
Research Article
Wireless Stimulus-on-Device Design for Novel P300 Hybrid
Brain-Computer Interface Applications

Chung-Hsien Kuo ,1,2,3 Hung-Hsuan Chen,1 Hung-Chyun Chou,1

Ping-Nan Chen,3 and Yu-Cheng Kuo1

1Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
2Center for Cyber-Physical System Innovation, National Taiwan University of Science and Technology, Taipei, Taiwan
3Department of Biomedical Engineering, National Defense Medical Center, Taipei 114, Taiwan

Correspondence should be addressed to Chung-Hsien Kuo; chkuo@mail.ntust.edu.tw

Received 20 April 2018; Accepted 28 June 2018; Published 18 July 2018

Academic Editor: Roshan J. Martis

Copyright © 2018 Chung-Hsien Kuo et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Improving the independent living ability of people who have suffered spinal cord injuries (SCIs) is essential for their quality of
life. Brain-computer interfaces (BCIs) provide promising solutions for people with high-level SCIs. This paper proposes a novel
and practical P300-based hybrid stimulus-on-device (SoD) BCI architecture for wireless networking applications. Instead of a
stimulus-on-panel architecture (SoP), the proposed SoD architecture provides an intuitive control scheme. However, because P300
recognitions rely on the synchronization between stimuli and response potentials, the variation of latency between target stimuli and
elicited P300 is a concern when applying a P300-based BCI to wireless applications. In addition, the subject-dependent variation of
elicited P300 affects the performance of the BCI. Thus, an adaptive model that determines an appropriate interval for P300 feature
extraction was proposed in this paper. Hence, this paper employed the artificial bee colony- (ABC-) based interval type-2 fuzzy
logic system (IT2FLS) to deal with the variation of latency between target stimuli and elicited P300 so that the proposed P300-based
SoD approach would be feasible. Furthermore, the target and nontarget stimuli were identified in terms of a support vectormachine
(SVM) classifier. Experimental results showed that, from five subjects, the performance of classification and information transfer
rate were improved after calibrations (86.00% and 24.2 bits/ min before calibrations; 90.25% and 27.9 bits/ min after calibrations).

1. Introduction

According to World Health Organization (WHO) statistics,
in 2013, there were between 250,000 and 500,000 people
suffering from spinal cord injuries (SCIs) [1]. Due to difficulty
with mobility, an estimated 20% to 30% of people with
SCIs show clinically significant signs of depression. Negative
mental conditions lead to negative impacts on improvements
in function and overall health.Negative attitudes and physical
barriers obstruct basic mobility and result in the exclusion
of people from participation in society. Improvement in the
independent living ability of people suffering fromSCIs is one
method to overcome the disability’s barriers.

Brain-computer interfaces (BCIs) are systems that inter-
pret the brain’s electrical activities to command external

devices [2–6]. Thus, BCIs provide subjects with a nonmus-
cular method to connect with the world. Particularly for
disabled people who suffer from SCIs and strokes, BCIs
improve their independence in daily life. Several studies have
proven that there is a great potential to develop BCIs with
wide applications, such as assistive spelling systems, robotics,
and rehabilitation tools. Reviewing the achievements of
the past several decades, BCIs have been widely discussed.
Faster, more user-friendly and more robust BCIs had been
proposed by several research groups worldwide. With fast-
paced technical developments, BCI studies have reached a
critical point and continue to seek innovative applications.

P300 [7] is one of the conventional BCIs. P300 is an event-
related potential (ERP), and the most significant feature of
the potential waveform is the positive peak occurred around
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300ms after a stimulus. Hence, P300 has been widely used
to provide communication capabilities for healthy users,
wheelchair users, and disabled people with SCIs and strokes.
In addition to P300, steady state visually evoked potential
(SSVEP) is another common BCI modality. SSVEP is an
evoked signal that responds to visual flickering stimuli at a
specific frequency. Because SSVEP is a phase-locked evoked
potential, different phases of flickering stimuli are generated
to obtain more stimulus targets.

