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LETTER TO TH E EDITOR

Integrated mPD-L1 and metabolic analysis identifies new
prognostic subgroups in lung cancers with wild-type EGFR

Dear Editor,
Metabolic reprogramming, especially changes in glycoly-
sis and cholesterogenesis pathways, has been reported to
affect tumour prognosis.1 Interestingly, there is an intri-
cate relationship between metabolic changes and immune
checkpoints in the tumourmicroenvironment (TME),2 but
their interaction and effects on the prognosis of lung can-
cer patients remain poorly understood. In this work, we
established a novel stratification framework based on com-
bined analysis of PD-L1 mRNA (mPD-L1) expression and
glycolysis/cholesterol metabolic signatures, which strati-
fied epidermal growth factor receptor (EGFR) wild-type
lung cancers intometabolic subtypeswith significantly dif-
ferent prognoses. We also created a visualization website
called glycolysis/cholesterol metabolism axis and PD-L1
mRNA expression (GCP) (https://www.liqlab.cn/gcp) for
this stratification approach.
We first investigated the impact of the three metabolic

subtypes on prognosis at different PD-L1 expression lev-
els. In the mPD-L1low group, cholesterogenic cases had a
significantly worse OS and progression free survival (FPS)
(mOS: 2.9 years; mFPS: 3.7 years) compared to glycolytic
(mOS and mPFS were not reached) and quiescent cases
(mOS: 5.5 years, mPFS was not reached). However, in the
mPD-L1high group, cases belonging to the glycolytic sub-
type had a significantly worse OS and FPS (mOS: 3.3 years;
mFPS: 2.3 years) than the cholesterogenic and quiescent
subtypes (mOS: 7.1 years, mPFS: 7.2 years). Of note, no dif-
ference was observed among metabolic subtypes for the
mPD-L1med group (Figure 1C and Table S4). Furthermore,
for the cholesterogenic subtype, higher PD-L1 levels were
associated with a better prognosis, whereas opposite find-
ings were observed for the glycolytic subtype (Figure 1D).
For the mPD-L1high group, univariate cox regression

analysis revealed that glycolytic subtype, pT stage and
pTNM stage were correlated with OS and PFS. During
multivariate Cox regression analysis, glycolytic subtype
(hazard ratio [HR], 2.62; 95% confidence interval [CI],
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1.19–5.73; p = 0.02) and pT stage (HR, 2.69; 95% CI,
1.08–6.73; p = 0.03) were found to be independent pre-
dictors of OS after adjusting for typical clinicopathologic
factors (Table 1). For the mPD-L1low group, univariate cox
regression analysis uncovered that age, gender, smoking,
glycolytic subtype and cholesterogenic subtype were
correlated with OS, and only cholesterogenic subtype
was related to PFS. Multivariate analysis using the Cox
regression model further demonstrated that only the
cholesterogenic subtype was independently prognostic
for OS (HR, 2.07; 95% CI, 1.13–3.78; p = 0.02) (Table 1).
Overall, the above findings suggest that in EGFRwild-type
non-small cell lung cancer (NSCLC), different metabolic
subtypes have distinct prognostic outcomes based on
PD-L1 expression levels. A more aggressive phenotype
could be associated with predominantly cholesterogenic
tumours than those with predominantly glycolytic pheno-
type in EGFR wild-type NSCLC poorly expressing PD-L1.
We subsequently focused on the mPD-L1low group of

