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For decades, researchers have used the concepts of rate of change and differential
equations to model and forecast neoplastic processes. This expressive mathematical
apparatus brought significant insights in oncology by describing the unregulated
proliferation and host interactions of cancer cells, as well as their response to
treatments. Now, these theories have been given a new life and found new
applications. With the advent of routine cancer genome sequencing and the resulting
abundance of data, oncology now builds an “arsenal” of new modeling and analysis tools.
Models describing the governing physical laws of tumor–host–drug interactions can be
now challenged with biological data to make predictions about cancer progression. Our
study joins the efforts of the mathematical and computational oncology community by
introducing a novel machine learning system for data-driven discovery of mathematical and
physical relations in oncology. The system utilizes computational mechanisms such as
competition, cooperation, and adaptation in neural networks to simultaneously learn the
statistics and the governing relations between multiple clinical data covariates. Targeting
an easy adoption in clinical oncology, the solutions of our system reveal human-
understandable properties and features hidden in the data. As our experiments
demonstrate, our system can describe nonlinear conservation laws in cancer kinetics
and growth curves, symmetries in tumor’s phenotypic staging transitions, the preoperative
spatial tumor distribution, and up to the nonlinear intracellular and extracellular
pharmacokinetics of neoadjuvant therapies. The primary goal of our work is to
enhance or improve the mechanistic understanding of cancer dynamics by exploiting
heterogeneous clinical data. We demonstrate through multiple instantiations that our
system is extracting an accurate human-understandable representation of the underlying
dynamics of physical interactions central to typical oncology problems. Our results and
evaluation demonstrate that, using simple—yet powerful—computational mechanisms,
such a machine learning system can support clinical decision-making. To this end, our
system is a representative tool of the field of mathematical and computational oncology
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and offers a bridge between the data, the modeler, the data scientist, and the practicing
clinician.

Keywords: mathematical oncology, machine learning, mechanistic modeling, data-driven predictions, clinical data,
decision support system

1 INTRODUCTION

The dynamics governing cancer initiation, development, and
response to treatment are informed by quantitative
measurements. These measurements carry details about the
physics of the underlying processes, such as tumor growth,
tumor–host cell encounters, and drug transport. Be it through
mathematical modeling and patient-specific treatment
trajectories—as in the excellent work of Werner et al. (2016)—
through tumor’s mechanopathology—systematically described
by Nia et al. (2020)—or through hybrid modeling frameworks
of tumor development and treatment—identified by
Chamseddine and Rejniak (2020)—capturing such processes
from data can substantially improve predictions about cancer
progression.

Machine learning algorithms are now leveraging automatic
discovery of physics principles and governing mathematical
relations for such improved predictions. Proof stands the
proliferating body of such research—for representative
results, see the works of Raissi (2018), Schaeffer (2017),
Long et al. (2018), and Champion et al. (2019). However,
the naive application of such algorithms is insufficient to infer
physical laws underlying cancer progression. Simply positing a
physical law or mathematical relation from data is useless
without simultaneously proposing an accompanying ground
truth to account for the inevitable mismatch between model
and observations, as demonstrated in the work of de Silva et al.
(2020).

Such a problem is even more important in clinical oncology
where, in order to understand the links between the physics of
cancer and signaling pathways in cancer biology, we need to
describe the fundamental physical principles shared by most, if
not all, tumors, as proposed by Nia et al. (2020). Here,
mathematical models of the physical mechanisms and
corresponding tumor physical hallmarks complement the
heterogeneity of the experimental observations. Such a
constellation is typically validated through in vivo and in vitro
model systems where the simultaneous identification of both the
structure and parameters of the dynamical system describing
tumor–host interactions is performed (White et al., 2019).