Hybrid BCI is a novel architecture that integrates different
BCI modalities, such as ERP, SSVEP, and motor imagery [8–
11]. Particularly, auditory and tactile based P300 BCI and
SSVEP BCI studies were practically proposed [12, 13]. In
general, hybrid BCIs have the advantages of BCI modalities
and compensate for their shortcoming.Thus, hybrid BCIs are
expected to increase the accuracy and information transfer
rates (ITRs). For example, P300 is a major peak and one of
the most-used ERP features. The presentation of a stimulus
in an oddball paradigm can elicit a positive peak in EEG.
Stimuli could be visual, auditory, or somatosensory. P300
has the advantages of requiring less initial user training and
being easy to observe in a simple and discriminative task.
However, due to irrelative stimuli, P300-based BCI has a
reported decrease in performance after long-term operation.
Compared to P300, SSVEP-basedBCIs [13] feature high ITRs,
high signal-to-noise ratios, and relatively obvious patterns
and do not require prior training procedures. However,
SSVEP-based BCI requires accurate control of the subject’s
eye muscles and hardware that allows precisely flickering
stimuli. Therefore, different paradigms of hybrid BCIs are
proposed to improve single BCI modality-based systems.

A robust classifier acts an important role to recognize
EEG patterns. Viewing proposed literatures, SVM [14–16],
Linear Discriminant Analysis (LDA) [17–20], Bayesian Anal-
ysis [21–25], and Artificial Neural Network (ANN) [26–30]
classifiers were discussed. Generally, a specific model for a
user is trained before using BCI. Users are asked to follow
a defined paradigm, and acquired EEG epochs are labeled
particular events. Classification algorithms are trained by a
labeled dataset that is called supervised learning traditionally.
Type-1 fuzzy logic was proposed by Dr. Zadeh and has been
discussed widely in many fields [31–35]. Type-1 fuzzy sets
express the degree to which an input belongs to a fuzzy set
by a crisp value. In 1975, Dr. Zadeh proposed type-2 fuzzy sets
to model uncertainties. IT2FLS features interval membership
functions, known as the footprint of uncertainty (FoU). FoU
is expressed by two boundary functions, including a lower
membership function and a higher membership function.
It is robust to more uncertainties in real environments. For
BCI research, because the brain’s electrical signals are small
and easily affected by the environment and any movement
artifact, type-2 fuzzy systems show a great potential to resolve
those problems. Instead of subjective fuzzymodels defined by
developers’ knowledge, adaptive fuzzy logic systems, such as
Fuzzy-Neural Network (FNN), Genetic Algorithm (GA), and
swarm-based fuzzy systems, were proposed. ABC algorithm
was proposed by Karaboga et al. in 2005 and was inspired by
the foraging behavior of honey bee colonies [36]. It features
fast convergence, less parameters, and strong robustness.

Finally, the proposed P300-based hybrid BCIwith latency
calibration for wireless SoD applications is elaborated in five
sections in this paper, and the structure is stated as follows. In
Section 1, this work specifies people with SCIs and proposes
a wireless networking BCI for wireless home automation
applications. In Section 2, the adopted methodologies of
the proposed BCI are described. EEG processing techniques
and adaptive IT2FLS for BCI calibrations are introduced.
In Section 3, the experimental paradigm is specified. In
Section 4, several experiments are conducted to assess the
proposed hypotheses and approaches. Subjects participated
in experiments to evaluate the performance of the proposed
hybrid BCI. Section 5 reviews the proposed system according
to experimental results. Moreover, improved strategies and
future prospections are discussed.

2. Methodology

This paper aims at presenting a new stimulus-on-device
(SoD) design with combining the wireless sensor network
(WSN) and P300-based BCI applications. Such a WSN and
P300 combination forms a novel BCI application rarely seen
in literatures. Such a SoD exhibits the variation of latency
between target stimuli and elicited P300. Hence, this paper
adopts our previous work [37] that discussed the latency
problems occurred in the conventional P300 studies to deal
with the subjects’ P300 peak latency variation as well as the
WAS transmission delay to make the SoD design practically
feasible.

