treated in the trial and showed that the toxicity profile strongly
depends on the tumor location and is manageable and reversible
with intensive supportive care (35). In addition, reduction of
neurological deficits and radiological improvement after CAR-T
administration were reported. In particular, in one of the treated
patients, affected by spinal cord DMG, a reduction of 90% of the
tumor volume after the first intravenous administration and a
further reduction of neoplasm dimensions of 80% after a second
intraventricular injection was observed (34). At Bambino Gesù
Children’s Hospital we are currently activating a phase I clinical
trial to test the safety and, preliminarily, efficacy of third-
generation (incorporating 4.1BB and CD28 costimulatory
domains) GD2-CAR T cells, infused i.v., for the treatment of
pediatric patients affected by CNS tumors (36); NCT05298995).
In particular, in view of the correlation between tumor location
and toxicity, the study has an innovative design of sequential
enrollment of patients into 3 different arms, the first being
represented by medulloblastoma and other embryonal tumor
(arm A), the second by hemispheric HGG (arm B) and the third
by tumors with midline location, at higher risk of severe toxicity,
namely thalamic HGG, DMG, DIPG (arm C).

B7-H3 is a transmembrane protein with important immune
inhibition functions, belonging to the B7 family of immune
checkpoint proteins, and is overexpressed in several pediatric
malignancies - including pHGGs (37). Majzner et al. tested the
Frontiers in Immunology | www.frontiersin.org 4
efficacy of B7-H3 CAR-T in xenografts models of several different
paediatric solid tumors, including osteosarcoma, medulloblastoma
and Ewing’s sarcoma) (38). Interestingly, they showed a potent
antitumor activity, strictly dependent on the antigen density on
tumors, which resulted to be aberrantly high compared to healthy
tissues (38). The results is extremely important, considering the
wide expression of the antigen in normal tissues. Recently, phase 1
clinical trials exploring the safety of either loco-regional or
intravenous infusion of B7-H3 CAR-T cells for the treatment of
paediatric patients with solid tumors, including pHGGs, started
(NCT04185038; NCT04897321).

As already mentioned, the success of CAR-T cell therapy relies
on the choice of target antigens highly expressed on tumor cells,
amongst several factors. However, the recognition of a single
antigen is limited by the possible occurrence of the so-called
“antigen escape” phenomenon: either the down-regulation of the
target antigen or the selection of already negative subclones by the
pressure of the treatment, in highly heterogeneous tumors, can
represent the cause of subsequent tumor recurrence. This issue is
particularly relevant in the setting of pHGG which are extremely
heterogeneous and often characterized by subpopulations of
tumor cells with different antigen expression. For this reason,
CAR-T cells able to recognize multiple antigens on target cells by
incorporating 2 antigen targeting domains within one CAR
construct have been developed. For HGG, a tandem CAR
(TanCAR) targeting simultaneously HER-2 and IL-13Ra2 was
designed (39). TanCAR-T cells showed an elevated capacity to lyse
glioma cells in vitro and in vivo and to prevent tumor recurrence
in the animal model. Moreover, CAR-T cells targeting 3
glioblastoma associated antigens (HER2, IL13Ra2, and EphA2)
were also developed and showed even more effectiveness as
compared to the bispecific CAR-T (40). Another interesting
strategy to overcome antigenic escape in HGG is the
combination of CAR-T cells with Bi-specific T-cell engagers
(BiTEs) targeting different antigens. Choi et al. developed
EGFRvIII-redirected CAR-T cells secreting EGFR-BiTEs in the
tumor site (41). This strategy was tested in mouse models and
resulted capable of dulling the antigenic loss effects. Moreover,-
since systemic administration of EGFR-BiTE could induce off-
tumor toxicities - the local release by these CAR-T cells reduces
the risk of cytotoxic T-cells activity on healthy tissues
expressing EGFR.
TUMOR MICROENVIRONMENT IN ADULT
AND PEDIATRIC HIGH-GRADE GLIOMA

The complex intra- and inter-tumor heterogeneity of the tumor
microenvironment (TME) plays a crucial role in mediating tumor
progression and resistance to therapy (42). Several different cells,
including tumor-associated glioma stem cells (GSC), stromal cells
(resident brain glial cells, oligodendrocytes, astrocytes, ependymal
cells, microglia) and infiltrating immune cells, are key regulators of
growth and vascularization of HGGs (43, 44).

