
Sex-Specific Association of the Putative
Fructose Transporter SLC2A9 Variants With
Uric Acid Levels Is Modified by BMI
ANITA BRANDSTÄTTER, PHD
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OBJECTIVE — High serum uric acid levels lead to gout and have been reported to be asso-
ciated with an increased risk of hypertension, obesity, metabolic syndrome, type 2 diabetes, and
cardiovascular disease. Recently, the putative fructose transporter SLC2A9 was reported to in-
fluence uric acid levels. The aim of the present study was to examine the association of four single
nucleotide polymorphisms within this gene with uric acid levels and to determine whether this
association is modified by obesity.

RESEARCH DESIGN AND METHODS — Four single nucleotide polymorphisms
within SLC2A9 (rs6855911, rs7442295, rs6449213, and rs12510549) were genotyped in the
population-based prospective Bruneck Study (n � 800) and in a case-control study from Utah
including 1,038 subjects recruited for severe obesity and 831 control subjects.

RESULTS — We observed highly significant associations between all four polymorphisms
and uric acid levels in all study groups. Each copy of the minor allele decreased age- and
sex-adjusted uric acid levels by 0.30–0.35 mg/dl on average, which translates to a relative
decrease of 5–6% with P values ranging from 10�9 to 10�11 in the combined analysis. An
extended adjustment for BMI, creatinine, gout medication, and alcohol intake improved P values
to a range of 10�14 to 10�20. The association was more pronounced in women and the popu-
lation-based Bruneck Study and was significantly modified by BMI, with stronger effect sizes in
individuals with high BMI.

CONCLUSIONS — Genetic variants within SLC2A9 have significant effects on uric acid
levels and are modified by sex and BMI.

Diabetes Care 31:1662–1667, 2008

In humans, uric acid is the end product
of purine metabolism, and hyperurice-
mia might be caused by an overpro-

duction of or by disturbances in the
elimination of uric acid. Although some
experimental evidence supports the idea
of a beneficial role of uric acid because of
its strong antioxidative properties (1), a

number of epidemiological studies re-
ported an association between high uric
acid levels and cardiovascular disease, hy-
pertension, kidney disease, metabolic
syndrome, and even total mortality (2,3).
Uric acid levels are, furthermore, posi-
tively associated with serum glucose in
healthy subjects (4), and subjects with

higher uric acid levels have a higher risk
of developing type 2 diabetes or meta-
bolic syndrome (5). However, the mech-
anisms underlying this association are
still unclear.

The regulation of uric acid levels is
under strong genetic control, with herita-
bility estimates ranging from 25 to70%
(6,7). The elucidation of the genetic con-
tributors to uric acid levels as an interme-
diate phenotype for various diseases
might shed some light on the pathogene-
sis of these complex phenotypes and
might help identify new targets for treat-
ing undesirably high uric acid levels.

Recent genome-wide association
studies identified a strong association of
uric acid levels with genetic variants
within SLC2A9 (8–11), a gene located in
the chromosomal region 4p16.1 encod-
ing a putative fructose transporter. There
is strong evidence from both animal mod-
els and human studies supporting fruc-
tose as a highly lipogenic nutrient that
contributes to tissue insulin insensitivity,
metabolic disturbances, and the develop-
ment of a prediabetic state when con-
sumed in high quantities (12).

In the present study we aimed to rep-
licate the recently discovered association
between genetic variation within the
SLC2A9 gene and uric acid concentra-
tions in the population-based Bruneck
Study. This analysis was extended by a
large case-control study of severely obese
individuals from Utah who showed in-
creased uric acid levels compared with
those in control subjects to explore
whether the genetic association is modi-
fied by obesity.

RESEARCH DESIGN AND
METHODS

Bruneck Study
The Bruneck Study is a prospective pop-
ulation-based survey designed to investi-
gate the epidemiology and pathogenesis
of atherosclerosis (13). Briefly, the study
population was recruited as a sex- and
age-stratified random sample of all inhab-
itants of Bruneck, Italy (125 women and
125 men in each decade of age from the
fifth to the eighth, n � 1,000). At the
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1990 baseline, 93.6% of recruited sub-
jects participated, with data assessment
completed in 919 subjects. Follow-up ex-
aminations were performed in 1995,
2000, and 2005. Detailed information on
prevalent and incident metabolic syn-
drome components, diabetes, and cardio-
vascular events is available from all
examinations. The present analysis fo-
cuses on the 1995 reexamination and on
the follow-up period for clinical events
between 1995 and 2005. In 1995, the
study population consisted of 826 sub-
jects (96.5% of those alive). Sufficient
DNA was available for 800 participants.