2.1. SoD Design Concept and Protocol. Considering visual-
based hybrid BCI, P300 and SSVEP are two of the most
discussed BCI modalities. Two main paradigms, including
sequential [36, 38] and simultaneous systems [39, 40], are
usually discussed. As shown in Figure 1, a sequential hybrid
BCI separates a BCI system into a number of blocks. The
output signals of blocks are the input signals of the next
BCI system. On the other hand, a simultaneous hybrid BCI
benefits individual users by obtaining a higher responded
efficiency through the utilizing of an appropriate BCI modal-
ity [41]. A stimulation panel containing a number of visual
stimuli is a common layout for visual-based BCIs. Stimuli
responding to a defined task are arranged and presented
in front of users. Users are able to select a target stimulus
by gazing one of visual stimuli on a panel or a monitor.
Here, this BCI layout is called SoP architecture. Instead
of SoP architecture, the proposed SoD architecture embeds
visual stimuli in target devices and a coordinator controller
sends trigger signals to those stimulation-embedded devices
through wireless communication. SoD architecture benefits
themobility of users when without using amultistimuli stim-
ulation panel. Additionally, without the limited dimension of
stimulation panel, more tasks are able to be defined by adding
visual stimuli in target devices. SoD is a flexible and user-
friendly BCI architecture that provides an intuitive control
scheme.

Based on the SoD architecture, a scenario that applies a
P300-based BCI to a wireless home automation system for
appliance controls, such as lighting, electric curtains, and air
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(c) Calibrated Sequential hybrid BCI

Figure 1: Block diagram of sequential (a), simultaneous (b), and calibrated sequential (c) (proposed) hybrid BCIs.
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Figure 2: The scenario of wireless home automation based on BCI.

conditioning, is shown in Figure 2. A user is outfitted with an
EEG recorder, and a coordinator controller featuring a built-
in wireless communication module handles the EEG stream.
A visual stimulus panel is placed in front of the user. There
are two sets of LED modules that generate 16 Hz flickering
visual stimuli with different phase delays. The user is able to
start the BCI system by gazing at the stimulus of “Operation”

and applying the P300-based BCI to the appliance controls.
Then, the coordinator controller sends trigger signals to
stimulation-embedded appliances. Here, each stimulation-
embedded appliance is regarded as a stimulation node. The
controller coordinates the latency of flashing stimuli through
wireless communication and extracts epochs that respond to
flashing stimuli.
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However, distances, transmission qualities, and hardware
processing are uncertain factors that cause latency delays for
this kind of SoD applications. Synchronization is influenced
by any jitter between the clocks of an EEG recorder and
the stimulation nodes and varies over time. The timeline of
sent triggers, flashing stimuli, ideal P300 latency, and actual
P300 latency are shown in Figure 3. Induced by the uncer-
tainties of wireless communication, there are differences in

the expected and actual latencies of the elicited P300 for
different subjects and applied situations. Additionally, latency
differences might fluctuate due to the changing quality of
wireless communication. As a result, the accuracy of P300
recognition is affectedwhile the acceptances of users decrease
because of unstable performance. Therefore, a scheme of
“Registration” is proposed. “Registration” allows users to
access a BCI system by identifying the SSVEP. The phase lag
of evoked SSVEP due to communication delays is depicted
in Figure 4. This work attempts to assess how the latency of
the elicited P300 correlates with the phase lag of the evoked
SSVEP. A trained regression model is applied to estimate
the possible latency of the elicited P300 according to phase
lag analysis of the evoked SSVEP. Thus, the uncertainty of
latency caused by wireless communication is resolved. Before
starting “Operation”, users are asked to gaze at the stimulus
of “Registration” to register their model. Users are asked
to register every stimulation node item by item. A trained
regression model is applied to estimate the possible latency
of elicited P300 for each stimulation node. The proposed
wireless P300-based BCI is calibrated when “Registration” is
finished.

The proposed wireless networking BCI includes “Regis-
tration” and “Operation” schemes. “Registration” allows users
to access the BCI system by identifying the SSVEP, and
“Operation” allows users to control stimulation-embedded
devices via P300. A block diagram of “Registration” and
“Operation” is shown in Figure 5.

2.2. EEG Acquisition. This paper used the V-amp (Brain
Products, German) EEG instrument to collect the subject
EEG signal. The experiments were done based on the 4-20
Hz bandpass filtering frequency range. The EEG signal was
acquired with 500 Hz sampling rate. Five electrodes were
placed at P3, Pz, P4, O1, and O2 according to the 10/20
system. P3, Pz, P4, O1, and O2 are channels that respond to
visual stimuli. The acquired EEGs were used for the phase
lag analyses of SSVEP and P300 recognitions. Five electrodes
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Figure 5: The block diagram of “Registration” and “Operation”.
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were distributed in the occipital area. A reference electrode
was placed at FCz, and a ground electrode was placed at AFz
according to the recommended placement of the EasyCap
(Standard Cap for V-amp, German). The system architecture
is shown in Figure 6.