In adult HGGs, TME presents a wide range of immune
suppressive mechanisms preventing tumor recognition and
May 2022 | Volume 13 | Article 867154
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eradication by the innate and adaptive immune system. The
presence of immuno-suppressive cytokines (TGF-b, IL-10),
chemokines, and regulatory immune-suppressive cells, such as
tumor-associated macrophages/microglia (GAMs) and myeloid-
derived suppressor cells (MDSCs), limits the effectiveness of
current therapies and are briefly review below (45–47).

GSCs are characterized by their self-renewal properties and
play a key role in drug escape mechanisms, for example driving
radiation-induced DNA methylation changes after radiotherapy
(48) GSCs can promote a microinvasion of healthy tissues in
areas that support their proliferation – such as subventricular,
perinecrotic and perivascular areas (49) - evading therapeutic
agents and contributing to recurrence of disease. Recently, a
mouse model of disease derived by orthotopic transplantation of
GSCs of pHGGs samples was developed (50). Methylation,
histology and clinical outcomes resembled accurately the
patients’ tumors of origin, indicating the ability of GSCs to
differentiate in tumor cells. One of the most innovative
approaches targeting GSCs niche in pHGGs is represented by
immunovirotherapy (51). Friedman et al. observed the ability of
oncolytic HSV-1 to kill tumor cells and CD133+ GSCs in
preclinical models (52). Results from a phase 1 clinical trial on
the use of oncolytic HSV1 in patients with pHGGs indicated the
safety of this approach (53). Combining T-cells based therapies
with this kind of modern immunological approaches affecting
GSCs could significantly improve tumor control.

GAMs represent an important component of the glioma
microenvironment (54) constituting the main proportion of
infiltrating cells in adult and pediatric HGGs (i.e., glioblastoma
and DIPG) (55, 56). Inside the tumor, GAMs usually acquire a
specific phenotype of activation that favors tumor growth,
angiogenesis and promotes the invasion of normal brain
parenchyma. Most of the macrophages recruited into TME,
polarize toward an M2-like phenotype and exhibit suppression
of the proliferation and functionality of tumor-infiltrating T cells
through the production of anti-inflammatory cytokines (57). In
adult HGG, GAMs have been extensively described as pivotal
drivers of progression and survival of malignant cells in the TME
(58). Hence, several anti-GAMs aproaches are currently under
evaluation for treatment of adult GBM. Recently, Lin et al.
studied TME and GAMs features specifically in DIPG (59).
Although DIPG tumor cells produce Colony Stimulating
Factor 1 (CSF1), a cytokine associated with the M2 pro-
tumorigenic phenotype, DIPG-associated macrophages do not
seem to have the characteristic of macrophages of type 2 (56, 60).
Transcriptome analysis have shown that GAMs from DIPG
express lower levels of some inflammatory cytokines and
chemokines (IL6, IL1A, IL1B, CCL3, CCL4) compared to adult
HGG-associated macrophages. Moreover, Engler et al. observed
a negative correlation between levels of GAMs accumulation and
survival rate in adult HGGs but not in pediatric tumors,
highlighting the marked biological differences between the
pediatric and adult counterpart (59). In addition, the analysis
of lymphocyte infiltrate in primary DIPG tissues reveals the lack
of tumor-infiltrating lymphocytes (TILs), defining it as a
immunologically “cold” tumor (56). For this reason, adoptive
Frontiers in Immunology | www.frontiersin.org 5
immunotherapies (e.g. CAR-T cells) leading to the transferal of
T-cells in the TME represents a promising strategy to induce a
strong inflammatory and antitumor response.