Obesity case-control study from
Utah
The study included 1,869 individuals
from two groups of subjects gathered in
the state of Utah. The study population
was composed of 1,038 subjects recruited
for severe obesity (“severe obesity group”
with a BMI between 33 and 92 kg/m2) and
a general population sample of 831 indi-
viduals of the same ethnicity (“control
subjects”). The two groups of subjects
were described in detail elsewhere (14).
In brief, the 1,038 subjects with severe
obesity were either seeking gastric bypass
surgery or were randomly chosen from a
population-based sample of severely
obese participants. The examination of
patients undergoing gastric bypass sur-
gery was done before the intervention.
The control group consisted of 831 indi-
viduals from the same geographical re-
gion and was found to be representative of
the Utah population, spanning the entire
BMI range.

Metabolic syndrome and type 2
diabetes
Prevalent type 2 diabetes was considered
to be present if a prior physician diagnosis
had been made, if the fasting blood glucose
upon screening was �126 mg/dl, or if insu-
lin-sensitizing agents or diabetes medica-
tions were being taken by the individual.
Metabolic syndrome was defined according
to the scientific statement from the Ameri-
can Heart Association and the National
Heart, Lung, and Blood Institute (15). The
incidence of type 2 diabetes and metabolic
syndrome was assessed in the Bruneck
Study from the 1995 examination to the
2005 examination.

Laboratory methods
In both study populations, blood samples
were collected after an overnight fasting
period. Uric acid levels were measured

using enzymatic-colorimetric methods
(Bruneck Study: Merck, Vienna, Austria;
Utah study: Roche, Indianapolis, IN) with
intra-assay and interassay coefficients of
variation �2%. Other clinical chemical
parameters were measured as described
recently (14).

Four single nucleotide polymor-
phisms (SNPs) with genome-wide P val-
ues �10�7 in the data from Li et al. (8)
and Döring et al. (10) were selected for
genotyping using a 5� nuclease allelic dis-
crimination (TaqMan) assay (Applied
Biosystems, Foster City, CA): rs6855911,
rs7442295, rs6449213, and rs12510549.
Genotyping was done within the Geno-
typing Unit of the Gene Discovery Core
Facility at Innsbruck Medical University
(Innsbruck, Austria).

Statistical and bioinformatic
analysis
To compare characteristics between indi-
vidual groups, we applied t tests, Wil-
coxon tests, and Pearson �2 tests.
Spearman correlation coefficients were
used to describe the correlation between
uric acid levels and components of the
metabolic syndrome. A �2 test for violation
of the Hardy-Weinberg equilibrium was
performed. General linear regression
models were used to estimate the associ-
ation of any of the four SNPs with uric
acid levels adjusted for various covariates,
assuming an additive model. The additive
model was applied because of a priori ev-
idence from previous studies in various
populations (8,10,11) and from the in-
spection of the genotype-specific means
of uric acid levels. Interactions between
the SNPs investigated and BMI on uric
acid levels were tested by adding an inter-
action term (SNP � BMI) and the main
covariates (sex, SNP, and BMI) to the
model. The effect modification was
graphically illustrated for three BMI
classes (�30, 30–40, and �40 kg/m2)
and the three genotype levels using inter-
action plots applying PROC GENMOD.
All statistical analyses were performed
with SPSS (version 15.0; SPSS, Chicago,
IL) or SAS (version 9.1; SAS Institute,
Cary, NC).

Because all polymorphisms that we
investigated were located in noncoding
regions, their possible effect on transcrip-
tion factor binding sites was evaluated in
silico using different components of the
Genomatix Software Suite (Genomatix,
Munich, Germany). Analyses included a
search for the presence of known func-
tional genetic elements (e.g., promoter se-

quences or microRNAs) using Eldorado
(release 4.5), a search for unknown pro-
moter-specific sequences using Promoter
Inspector (release 4.6), and an investiga-
tion of possible effects of the polymor-
phisms on single transcription factor
binding sites using SNPInspector (release
4.6).

RESULTS — Baseline clinical charac-
teristics and laboratory data of the study
groups from Bruneck and Utah are re-
ported in Table 1. Analysis of the Utah
group was also stratified by case-control
status (severe obesity versus control).