Given the multidimensional nature of this system
identification process, some concepts involved are nonintuitive
and require deep and broad understanding of both the physical
and biological aspects of cancer. To circumvent this, combining
mechanistic modeling and machine learning is a promising
approach with high potential for clinical translation. For
instance, in a bottom-up approach, fusing cell-line tumor
growth curve learning from heterogeneous data (i.e., caliper,
imaging, microscopy) and unsupervised extraction of cytostatic
pharmacokinetics, the study by Axenie and Kurz (2020a)
introduced a novel pipeline for patient-tailored neoadjuvant

therapy planning. In another relevant study, Benzekry (2020)
used machine learning to extract model parameters from high-
dimensional baseline data (demographic, clinical, pathological
molecular) and used mixed-effects theory to combine it with
mechanistic models based on longitudinal data (e.g., tumor size
measurements, pharmacokinetics, seric biomarkers, and
circulating DNA) for treatment individualization.

Yet, despite the recent advances in mathematical and
computational oncology, there are only a few systems
trying to offer a human-understandable solution, or the
steps to reach it—the most relevant are the studies by
Jansen et al. (2020) and Lamy et al. (2019). But, such
systems lack a rigorous and accessible description of the
physical cancer traits assisting their clinical predictions.
Our study advocates the improvement of mechanistic
modeling with the help of machine learning. Our thesis
goes beyond measurements-informed biophysical processes
models, as described by Cristini et al. (2017), and toward
human-understandable personalized disease evolution and
therapy profiles learned from data, as foreseen by
Kondylakis et al. (2020).

1.1 Study Focus
The purpose of this study is to introduce a system (and a
framework) capable of learning human-understandable
mathematical and physical relations from heterogeneous
oncology data for patient-centered clinical decision support.
To demonstrate the versatility of the system, we introduce
multiple of its instantiations, in an end-to-end fashion
(i.e., from cancer initiation to treatment outcome) for
predictions based on available clinical datasets1:

• learning initiation patterns of preinvasive breast cancer
(i.e., ductal carcinoma in situ [DCIS]) from histopathology
and morphology data available from the studies by Rodallec
et al. (2019), Volk et al. (2011), Tan et al. (2015),and Mastri
et al. (2019);

• learning unperturbed tumor growth curves within and
between cancer types (i.e., breast, lung, leukemia) from
imaging, microscopy, and caliper data available from the
studies by Benzekry et al. (2019) and Simpson-Herren and
Lloyd (1970);

• extracting tumor phenotypic stage transitions from three
cell lines of breast cancer using imaging,
immunohistochemistry, and histopathology data available
from the studies by Rodallec et al. (2019), Volk et al. (2011),
Tan et al. (2015), and Edgerton et al. (2011);

1A copy of the used datasets along with the study generating them is included in the
codebase associated with the manuscript.
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• simultaneously extracting the drug-perturbed tumor
growth and drug pharmacokinetics for neoadjuvant/
adjuvant therapy sequencing using data available from
the studies by Kuh et al. (2000), Volk et al. (2011), and
Chen et al. (2014);

• predicting tumor growth/recession (i.e., estimating tumor
volume after each chemotherapy cycle under various
chemotherapy regimens administered to breast cancer
patients, using real-world patient data available from the
study by Yee et al. (2020) as well as cell lines studies from
Rodallec et al. (2019), Volk et al. (2011), Tan et al.
(2015),and Mastri et al. (2019).

In each of the instantiations, we use the same computational
substrate (i.e., no specific task parametrization) and compare
the performance of our system against state-of-the-art
systems capable of extracting governing equations from
heterogeneous oncology data from Cook et al. (2010),
Mandal and Cichocki (2013), Weber and Wermter (2007),
and Champion et al. (2019), respectively. The analysis focuses
on (1) the accuracy of the systems in the learned
mathematical and physical relations among various
covariates, (2) the ability to embed more data and
mechanistic models, and (3) the ability to provide a
human-understandable solution and the processing steps
to obtain that solution.

1.2 Study Motivation
In clinical practice, patient tumors are typically described
across multiple dimensions from (1) high-dimensional
heterogeneous data (e.g., demographic, clinical,
pathological, molecular), and (2) longitudinal data (e.g.,
tumor size measurements, pharmacokinetics, immune
screening, biomarkers), to (3) time-to-event data (e.g.,
progression-free or overall survival analysis), and, in the
last years, (4) genetic sequencing that determine the
genetic mutations driving their cancer. With this
information, the clinical oncologist may tailor treatment to
the patient’s specific cancer.