2.3. Signal Processing and Target/Nontarget Classification. As
mentioned in the Introduction section, this paper adopts
our previous work [37] to deal with the subjects’ P300 peak

latency variation and theWAS transmission delay. Hence, the
signal processing and target/nontarget classification followed
the approaches proposed in [37] as well as the experiment
protocol elaborated in Section 2.1. The approaches for sig-
nal processing and target/nontarget classification are briefly
described as follows.

(1) IT2FLS for BCI calibrations: the proposed calibration
approach is to predict the latency of the elicited P300
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in terms of the phase lag appeared at the 0, 𝜋/2, 𝜋,
3𝜋/2 of a conventional SSVEP waveform. Figure 7
illustrated the operation of the IT2FLS, where xi is
crisp inputs, 𝑥𝑛𝑖 (xi) is the interval fuzzy set, yl and yr
are the maximum and minimum values, respectively,
Ycos is generated in terms of a center-of-sets type
reducer, and yc is a crisp output which was obtained
after the defuzzifier with respect to yl and yr. As
a consequence, the regression model based on an
IT2FLS was used. The calibration was done through
the analysis of phase delays. Evoked phase lags were
the inputs of IT2FLS, and a calibrated latency centroid
of P300was the output for the future application bases
of the SoD approach.The details can be found in [37].

(2) ABC algorithm: in this paper, the parameters of
IT2FLS were evaluated in terms of the swarm-based
ABC algorithm that was inspired by the honey bee
colonies’ foraging behaviors. The scheme of the ABC
algorithm is shown in Figure 8. The details can be
found in [37].

(3) Adaptive IT2FLS for BCI calibration: the block dia-
gram of the proposed ABC-based adaptive IT2FLS
is shown in Figure 9. A labeled training dataset
is required to train the appropriate parameters of
adaptive IT2FLS. A labeled training dataset includes
a number of training trials. Each trail is a pair
consisting of input values (the phase lag of evoked
SSVEP) and a desired output value (the latency
centroid of elicited P300). In the ABC algorithm, a
fitness function describes the level of fitness of the
𝑚th food source, which is a D-dimensional vector
consisting of the parameters of IT2FLS. The fitness
function in this work is defined as (1).

fitness = 1
∑K
𝑘=1 𝑔 (𝑦𝑚,𝑘, 𝑦𝑡 arg 𝑒𝑡,𝑘)

𝑚 = 1, 2, . . . ,𝑀 𝑘 = 1, 2, . . . , 𝐾
(1)

where 𝑦𝑚,𝑘 is the output of the𝑚th IT2FLS when the 𝑘th
dataset is imported, 𝑦𝑡 arg 𝑒𝑡,𝑘 is the desired output of the 𝑘th
dataset, and 𝑔 is the objective function that calculates mean
square errors of the difference between 𝑦𝑚,𝑘 and 𝑦𝑡 arg 𝑒𝑡,𝑘, as

shown in (2). Thus, the 𝑚th food source is evaluated by a
labeled training dataset that contains𝐾 datasets.

𝑔 (𝑦𝑚,𝑘, 𝑦𝑡 arg 𝑒𝑡,𝑘) = √(𝑦𝑚,𝑘 − 𝑦𝑡 arg 𝑒𝑡,𝑘)2

𝑚 = 1, 2, . . . ,𝑀 𝑘 = 1, 2, . . . , 𝐾
(2)

2.4. CCA-Based Spatial Filter for Event-Related Potentials.
Spatial filters are usually applied to improve the SNR of the
EEG. CCA-based spatial filters have previously been used
to increase the classification accuracy of evoked potentials,
such as SSVEP. Spüler et al. proposed a CCA-based spatial
filter for ERP [42]. Here, a CCA-based spatial filter is used to
improve P300 classifications. CCA is a multivariate statistical
method and can be applied to find linear transformations that
maximize the correlation between the two datasets.There are
two multidimensional datasets, M and N, with q variables.
CCA is used to find two transformations, WM and WN, to
maximize the canonical correlation 𝜌, as described in