MDSCs are involved in immune suppression in several types
of cancers, including HGG (61). Although only few studies focus
on their role specifically in pHGGs, recently Mueller et al.
reported a correlation between high levels of circulating
MDSCs and poor prognosis in patients with DIPG, suggesting
a role in immunosuppression and tumor escape mechanisms in
pHGGs as well (62). Moreover, MDSCs showed to impair
efficacy of immunotherapy in other pediatric tumors such as
neuroblastoma, representing a relevant target to improve efficacy
of modern CAR-T cells therapies (63).

Successful immune escape of tumor cells includes also the
production of soluble factors in the microenvironment by tumor
cells (TGF-b, LDH5), the induction of co-inhibitory molecules
(PD-1, LAG-3 and TIM-3) and the release of immunosuppressive
factors (CSF-1, VEGF, PGE2, NO, Arg I, IDO and Gal-1) (64). In
adult HGG the production of lactate dehydrogenase isoform 5
(LDH5) and TGF-b impairs NK cells cytotoxic function, usually
relevant for the elimination of glioma cells (65). Although in adult
HGGs there is a strong infiltration of NK and myeloid cells into
the tumor, a similar finding in pediatric brain tumors has not been
reported (66).
NEXT GENERATION CAR-T CELLS
AND COMBINED STRATEGIES

Solid tumor, including pHGG, showed important mechanisms of
resistance to current CAR-T cell therapies. Important obstacles
to CAR-T efficacy is the presence of immunosuppressive factors
in TME – including, but not limited to, TGF-b, PD-1 or CTLA4
mediated signals (67, 68) – which prevent CAR-T cells expansion
and finally induce their exhaustion (69). For this reason,
strategies able to circumvent these barriers are needed to
improve the effectiveness of CAR-T therapies for pHGGs.

Recently, CAR-T cells releasing transgenic cytokines after
activation at tumor site have been developed. This approach was
conceived to overcome the insufficient production of pro-
inflammatory cytokines by T cells accumulated in the tumor
environment. In details, T-cells redirected for universal cytokine-
mediated killing (TRUCKs) cells are fourth generation CAR-T
cells, armed with immune stimulatory cytokines that improve
CAR-T cell expansion and persistence (70) (Figure 1). In details,
CAR-T cells can be engineered with inducible expression cassette
for the cytokine of interest, including IL-7, CCL-19, IL-15, IL-18,
and IL-1 (71–73). In particular, transgenic expression of IL-15
could be an appealing strategy to enhance CAR-T cell effector
function in HGGs patients, thanks to the well-known ability of
this cytokine to induce a more memory stem cell-like phenotype
of transduced T cells (73). The group of Krenciute et al. for
example, showed an increased persistence and a greater
antitumor activity of IL-13Ra2-CAR-T cells expressing IL-15
constitutively as compared to conventional IL-13Ra2-CAR-T
cells (74, 75). Also, anti-GD2 TRUCKs secreting IL-12 or IL-18
May 2022 | Volume 13 | Article 867154
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after activation have been developed, showing improved T-cells
activation and increased monocyte recruitment after in vitro
migration assay (76). On one hand, cytokines release following
CAR-T-cells activation results in improved CAR-T cell
persistence and stronger antitumor activity, both in vitro and
in vivo. On the other hand, continuous release of secreted
cytokine could cause toxicities, limiting the clinical therapeutic
window of these CAR-T cells (74). This limitation could be
overcome by the development of CAR-T cells expressing
constitutively active cytokine receptors, such as IL-2, IL-7, and
IL-15 receptors, able to activate the relative intracellular axis,
instead of releasing the soluble cytokines. In particular, the
expression of constitutively signaling IL-7 receptor (C7R) on a
EphA2-CAR-T produced promising results in terms of
proliferation, survival and antitumoral activity of CAR-T cells
both in vitro and in orthotopic xenograft models of HGG (77).