But, despite the variety of such rich patient data available, tumor
growth data, describing the dynamics of cancer development, from
initiation to metastasis has some peculiarities. These features
motivated the study and the approach proposed by our system.
To summarize, tumor growth data:

• is typically small, with only a few data points measured,
typically, at days-level resolution (Roland et al., 2009);

• is unevenly sampled, with irregular spacing among tumor
size/volume observations (Volk et al., 2011);

• has high variability between and within tumor types
(Benzekry et al., 2014) and type of treatment (Gaddy
et al., 2017).

• is heterogeneous and sometimes expensive or difficult to
obtain (e.g., biomarkers, functional magnetic resonance
imaging (Abler et al., 2019), fluorescence imaging
(Rodallec et al., 2019), flow cytometry, or calipers
(Benzekry et al., 2019).

• determines cancer treatment planning, for instance,
adjuvant versus neoadjuvant chemotherapy (Sarapata and
de Pillis, 2014).

Using unsupervised learning, our system seeks to overcome
these limitations and provide a human-understandable
representation of the mathematical and physical relations
describing tumor growth, its phenotype, and, finally, its
interaction with chemotherapeutic drugs. The system exploits
the temporal evolution of the processes describing growth data
along with their distribution in order to reach superior accuracy
and versatility on various clinical in vitro tumor datasets.

2 MATERIALS AND METHODS

In the current section, we introduce our system through the lens
of practical examples of discovering mathematical and physical
relations describing tumor–host–drug dynamics. We begin by
introducing the basic computational framework as well as the
various configurations in which the system can be used. The
second part is dedicated to introducing relevant state-of-the-art
approaches used in our comparative experimental evaluation.

2.1 System Basics
Physical interactions of cancer cells with their environment (e.g.,
local tissue, immune cells, drugs) determine the physical
characteristics of tumors through distinct and interconnected
mechanisms. For instance, cellular proliferation and its inherent
abnormal growth patterns lead to increased solid stress (Nia et al.,
2016). Subsequently, cell contraction and cellular matrix
deposition modify the architecture of the surrounding tissue,
which can additionally react to drugs (Griffon-Etienne et al.,
1999) modulating the stiffness (Rouvière et al., 2017) and
interstitial fluid pressure (Nathanson and Nelson, 1994). But
such physical characteristics also interact among each other
initiating complex dynamics, as demonstrated in Nia et al. (2020).

Our system can capture such complex dynamics through a
network-based paradigm for modeling, computation, and
prediction. It can extract the mathematical description of the
interactions exhibited by multiple entities (e.g., tumor, host cells,
cytostatic drugs) for producing informed predictions. For guiding
the reader, we present a simple, biologically grounded example in
Figure 1.

In this example, our system learns simultaneously the power-
law tumor growth under immune escape (Benzekry et al., 2014)
and the nonlinear potentiation–inhibition model of natural killer
(NK) cells–tumor interactions (Ben-Shmuel et al., 2020), while
exhibiting the known overlapping cytotoxic T lymphocytes
(CTLs)–NK cell mutual linear regulation pattern (Uzhachenko
and Shanker, 2019). As shown in Figure 1, our system offers the
means to learn the mathematical relations governing the physical
tumor–immune interactions, without supervision, from available
clinical data (Figure 1—input data relations and learned and
decoded relations). Furthermore, the system can infer unavailable
(i.e., expensive to measure) physical quantities (i.e., after learning/
training) in order to make predictions on the effects of modifying
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FIGURE 1 | Basic functionality of the proposed machine learning system. Data are fed in the system through the representations maps, mi which encode each
quantity in a distributed (array-like) representation. The system dynamics brings all available quantities into agreement and learns the underlying mathematical relations
among them [see representation space—(A)]. The relations resemble the mathematical model of the interactions: power-law tumor growth under immune escape,
nonlinear potentiation–inhibition tumor–immune interaction, and linear regulation pattern among immune system cells. The learned mathematical relations are then
compared with the data (i.e., the ground truth) and the mechanistic model output [see input/output space—(B)]. Note: to simplify the visualization data points are
depicted as clusters (i.e., the size of a cluster reflects the number of points concentrated in a region.