𝑈 = 𝑊𝑇𝑀𝑀 (3)

𝑉 = 𝑊𝑇𝑁𝑁 (4)

𝜌 = cov (𝑈, 𝑉)
√var (𝑈) var (𝑉) (5)

where WM and WN are two transformations that maxi-
mize the canonical correlation 𝜌 between canonical variables
U andV. The canonical correlations ofM andN are obtained
by solving eigenvalue equations, as shown in

𝐶−1𝑀𝑀𝐶𝑀𝑁𝐶−1𝑁𝑁𝐶𝑁𝑀𝑊𝑀 = 𝜌2𝑊𝑀 (6)

𝐶−1𝑁𝑁𝐶𝑀𝑁𝐶−1𝑀𝑀𝐶𝑀𝑁𝑊𝑁 = 𝜌2𝑊𝑁 (7)

where CMM and CNN are covariance matrices of M and
N, CMN and CNM are covariance matrices betweenM and N,
𝜌2 is a squared canonical correlation value, and eigenvectors
WM and WN are two transformation matrices. Here, 𝑊𝑇𝑀 is
used as the spatial filter. The CCA-based spatial filter acts as
a whitening filter that decorrelates signals. By maximizing
the canonical correlation, the CCA finds a spatial filter that
improves the SNR of the elicited potentials.
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Figure 9: The block diagram of the proposed ABC-based adaptive IT2FLS.

2.5. SVM Classifier. Given a labeled dataset {(𝑝𝑖, 𝑞𝑖)}𝑛𝑖=1, 𝑞𝑖 ∈{1, −1}, where pi are sampled EEG and 𝑞𝑖 are class labels, SVM
algorithm is trained by solving the following optimization
problem:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 1
2 ‖𝑤‖2 + 𝐶 𝑛∑

𝑖=1

𝜉𝑖 (8)

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑞𝑖 (𝑤𝑇𝜙 (𝑝𝑖) + 𝑏) − 1 + 𝜉𝑖 ≥ 0 (9)

w and b are the weight vector and the bias of hyperplane.
𝜙 maps pi to a higher dimensional space and 𝜉i are slack

variables. In this work, the radial basis function (RBF) is
adopted to perform nonlinear classifications for BCI.

3. Experimental Paradigm

Eight healthy subjects, composed of 6 males and 2 females
(mean age 22 years, standard deviation three years), partic-
ipated in the experiments. All subjects were students at the
National Taiwan University of Science and Technology and
had minimal prior experience operating visual-based BCI.
All subjects had normal or corrected to normal vision.
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(A) Place electrodes at P3, 
Pz, P4, O1 and O2 for main 
EEG signals. A reference 
electrode was placed at 
FCz and a ground electrode 
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and 3/2 delays

Figure 10: The experimental setup and paradigm.

Subjects were asked to view a stimulation panel of a 1
× 4 matrix. The stimulation panel was composed of four
modules of LED arrays with the same dimensions of 3 (cm) ×
3 (cm), which were placed with an interval of 8 cm between
them. Each LED array presented visible red light on a black
background and used moderate intensity. There was a 50 cm
distance between the stimulation panel and the subjects, who
were in comfortable positions. The experiments include two
major components. First, a flickering stimulus was presented
to observe SSVEP. A phase lag analysis was performed
to realize the difference in evoked SSVEP when applying
different stimulus phases. Second, a flashing stimulus was
presented to observe the elicited P300.The averagingmethod
was used to realize the difference in the elicited P300 between
target and nontarget epochs. In addition, a certain delay was
applied to realize the change of latency of the elicited P300.
Finally, this work assessed how the latency of the elicited P300
correlated with the phase lag of SSVEP. The experimental
setup is summarized in Figure 10.

3.1. SSVEP Session. To realize the phase lag of SSVEP when
providing 0, 𝜋/2, 𝜋, and 3𝜋/2 phase delays, a 16 Hz flickering
stimulus was generated. Tomeet the scenario of the proposed
BCI, the SSVEP sessions were conducted before the P300
sessions.There was a 1-minute break between the SSVEP and
P300 sessions. Before starting the experiments, subjects were
able to select any LED array module based on their comfort
level. Each flickering stimulus continued for 5 seconds, and
there was a 2-second interval between different phase stimuli.