All four SNPs were found to be in
Hardy-Weinberg equilibrium in all
groups analyzed (P � 0.1), and the geno-
typing efficiency ranged between 97 and
98.5%. We observed no difference in ge-
notype frequencies between the Bruneck
and Utah groups (P � 0.1).

Association of genetic variation
within SLC2A9 and uric acid levels
Age- and sex-adjusted linear regression
models revealed a strong and highly sig-
nificant association of each of the four
SNPs with uric acid levels (Table 2) in all
study groups, which was strongest in the
population-based Bruneck Study. This
association can clearly be described by an
additive model: each copy of the minor
allele lowered uric acid levels by 0.30–
0.35 mg/dl on average, representing a rel-
ative decrease of 5–6%, with P values
ranging from 10�9 to 10�11 in the com-
bined analysis.

Sex-specific associations between
SLC2A9 and uric acid levels
A sex-stratified analysis revealed much
stronger associations between the four
SNPs and uric acid levels in women than
in men (Table 2). This observation was
most pronounced in the population-
based Bruneck Study, in which the effect
estimates for each minor allele were up
to twice as high in women than in men.
Considering the fact that women have on
average 20% lower uric acid levels than
men, the effect differences get even more
meaningful.

Interaction with BMI
The associations of the four SNPs with
uric acid levels became stronger after ad-
ditional adjustments for BMI, creatinine,
gout medication, and alcohol intake, with
P values ranging from 10�14 to 10�20

(Table 2). BMI was the variable that most
contributed to the change in P values.

Brandstätter and Associates
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Thus, we investigated whether BMI was
an effect modifier of the SNP–uric acid
association by introducing an interaction
term BMI � SNP in addition to BMI and
SNP to the model. This analysis was done
by combining all three groups, but with
adjustments for age, sex, and population
(Bruneck versus Utah). The interaction
was significant for three of the four
SNPs (P � 0.023– 0.035) and border-
line significant for rs12510549 (P �
0.053). Figure 1 graphically illustrates
these interactions for BMI groups �30,
30 – 40, and �40 kg/m2.

Association with metabolic
syndrome and type 2 diabetes
We observed significant correlations be-
tween uric acid levels and each singular
metabolic syndrome component, as well

as with the sum of the components (Table
3). These correlations were seen in all
three groups of subjects. Age- and sex-
adjusted uric acid levels were significantly
higher in subjects with metabolic syn-
drome compared with those without.
With the exception of the severe obesity
group, uric acid levels were also signifi-
cantly higher in subjects with type 2 dia-
betes compared with those without
(Table 3). Uric acid levels were signifi-
cantly associated with the development
of either metabolic syndrome and/or
type 2 diabetes in the Bruneck Study
from the 1995 examination to the 2005
examination. However, no association be-
tween the four SNPs and prevalent or in-
cident metabolic syndrome or type 2
diabetes could be established.

Bioinformatics
Putative transcription factor binding
sites were predicted for three of the four
polymorphisms (five for rs12510549,
two for rs6449213, and one for
rs7442295), although no biologically
obvious candidates could be found. The
predicted candidates belonged mainly
to pathways not directly connected with
the phenotypes investigated, such as
cellular growth (E2F) or immune
response (PAX5, BCL6, NFAT, and
NR2F) (data not shown).

For the polymorphism rs12510549,
the generation or disruption of five differ-
ent putative binding sites was predicted.
Among these, a putative binding site for
NFAT factors was recognized. NFAT fac-
tors have been implicated in various roles
during development and adaptation of

Table 1—Clinical and laboratory data for participants in the Bruneck and Utah study groups with stratification in patients with severe obesity
and control subjects

Bruneck

Utah

Control Severe obesity

n 800 831 1,038
Age (years) 62.7 � 11.1 52.8 � 8.5 44.4 � 11.4*
Sex: male/female 398/402 (49.8/50.2) 403/428 (48.5/51.5) 193/845 (18.6/81.4)*
rs12510549: TT/TC/CC 506/243/35 (64.5/31.0/4.5) 519/265/33 (63.5/32.4/4.1) 633/335/43 (62.6/33.1/4.3)

MAF (%) 20.0 20.3 20.8
rs6449213: TT/TC/CC 517/237/30 (65.9/30.2/3.8) 539/259/20 (65.9/31.7/2.4) 648/319/40 (64.3/31.7/4.0)

MAF (%) 18.9 18.3 19.8
rs6855911: AA/AG/GG 462/283/43 (58.6/35.9/5.5) 471/304/43 (57.6/37.2/5.2) 526/412/69 (52.2/40.9/6.9)