EGFR wild-type lung cancers. Analysis of clinical char-
acteristics showed that cholesterogenic cases were more
likely to have a smoking history and higher T and N
scores (Figure S3A). For immune profiles, significantly
lower immune scores and lower tumour infiltration of
endothelial cells, macrophages and B cells were found in
the cholesterogenic subtype than in the quiescent sub-
type (Figure S3B,C). Higher expression levels of CD274
and TIGIT were observed in cholesterogenic cases than
glycolytic and quiescent cases (Figure S3D). We previ-
ously found hypermethylation and low expression of mul-
tiple tumour suppressor genes (TSGs) in EGFR wild-type
NSCLC poorly expressing PD-L1.3 In the present study,
the expression of TSGs ADAMTS8 (Adam metallopepti-
dase with thrombospondin type 1 motif 8), CDO1 (cysteine
dioxygenase type 1), and GATA5 (GATA binding protein 5)
varied across metabolic subtypes. This finding suggested
possible heterogeneity in carcinogenic mechanisms across
metabolic subtypes (Figure S3E).
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F IGURE 1 Clinical prognostic of EGFR wild type lung cancers with different metabolic subtypes. (A) Stratification of mPD-L1low,
mPD-L1med, and mPD-L1high groups based on gene expression of glycolysis/cholesterol synthesis axis. Heatmap (upper) showing results of
consensus clustering analysis for genes involved in glycolytic and cholesterogenic processes in mPD-L1low (k = 4, n = 192), mPD-L1med (k = 4,
n = 383), and mPD-L1high (k = 4, n = 208) groups of EGFR wild-type lung cancers. Scatter plot (down) illustrating median expression level of
co-expressed genes associated with glycolytic (x-axis) and cholesterogenic (y-axis) processes for all samples. The expression of these genes was
used to establish metabolic subtypes. (B) Overall survival for groups with highly expressed cholesterogenic genes and high or low glycolytic
gene expression. (C) Kaplan–Meier survival analysis in mPD-L1low, mPD-L1med, or mPD-L1high groups stratified by metabolic subtype. Upper
panel, overall survival (OS) analysis; lower panel, progression free survival (PFS) analysis; Log-rank test p values are shown. (D) Overall
survival for glycolytic and cholesterogenic groups with different mPD-L1 expression
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TABLE 1 Univariate and multivariate regression analysis of different clinical parameters and metabolic subtypes

PD-L1low OS PFS

Variable
Univariate,
p

Multivariate
(HR, 95% CI) p-value

Univariate,
p

Multivariate
(HR, 95% CI) p-value

Age
(>60 vs. ≤60)

0.026 1.003 0.971 1.036 0.866 0.52 1.004 0.97 1.04 0.812

Gender
(male vs. female)

0.015 1.668 0.937 2.969 0.082 0.16 1.834 0.977 3.443 0.059

pT_stage
(T3/T4 vs. T1/T2)

0.73 1.135 0.523 2.46 0.749 0.646 2.049 0.85 4.935 0.11

pN_stage (N1/N2/N3 vs. N0) 0.569 0.776 0.425 1.418 0.409 0.184 0.577 0.291 1.143 0.115
pM_stage
(M1/MX vs. M0)

0.223 1.719 0.791 3.735 0.171 0.402 1.419 0.601 3.35 0.425

pTNM_stage
(III/IV vs. I/II)

0.597 1.291 0.637 2.616 0.479 0.072 1.514 0.664 3.451 0.324

Smoking
(Yes vs. No)

0.002 1.951 0.739 5.151 0.177 0.22 2.012 0.598 6.769 0.259

Histology
(LUAD vs. LUSC)

0.108 1.04 0.618 1.747 0.883 0.192 1.144 0.659 1.985 0.633

Glycolytic (glycolytic vs.
quiescent)

0.029 0.723 0.326 1.602 0.424 0.351 0.707 0.292 1.715 0.444

Cholesterogenic (cholesterogenic
vs. quiescent)

0.001 2.065 1.129 3.779 0.019 0.015 1.84 0.973 3.482 0.061

PD-L1high OS PFS

Variable
Univariate,
p

Multivariate
(HR, 95% CI) p-value

Univariate,
p

Multivariate
(HR, 95% CI) p-value

Age
(>60 vs. ≤60)

0.15 1.009 0.98 1.038 0.555 0.536 0.995 0.959 1.033 0.8

Gender
(male vs. female)

0.853 0.969 0.491 1.909 0.926 0.324 0.919 0.446 1.894 0.818

pT_stage
(T3/T4 vs. T1/T2)

<0.0001 2.694 1.079 6.725 0.034 0.001 2.256 0.88 5.782 0.09

pN_stage (N1/N2/N3 vs. N0) 0.193 1.062 0.531 2.126 0.864 0.098 0.828 0.402 1.705 0.609
pM_stage
(M1/MX vs. M0)

0.761 1.428 0.522 3.902 0.488 0.773 0.895 0.275 2.911 0.853

pTNM_stage
(III/IV vs. I/II)

<0.0001 2.245 0.851 5.922 0.102 0.008 2.151 0.794 5.824 0.132

Smoking
(yes vs. no)

0.153 0.437 0.163 1.176 0.101 0.32 0.171 0.051 0.574 0.004

Histology
(LUAD vs. LUSC)

0.153 0.827 0.419 1.631 0.584 0.951 1.27 0.612 2.635 0.521

Glycolytic (glycolytic vs.
quiescent)

0.001 2.616 1.194 5.732 0.016 0.002 1.935 0.861 4.347 0.11

Cholesterogenic (cholesterogenic
vs. quiescent)

0.181 0.977 0.507 1.882 0.944 0.603 0.877 0.414 1.856 0.731

Note: Significant p < 0.05 is given in italic.
Abbreviations: CI, confidence interval; HR, hazard ratio; OS, overall survival; PFS, progression free survival.