Another major obstacle provided by the TME, to the activation
and expansion of CAR-T cells is represented by the widely
expressed immune checkpoint receptors – such as PD-1, CTLA-
4, TIM-3, and LAG-3. Conventional immune checkpoint
inhibitors (ICIs) blocking CTLA-4 (i.e. ipilimumab) or PD-1
(i.e. nivolumab) have shown great success in some solid tumors,
including non-small cell lung cancer and metastatic melanoma,
but not in HGGs, probably owing to the negligible infiltration of
effector T cells in these tumors and to the low mutational burden
Frontiers in Immunology | www.frontiersin.org 6
of pHGGs, leading to few immunogenic tumor neoantigens (78–
80). Nevertheless, combined with CART cells, ICIs might improve
the ability of the transgenic T cells to exert their antitumor activity,
overcoming the exhaustion induced by the TME (81). In pre-
clinical models of glioma, checkpoint blockade has been studied as
an adjuvant to improve the efficacy of CAR-T therapy. For
example, combination of HER-2 redirected CAR-T cells with
anti-PD1 antibody induced enhancement of CAR-T cells activity
against HGG cells in vitro (82). Furthermore, Song et al. reported
the ability of anti-PD1 antibodies to improve EGFRvIII-CAR-T
cells antitumoral effects in a mousemodel of HGG (83), suggesting
that PD1 blockade might represent an effective strategy. Based on
these promising pre-clinical studies, two phase I clinical trials are
currently investigating 2nd generation CAR-T cells in combination
with pembrolizumab or nivolumab for the treatment of adult
patients with HGG (NCT03726515; NCT04003649).

Interestingly, the role of some intracellular signaling
pathways in the activity of CAR-T cells has been investigated,
unveiling new potential approaches to improve CAR-T cells
efficacy. For example, the diacylglycerol kinase (DGK), a
physiologic negative regulator of the signal transduction of the
T-cell receptor (TCR), is able to negatively regulate CAR-T cell
activation (84). Therefore, the knockout of DGK can induce an
improvement of the anti-tumor cytotoxicity of CAR-T cells. In a
mouse glioma model, EGFRvIII-CAR-T cells lacking DGK
A

B

FIGURE 1 | Limitations of first-generation CAR-T-cells compared to next generation TRUCK CAR-T cells. (A) Immunosuppressive cytokines (e.g. TGF-b, IL-10)
released in TME by tumor cells induce repression and exhaustion of CAR-T cells. (B) TRUCK CAR-T cells release transgenic immunostimulatory cytokines which
promote their resistance and expansion in tumor site, contrasting TME immunosuppression mechanisms. (Illustration created with BioRender.com).
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revealed elevated effector function of the transgenic CAR-T cells,
with increased antitumor activity and tumor infiltration (85).
Moreover, recently, we reported that the co-administration of
linsitinib – a dual IGF1R/IR inhibitor – is able to improve GD2-
CAR-T antitumor activity and increase tumor cell death of
primary cells of H3K27 diffuse midline glioma, both in vitro
and in vivo (86). These results support the hypothesis that the use
of combinatorial approaches might potentiate the efficacy of
CAR-T cells for the treatment of pHGGs.