FIGURE 2 | Basic functionality of the system. (A) Tumor growth data following a nonlinear mathematical relation and its distribution—relation is hidden in the time
series (i.e., number of cells vs. measurement index). Data from Comen et al. (2016). (B) Basic architecture of our system: one-dimensional (array) SOM networks with N
neurons encoding the time series (i.e., number of cells vs. measurement index), and an N × N Hebbian connection matrix (coupling the two SOMs) that will encode the
mathematical relation after training.
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the pattern of interactions among the tumor and the immune
system. For instance, by not feeding the system with the innate
immune response (i.e., the NK cells dynamics), the system infers,
based on the CTL–NK cell interaction pattern and the tumor
growth pattern, a plausible tumor–NK cell mathematical relation
in agreement with observations (Figure 1B, squared root
nonlinearity).

Basically, our system acts as constraint satisfaction network
converging to a global consensus given local (i.e., the impact of
the measured data) and global dynamics of the physics governing
the interactions (see the clear patterns depicting the mathematical
models of interaction in Figure 1). The networked structure
allows the system to easily interconnect multiple data quantities
measuring different biological components (Markowetz and
Troyanskaya, 2007) or a different granularity of representation
of the underlying interaction physics (Cornish and Markowetz,
2014).

2.2 Computational Substrate
The core element of our study is an unsupervised machine
learning system based on Self-Organizing Maps (SOMs)
Kohonen (1982) and Hebbian learning (HL) Chen et al.
(2008). The two components are used in concert to represent
and extract the underlying relations among correlated data. In
order to introduce the computational steps followed by our
system, we provide a simple example in Figure 2. Here, we feed
the system with data from a cubic growth law (third power-law)
describing the effect of drug dose density over 150 weeks of
adjuvant chemotherapy in breast cancer (data from Comen
et al., 2016). The two data sources (i.e., the cancer cell number
and the irregular measurement index over the weeks) follow a
cubic dependency (cmp. Figure 2A). Before being presented the
data, our system has no prior information about the data
distribution and its generating process (or model). The
system learns the underlying (i.e., hidden) mathematical
relation directly from the pairs of input data without
supervision.

The input SOMs (i.e., one-dimensional [1-D] lattice
networks with N neurons) extract the probability distribution
of the incoming data, depicted in Figure 2A, and encode
samples in a distributed activity pattern, as shown in
Figure 2B. This activity pattern is generated such that the
closest preferred value of a SOM neuron to the input will be
strongly activated and will decay, proportional with distance, for
neighboring units. This process is fundamentally benefiting
from the quantization capability of SOM. The tasks we solve
in this work have low dimensionality, basically allowing a 1-D
SOM to provide well-behaved distributed representations. 1-D
SOMs are proven mathematically to converge and handling
boundary effects. For higher-dimensional data, our system can
be coupled with a reduction technique (i.e., principal
component analysis, t-Distributed Stochastic Neighbor
Embedding) to reduce data to 1-D time series, without a
large penalty in complexity. In addition, this process is
extended with a dimension corresponding to the latent
representation of network resource allocation (i.e., number of
neurons allocated to represent the input data space). After

learning, the SOMs specialize to represent a certain
(preferred) value in the input data space and learn its
probability distribution, by updating its tuning curves shape.