Interestingly, mutation analysis revealed that the muta-
tion frequency and types varied significantly across
the metabolic subtypes. Multiple genes likely involved
included TP53, TTN, ZFHX4, ROS1, DNAH9, PCDH15,
ALK and KRAS (Figure 2A–C). Next, cancer hallmarks

analysis showed that tumour proliferation signature, G2M
checkpoint hallmark, MYC targets hallmark and mRNAsi
signatures were more active in cholesterogenic cases than
glycolytic cases (Figure 2D). The association between
different cancer hallmarks further suggested that each
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F IGURE 2 Mutational landscape and cancer hallmarks across the metabolic subtypes of mPD-L1low group of EGFR wild type NSCLC.
(A) Oncoprint illustrating the distribution of somatic mutation (single nucleotide variation/indel) and copy number variation (CNV) events
influencing frequently mutated genes in NSCLC across the metabolic subtypes. (B) The distribution of genes with somatic mutations across
the metabolic subtypes. (C) The distribution of genes with copy number variations across the metabolic subtypes. (D) The different scores of
cancer hallmarks in metabolic subtypes. (E) The association between cancer hallmarks in each metabolic subtype. (F) The expression levels
of MPC1 and MPC2 in all metabolic subtypes. (G) The expression levels of MTHFD2 and PCSK9 in all metabolic subtypes. (H) Significantly
enriched gene sets in the cholesterogenic group (FDR < 0.05). Kruskal–Wallis test was performed to compare the four subgroups. Wilcoxon
test was used to compare two paired groups. (*p < 0.05, *p < 0.01, ***p < 0.001 and ****p < 0.0001)
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F IGURE 3 The effectiveness of stratification framework in pan-cancer. (A) Heatmap displaying the results of consensus clustering
analysis for genes involved in glycolysis and cholesterogenic processes for each cancer type. (B) Bar plots illustrating the proportion of
metabolic subtypes in different cancer types. (C) Kaplan–Meier survival analysis curves displaying variations in median OS between
metabolic subgroups in KIRC with low expression of mPD-L1, THCA with low expression of mPD-L1, and bladder urothelial carcinoma with
high expression of mPD-L1. (D) Design and workflow of interactive online webtool named GCP. (E) The interaction patterns of PD-L1 mRNA
and altered glycolysis/cholesterol metabolism axis ultimately affect patient prognosis
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metabolic subtype had a unique tumourigenic develop-
ment pattern. (Figure 2E). We also explored the expres-
sion of some therapeutic targets. We noticed that the
mitochondrial pyruvate carrier 1 (MPC 1) gene expression
level was profoundly lower in the glycolytic subtype ver-
sus the cholesterogenic subtype (Figure 2F).4 Recently,
methylenetetrahydrofolate dehydrogenase 2 (MTHFD2)
was found to promote PD-L1-mediated tumour immune
resistance. Proprotein convertase subtilisin/keying type 9
(PCSK9) has been documented to block intratumoural
infiltration by T cells.5,6 In the present study, we found that
cholesterogenic cases expressed significantly higher levels
of MTHFD2 and PCSK9 than other cases (Figure 2G). Fur-
thermore, as shown in Figure 2H, 10 pathways were signif-
icantly enriched in the cholesterogenic group (false discov-
ery rate (FDR) < 0.05).
We then evaluated the stratification framework in other

cancer types. Network topology analysis was used to iden-
tify co-expressed pathway-specific genes in 12 cancer types
(Figure 3A). In mPD-L1high groups of other cancer types,
significant differences in survival were observed for blad-
der cancer patients (log-rank p = 0.024) as glycolytic cases
exhibited favorable OS (mOS was not reached). In mPD-
L1low groups, significant differences in survival across the
metabolic subtypes were observed in Kidney renal clear
cell carcinoma (kidney renal clear cell carcinoma (KIRC)
log-rank p = 0.0013) and thyroid carcinoma (THCA)
patients (log-rank p = 0.0095). For KIRC, cholesterogenic
cases had better OS (mOS was not reached), whereas
glycolytic (mOS: 3.5 years) and quiescent cases (mOS:
4.1 years) had worse OS (mOS: 2 years). For THCA, choles-
terogenic and quiescent cases had better OS (mOS was
not reached), and glycolytic cases (mOS was not reached)
had relatively worse OS (Figure 3A–C). Interestingly, the
cholesterogenic subtype was an independent clinical fac-
tor only in KIRC (Table S5). Altogether demonstrated that
despite the distinct genomic signatures and TME factors
specific to each cancer type, tumour metabolic dependen-
cies varied with PD-L1 expression levels.
To make the stratification framework more convenient