3.2. P300 Session. To realize the responded latency of the
elicited P300 when adding 0, 𝜋/2, 𝜋, and 3𝜋/2 delays corre-
sponding to 16Hzflickering stimuli, an 8Hzflashing stimulus
was generated. Subjects were allowed to select an LED array

module that generated the flashing stimulus. The selected
LED array module was regarded as the target stimulus, and
the remaining LED arraymodules were regarded as nontarget
stimuli. To improve the SNR of the elicited P300, each
stimulus flashed 30 times, and extracted epochs were further
averaged. Therefore, 120 epochs in total, including 30 target
and 90 nontarget epochs, were collected.

3.3. SVM Classifier for P300-Based BCI. An SVM classifier
was used to classify extract epoch into target or nontarget
stimuli. In order to evaluate the implemented BCI, an online
session was simulated. P300 dataset contained an amount of
10 sessions (5 subjects with two sessions each), and there were
100 trials for each session (100 targets and 300 nontargets).
The epochs of first session were used as training dataset, and
the epochs of second session were used as test dataset.

4. Experimental Results and Discussions

4.1. Correlation between Elicited P300 and Evoked SSVEP. To
determine how the evoked SSVEP correlated with the latency
of the elicited P300, phase delays, including 0, 𝜋/2, 𝜋, and
3𝜋/2, for SSVEP and flashing delays, including 0.000 (ms),
15.625 (ms), 31.250 (ms), and 46.875 (ms), for P300 were
evaluated. Because a 16 Hz flickering stimulus was adopted,
the reference signal peaks at 15.625 ms (𝑡ref = 15.625)
and the phase lags were obtained according to (10), where
𝑡res is the latency of peak of the evoked SSVEP, and T is
the period of flickering stimuli. Additionally, the latency of
the elicited P300 was recognized according to the highest
response elicited potential.

𝜃 = 𝑡res − 𝑡ref
𝑇 × 360∘ (10)



Computational Intelligence and Neuroscience 9

280

300

320

340

360

380

400

420

El
ic

ite
d 

P3
00

 (m
s)

0 100 200 300 400 500 600 700−100
Evoked SSEVP (theta)

R = 0.8171

Figure 11: The scatter plot of elicited P300 and evoked SSVEP (8
subjects).

Eight subjects were involved in this experiment. Two
datasets were collected on different days for each subject.
A scatter plot showing the elicited P300 and evoked SSVEP
is depicted in Figure 11. It reveals how the elicited P300
correlates with the evoked SSVEP.The correlation coefficient
is computed by

𝑅 = cov (𝑋𝑃300, 𝑌𝑆𝑆𝑉𝐸𝑃)
𝜎𝑋𝑃300𝜎𝑌𝑆𝑆𝑉𝐸𝑃 (11)

where 𝑋𝑃300 is the latency of the elicited P300, 𝑌𝑆𝑆𝑉𝐸𝑃 is
the phase of the evoked SSVEP, and 𝜎𝑋𝑃300 and 𝜎𝑌𝑆𝑆𝑉𝐸𝑃 are their
standard deviations. Here, the correlation coefficient is 0.8171,
which indicates high correlation between the evoked SSVEP
and elicited P300.

4.2.The Adaptive IT2FLS for BCI Calibration Based on Evoked
SSVEP. An adaptive IT2FLSwas used to calibrate the latency
centroid of the extracted epochs for P300 recognitions. Phase
lags were the inputs of IT2FLS, and an estimated latency
centroid of P300 was the output. An adaptive IT2FLS based
on ABC optimization was trained by a labeled dataset. The
labeled dataset consisted of evoked phase lags (features)
and P300 latency centroids (target). Collected datasets were
further divided into two groups (60% for training instances;
40% for evaluation instances). The training performance is
shown in Figure 12. There were three membership functions
for each fuzzy set (number of fuzzy sets = 4; number of
membership functions = 3), as shown in Figure 13.