MAF (%) 23.4 23.8 27.3
rs7442295: AA/AG/GG 494/257/34 (62.9/32.7/4.3) 501/287/28 (61.4/35.2/3.4) 595/366/49 (58.9/36.2/4.9)

MAF (%) 20.7 21.0 23.0
Uric acid (mg/dl) 4.7 � 1.3 5.5 � 1.5 6.3 � 1.5*
BMI (kg/m²) 25.6 � 3.8 27.6 � 4.9 46.0 � 7.6*
Creatinine (mg/dl) 0.94 � 0.19 0.92 � 0.31 0.81 � 0.22*
Total cholesterol (mg/dl) 230.0 � 42.6 187.1 � 34.0 186.8 � 36.2
LDL cholesterol (mg/dl) 145.5 � 37.9 105.1 � 27.7 108.2 � 27.6†
HDL cholesterol (mg/dl) 58.7 � 16.2 50.1 � 15.0 45.9 � 11.0*
Triglycerides (mg/dl) (25th, 50th,

75th percentile)
131.7 � 71.9 (81, 111, 158) 156 � 105 (86, 121, 169) 186 � 106 (164, 119, 223)*

Systolic blood pressure (mmHg) 148.3 � 20.7 121.5 � 16.7 127.3 � 18.5*
Diastolic blood pressure (mmHg) 87.1 � 9.2 73.0 � 10.5 71.9 � 10.8†
Glucose (mg/dl) 102 � 24 91 � 18 104 � 33*
Metabolic syndrome‡ 261 (32.6) 267 (32.1) 766 (73.8)*
Metabolic factors, median§ 2.0 (2) 2.0 (2) 3.0 (2)*
Diabetes 76 (9.5) 55 (6.6) 225 (21.7)*
Use of gout medication 13 (1.6) 7 (0.8) 11 (1.1)†
Use of lipid-lowering drugs 25 (3.1) 64 (7.7) 122 (11.9)*

Data are means � SD or n (%) unless otherwise indicated. *P � 0.001; †P � 0.05 for comparison between severely obese subjects and control subjects from Utah.
‡Definition according to the scientific statement from the American Heart Association and the National Heart, Lung, and Blood Institute. Three of the following five
parameters had to be present: elevated waist circumference (�102 cm in men and �88 cm in women); elevated triglycerides (�150 mg/dl 	1.7 mmol/l
) or receiving
drug treatment for elevated triglycerides; reduced HDL cholesterol (�40 mg/dl 	1.03 mmol/l
 in men and �50 mg/dl 	1.3 mmol/l
 in women) or receiving drug
treatment for reduced HDL cholesterol; hypertension (�130 mmHg systolic blood pressure or �85 mmHg diastolic blood pressure) or receiving antihypertensive
drug treatment in a patient with a history of hypertension; or elevated fasting glucose (�100 mg/dl) or receiving drug treatment for elevated glucose. §Metabolic
factors: average number of factors considered in the definition of metabolic syndrome (see preceding footnote), measured as median (interquartile range). MAF,
minor allele frequency.

SLC2A9 polymorphisms influence uric acid levels
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several mammalian cell types outside the
immune system (16).

CONCLUSIONS — We observed a
strong sex-specific association between
genetic variation within the SLC2A9 gene
and uric acid concentrations. The finding
was most pronounced in the population-
based Bruneck Study and was replicated
in severely obese and control individuals
from Utah. This association was modified
by BMI such that increasing BMI ampli-
fied effects of genetic variants on uric acid
levels.

SLC2A9 was recently identified by
four independent genome-wide associa-
tion studies to be strongly associated with
uric acid levels (8–11). SLC2A9 encodes a
putative hexose transporter whose prob-
able substrate is fructose (17). Fructose
intake has been described as an important
contributor to uric acid levels and gout
(18,19), as the ADP generated during the
phosphorylation of fructose is used for
rapid production of uric acid (20). Epide-
miological data showed that increased to-
tal fructose intake correlated with
increasing incidence of obesity, metabolic
syndrome (21), and gout (19). Over the
past decades, a general increase in uric
acid levels was observed, and it was hy-
pothesized that fructose-induced hyper-
uricemia might be in part responsible for
the r i se in metabo l i c syndrome
(12,22,23). The detection of genes that
determine uric acid levels by influencing
fructose metabolism would therefore be
of interest. The actual mechanism of how
genetic variation within SLC2A9 modu-
lates uric acid levels has not been fully
elucidated. One possibility would be an
influence on the hepatic uptake of fruc-
tose and production of uric acid. On the
other hand, SLC2A9 variants were associ-
ated with low fractional excretion of uric
acid in various population samples, and
experiments in Xenopus laevis oocytes
showed that SLC2A9 has not only fructose
but also strong uric acid transport activity
(11).