Another promising and sophisticated immunotherapy
approach is represented by oncolytic viruses (OV): genetically
modified viral agents able to replicate in tumor cells with a
negligible replication ability in non-neoplastic cells (87). OV
antitumoral activity is based on two mechanisms: i) induction of
direct lysis of tumor cells through infection and replication; ii)
stimulation of effector function and antitumor activity of the T
cells in TME. The latter mechanism as shown to be extremely
relevant, if not even the most relevant, in the antitumor activity
of OV and represents the rational for combining OV and CAR-T
cells for the treatment of solid tumors, with the aim to increase
trafficking and antitumoral cytotoxicity of T-cells in TME (88).
In particular, Huang et al. studied a preclinical model of the
combination of anti-B7-H3 CAR-T cells with and IL-7-loaded
oncolytic adenovirus (oAD-IL7) for the treatment of HGG (89).
The combined strategy promoted T-cells proliferation and
antitumoral activity in vitro and reduced mortality in the
xenograft mouse models (89). Conversely, there are some
controversial results showing the inefficacy of OVs and CAR-T
cells combination for HGGs. Recently, it was observed that the
pro-inflammatory activity of an OV (VSVmIFNb) can impair
EGFRvIII CAR-T cells cytotoxicity against HGG cells (90). The
reason of these unexpected results may lie on the complexity of
inflammation mechanisms occurring in TME, which need to be
better understood in order to develop precise, effective, and safe
combination strategies involving CAR-T cells. Moreover, the
group of Park et al. developed an interesting combined strategy
exploiting OVs to induce the expression of the CAR target in
infected tumor cells, hence increasing CAR-T cells antitumoral
activity (91). In details, in this approach an engineered OV
delivers a transgene leading to the expression of a truncated form
of CD19 (CD19t) on the neoplastic cells, promoting the cytotoxic
activity of CD19-CAR-T cells.

Lastly, reduced T-Cell trafficking and homing in the TME was
underlined as one of the major obstacles of CAR-T therapies. In
particular, reduced production of chemokines and modification of
Extra-Cellular Matrix (ECM) are involved in hindering the migration
of T-cell to the tumor site (92). Interestingly, Jin et al. developed CAR-
T cells expressing chemokines receptors (CXCR1 and CXCR2) to
improve intratumoral trafficking (93). The results observed in
xenograft models of HGG confirmed the efficacy of this approach,
unveiling the importance of increased T-cells homing to improve
CAR-T therapies efficacy.Moreover, the CNS location adds a relevant
and peculiar obstacle to the migration of CAR T cells to tumor: the
presence of the BBB, a permeability barrier characterized by the
connection, through tight junctions, of endothelial cells with the
luminal and abluminal membranes lining the capillaries of the brain.
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Despite the documented ability of i.v. administered CAR T-cells to
cross the BBB, as alreadymentioned, targeted delivery of T cells at the
level of the CNS is an attractive option to reduce systemic toxicity and
increase CAR T-cell concentration at tumor site. Indeed, as
mentioned above, a superior efficacy with reduced toxicity of
intraventricular/intrathecal administration of CAR-T cells was
already shown (23, 29) and the strategy represents a valid and
promising approach to circumvent the BBB obstacle.

Despite all the presented approaches show great potential to
improve CAR-T cell function and safety in preclinical models,
their use in clinical setting is limited at present. The results of
future clinical trials will shed new lights on potential and
limitations of these highly innovative approaches.

CONCLUSIONS AND
FUTURE STRATEGIES

Conventional therapies, radiation and chemotherapy are not
sufficient for achieving a sustained disease remission in
patients affected by HGG, both in adult that pediatric patients,
and new therapeutic strategies are necessary. Immunotherapy is
a new therapeutic approach that harnesses the inherent activity
of the immune system to control and eliminate malignant cells.
To date, CAR-T cell therapy has shown promise in early clinical
trials in HGG patients but could not achieve the same sustained
success observed in hematological malignancies. Several hurdles,
including the immunosuppressive TME, the heterogeneity in
target antigen expression and the difficulty of accessing the
tumor site, impair the antitumor efficacy of CAR-T cells.
Several CAR-T antigenic targets have been considered so far,
and recently GD2 and B7-H3 look very promising for pediatric
tumors. However, heterogeneity of expression is a limiting factor
for single antigen-redirected CAR-T in solid tumors. For this
reason, considering innovative strategies such as next generation
CAR-T cells or combinatory approaches with other
immunotherapy agents (e.g. BiTEs, Oncolytic viruses and ICIs)
could improve tumor control. “Next generation” or multivalent
CAR-T have been developed and might have a large impact on
treatment of pHGG, improving efficacy of T cells therapies and
overcoming obstacles of TME.
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