and user-friendly, we also created an online tool called
GCP (https://www.liqlab.cn/gcp), where investigators can
submit transcriptome data of their own samples and obtain
the stratification results with a single click (Figure 3D and
Figure S4).
In summary, our stratification framework indicates the

role ofmetabolic phenotype in the prognosis of EGFRwild-
type lung cancer, which is also related to the expression
of PD-L1 (Figure 3E). Moreover, this can help improve
the current management of EGFR wild-type lung cancer
patients. Meanwhile, it also provided clues for the selec-
tion of candidate drugs for combination treatment strat-
egy using PD-1/PD-L1 inhibitors in these two subgroups

of EGFR wild-type patients (mPD-L1low/cholesterogenic;
mPD-L1high/ glycolytic).

ACKNOWLEDGEMENTS
This work was partially supported by NCI 1R01CA230339-
01, 1R37CA255948-01A1 subaward and The Outstand-
ing Clinical Discipline Project of Shanghai Pudong. The
authors would like to thank Jianyu Wang and Yun Lu for
their valuable help on the statistical advice and Yue Zhang
for her advice on the web interface.

CONFL ICT OF INTEREST
The authors declare no conflict of interest.

Guosheng Wang1,2,*
Weilei Hu3,*
Yundi Chen2
Yuan Wan2

Qiang Li1

1 Department of Pulmonary and Critical Care Medicine,
Shanghai East Hospital, School of Medicine, Tongji

University, Shanghai, China
2 The Pq Laboratory of Micro/Nano BiomeDx, Department

of Biomedical Engineering, Binghamton
University—SUNY, Binghamton, New York, USA

3 Institute of Translational Medicine, Zhejiang University,
Hangzhou, China

Correspondence
Qiang Li, Department of Pulmonary and Critical Care
Medicine, Shanghai East Hospital, School of Medicine,

Tongji University, Shanghai 200020, China.
Email: liqressh@hotmail.com

Yuan Wan, The Pq Laboratory of Micro/Nano BiomeDx,
Department of Biomedical Engineering, Binghamton

University—SUNY, BI2625, Biotechnology Building, 65
Murray Hill Road, Vestal, NY 13850, USA.

Email: ywan@binghamton.edu

*These authors contributed equally to this work.

ORCID
YuanWan https://orcid.org/0000-0002-0219-5118

REFERENCES
1. Karasinska JM, Topham JT, Kalloger SE, et al. Altered gene

expression along the glycolysis-cholesterol synthesis axis is asso-
ciated with outcome in pancreatic cancer. Clin Cancer Res.
2020;26(1):135-146.

2. Li X,WenesM, Romero P, Huang SC-C, Fendt S-M,Ho P-C. Navi-
gatingmetabolic pathways to enhance antitumour immunity and
immunotherapy. Nat Rev Clin Oncol. 2019;16(7):425-441.

https://www.liqlab.cn/gcp
https://orcid.org/0000-0002-0219-5118
mailto:liqressh@hotmail.com
mailto:ywan@binghamton.edu
https://orcid.org/0000-0002-0219-5118
https://orcid.org/0000-0002-0219-5118


LETTER TO THE EDITOR 7 of 7

3. Hu W, Wang G, Yarmus LB, Wan Y. Combined methylome and
transcriptome analyses reveals potential therapeutic targets for
EGFRwild type lung cancerswith lowPD-L1 expression.Cancers.
2020;12(9):2496.

4. Schell JC, Olson KA, Jiang L, et al. A role for the mitochondrial
pyruvate carrier as a repressor of the Warburg effect and colon
cancer cell growth.Mol Cell. 2014;56(3):400-413.

5. Liu X, Bao X, Hu M, et al. Inhibition of PCSK9 potentiates
immune checkpoint therapy for cancer. Nature. 2020;588(7839):
693-698.

6. ShangM,YangH,YangR, et al. The folate cycle enzymeMTHFD2
induces cancer immune evasion through PD-L1 up-regulation.
Nat Commun. 2021;12(1):1940.

SUPPORT ING INFORMATION
Additional supporting information may be found in the
online version of the article at the publisher’s website.


	Integrated mPD-L1 and metabolic analysis identifies new prognostic subgroups in lung cancers with wild-type EGFR
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST
	ORCID
	REFERENCES
	SUPPORTING INFORMATION