4.3. P300 Recognition with and without Calibrations. Here,
a trained IT2FLS model was used to estimate the latency
centroid of the elicited P300 according to the evoked SSVEP.
Different lengths of extracted epochs, including 160 (ms), 140
(ms), 120 (ms), 100 (ms), 80 (ms), and 60 (ms), based on
estimated centroid, were evaluated. If an estimated latency
centroid was located at 𝑡𝑐, an extracted epoch ranged from
𝑡𝑐 − 80(ms) to 𝑡𝑐 + 80(ms) when the length of the extracted
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Figure 12:The training performance of ABC-based IT2FLS for BCI
calibration.

epoch was 160 (ms). On the other hand, without calibrations,
fixed intervals, including 𝑡𝑠 + 300 to 𝑡𝑠 + 460 (ms), 𝑡𝑠 + 300 to
𝑡𝑠 + 440 (ms), 𝑡𝑠 + 300 to 𝑡𝑠 + 420 (ms), 𝑡𝑠 + 300 to 𝑡𝑠 + 400
(ms), 𝑡𝑠 + 300 to 𝑡𝑠 + 380 (ms), and 𝑡𝑠 + 300 to 𝑡𝑠 + 360 (ms),
were adopted.Here, 𝑡𝑠 was the time of flashing stimulus. It was
noted that 5 repetitions were conducted in this experiment,
and the extracted epochs were downsampled at 62.5 Hz. The
SVM classifier was employed to classify extracted epochs
into target and nontarget stimuli. The accuracy rates of the
SVM classifier and the ITRs with and without calibrations
are shown in Figures 14–16 and Table 1. According to
the experimental results, the performance of classification
improves after calibration. In addition, the adopted classifier
maintains satisfactory accuracy rates when decreasing the
length of the extracted epoch.

5. Conclusion and Future Work

This work presented a wireless networking hybrid BCI to
address the issue of improving the independence of indi-
viduals with SCIs. A scheme based on SoD architecture,
which applies a P300-based BCI to wireless applications, was
presented. However, because P300 recognitions rely on the
synchronization between stimuli and elicited potential, the
variation of latency between the target stimuli and elicited
potential is a concern. Therefore, this work proposed “Regis-
tration” and “Operation” schemes that calibrated the latency
centroid of P300 according to the evoked SSVEP and control
stimulation-embedded appliances via P300. Therefore, the
experiments attempted to assess how the latency of the
elicited P300 correlates with the phase lag of the evoked
SSVEP. Five subjects participated in the experiments, and
a trained IT2FLS-based model was applied to estimate the
possible latency centroid of the elicited P300 according to
a phase lag analysis of the evoked SSVEP. In addition, an
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Figure 13: Antecedent membership functions for window calibrations.

Table 1: ITR (bits/min) comparisons between with and without calibrations.

With calibrations Without calibrations
Subject # 1 2 3 4 5 Average 1 2 3 4 5 Average
Length of epoch ITR ITR
160 31.3 35.8 35.8 31.3 27.5 32.3 22.0 25.2 34.2 16.7 16.7 22.9
140 28.7 34.2 34.2 27.5 27.5 30.4 23.0 26.3 34.2 18.3 21.1 24.6
120 28.7 34.2 34.2 27.5 25.2 29.9 22.0 26.3 34.2 19.2 24.1 25.2
100 28.7 31.3 31.3 23.0 25.2 27.9 21.1 26.3 29.9 17.5 26.3 24.2
80 28.7 29.9 28.7 20.1 24.1 26.3 21.1 27.5 28.7 17.5 19.2 22.8
60 21.1 26.3 29.9 15.8 16.7 22.0 20.1 23.0 20.1 15.8 15.8 19.0

SVM classifier was employed to judge either target or non-
target stimuli. Based on calibrated latency centroids, different
lengths of extracted epochs were discussed. Classification
performances showed that the accuracy rates improve after
calibration.

In the future, the uncertainty of the ERP amplitude due to
different distances between users and stimulation nodes is an
interesting topic. In addition, the light intensity of the operat-
ing environment is another issue in real-world applications.
The modulation of appropriate stimulus intensity related to
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Figure 14: The accuracy of P300 classification depending on
different lengths of extracted epochs with calibrations.
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Figure 15: The accuracy of P300 classification depending on
different lengths of extracted epochs without calibrations.

users’ comfort and system performance would be another
future work of this paper.
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