It is important to note that we did not
find an association between the genetic
variants within the SLC2A9 gene and
prevalent or incident metabolic syndrome
or type 2 diabetes. This finding is intrigu-
ing given the pronounced association be-
tween the genetic variants and uric acid
levels and the strong association of uric
acid levels and these diseases in our study
and in earlier studies. This may by ex-
plained, on the one hand, by lack of pow-
er: the variance in serum uric acid levels
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Figure 1— Interaction plots describing the effect modification of BMI on the association of the four investigated SLC2A9 SNPs with uric acid levels.
The x-axis displays the allelic status of the respective SNP; the y-axis corresponds to the predicted probability that an individual with the respective
genotype exceeds the sex-specific median of uric acid levels given the specific BMI class. The quantitative interactions are represented as lines, with
statistically significant differing slopes in all but one SNP (rs12510549). AA, Aa, and aa denote the three possible genotypes: wild-type, heterozygote
carriers, and homozygotes for the minor allele, respectively.

Table 3—Correlation of uric acid levels with parameters of the metabolic syndrome and type 2 diabetes

Bruneck

Utah

Control Severe obesity

n 800 831 1,038
Correlation coefficients between uric acid and

BMI 0.29* 0.44* 0.17*
Glucose 0.28* 0.31* 0.09†
Systolic blood pressure 0.15* 0.25* 0.08‡
Diastolic blood pressure 0.11† 0.29* 0.01
HDL cholesterol �0.29* �0.44* �0.20*
Triglycerides 0.38* 0.33* 0.14*
Metabolic syndrome components 0.31* 0.39* 0.18*

Uric acid concentrations in subjects
With and without metabolic syndrome 5.3 � 1.4 vs. 4.3 � 1.2* 6.2 � 1.4 vs. 5.2 � 1.4* 6.4 � 1.5 vs. 6.0 � 1.5*
With and without type 2 diabetes 5.0 � 1.5 vs. 4.7 � 1.3‡ 6.1 � 1.4 vs. 5.5 � 1.5† 6.3 � 1.7 vs. 6.3 � 1.5

Data are correlation coefficients and means � SD. *P � 0.001; †P � 0.01; ‡P � 0.05.
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related to the genotypes investigated in
population-based studies was about 1.2%
in men and 6% in women (10), and the
fraction of these two diseases explained
by uric acid levels was also small. On the
other hand, the possibility that uric acid
level is a surrogate marker of the disease
without being in the causal pathway can-
not be ruled out. However, recent studies
in rats showed that fructose-induced met-
abolic syndrome is partially prevented by
lowering uric acid levels and that the re-
duction in endothelial nitric oxide bio-
availability caused by uric acid may be a
mechanism for insulin resistance and hy-
pertension (23). A proof of a causal asso-
ciation of uric acid with disease end
points might be possible by the applica-
tion of a Mendelian randomization ap-
proach. However, this proof will probably
require examination of several thousand
individuals. Homozygotes of the wild
type and of the rare allele differ in uric
acid levels by 0.64–0.81 mg/dl, which
corresponds to 11–13% of the mean lev-
els. Based on the findings in earlier stud-
ies, such a difference in uric acid levels
would change the rate of cardiovascular
events by 1%.

A recent study with a systematic in-
vestigation of sex-specific differences of
literature-reported genetic effects on var-
ious phenotypes documented that only
one of 432 sex difference claims was con-
sistently replicated in at least two other
studies (24). The association of genetic
variants within SCL2A9 with uric acid lev-
els clearly adds to this list, as much stron-
ger associations were found in women
than in men in five population samples in
previous studies (10,11) and in three
population samples in this study. How
obesity modulates the association be-
tween SLC2A9 variants and uric acid lev-
els remains to be determined. It could be
related to the higher fructose intake in
obese subjects (22) and a different satura-
tion capacity of fructose transport de-
pending on the genotype.

In summary, our study shows a
strong association of genetic variants
within the SLC2A9 gene and uric acid lev-
els that is modified by sex and BMI.
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