Practically, given an input value sp(k) from one time series at
time step k, the network follows the processing stages in Figure 3.
For each ith neuron in the pth input SOM, with preferred value
wp

in,i and tuning curve size ξpi (k), the generated neural activation
is given by

api k( ) � 1���
2π

√
ξpi k( )e

−(sp k( )−wp
in,i

k( ))2

2ξ
p
i

k( )2 . (1)

The most active (i.e., competition winning) neuron of the pth
population, bp(k), is the one that has the highest activation given
the time series data point at time k

bp k( ) � argmax
i

api k( ). (2)

The competition for highest activation (in representing the
input) in the SOM is followed by a cooperation process that
captures the input space distribution. More precisely, given the
winning neuron, bp(k), the cooperation kernel,

hpb,i k( ) � e
−‖ri − rb‖2
2σ k( )2 , (3)

allows neighboring neurons in the network (i.e., found at position
ri in the network) to precisely represent the input data point given
their location in the neighborhood σ(k) of the winning neuron.
The topological neighborhood width σ(k) decays in time, to avoid
artifacts (e.g., twists) in the SOM. The kernel in Eq. 3 is chosen
such that adjacent neurons in the network specialize on adjacent
areas in the input space, by “pulling” the input weights
(i.e., preferred values) of the neurons closer to the input data
point,

Δwp
in,i k( ) � α k( )hpb,i k( ) sp k( ) − wp

in,i k( )( ). (4)

This process updates the tuning curves width ξpi given the
spatial location of the neuron in the network, the distance to the
input data point, the cooperation kernel size, and a decaying
learning rate α(k),

Δξpi k( ) � α k( )hpb,i k( )( sp k( ) − wp
in,i k( )( )2 − ξpi k( )2). (5)

To illustrate these mechanisms, we consider the learned
tuning curves shapes for five neurons in the input SOMs
(i.e., neurons 1, 6, 13, 40, 45) encoding the breast cancer cubic
tumor growth law, depicted in Figure 4. We observe that higher
input probability distributions are represented by dense and
sharp tuning curves (e.g., neuron 1, 6, 13 in SOM1), whereas
lower or uniform probability distributions are represented by
more sparse and wide-tuning curves (e.g., neuron 40, 45 in
SOM1).

This way, the system optimally allocates neurons such that a
higher amount of neurons represent areas in the input space,
which need a finer resolution, and a lower amount for more
coarsely represented input space areas. Neurons in the two SOMs
are then linked by a fully (all-to-all) connected matrix of synaptic
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connections, where the weights are computed using HL. The
connections between uncorrelated (or weakly correlated) neurons
in each SOM (i.e., wcross) are suppressed (i.e., darker color),
whereas correlated neuron connections are enhanced
(i.e., brighter color), as depicted in Figure 3. Each connection
weight wp

cross,i,j between neurons i, j in the input SOMs is updated
with an HL rule as follows:

Δwp
cross,i,j k( ) � η k( ) api k( ) − �api k( )( ) aqj k( ) − �aqj k( )( ), (6)

where

�api k( ) � 1 − β k( )( )�api k − 1( ) + β k( )api k( ), (7)

is an exponential decay (i.e., momentum), and η(k), β(k) are
monotonic (inverse-time) decaying functions. HL ensures a
weight increase for correlated activation patterns and a weight
decrease for anticorrelated activation patterns. The Hebbian
weight matrix encodes the coactivation patterns between the
input SOMs, as shown in Figure 2B, and, eventually, the
learned mathematical relation given the data, as shown in
Figure 4. Such a representation, as shown in Figure 4,
demonstrates the human-understandable output of our system
that employs powerful, yet simple and transparent, processing
principles, as depicted in Figure 3.

Input SOM self-organization and Hebbian correlation
learning operate at the same time in order to refine both
the input data representation and the extracted

mathematical relation. This is visible in the encoding and
the decoding functions where the input activations a are
projected through the input weights win (Eq. 1) to the
Hebbian matrix and then decoded through the wcross

correlation weights (Eq. 8).
In order to recover the real-world value from the network, we

use a decoding mechanism based on (self-learned) bounds of the
input data space. The input data space bounds are obtained as
minimum and maximum of a cost function of the distance
between the current preferred value of the winning neuron
(i.e., the value in the input which is closest [in Euclidian
space] to the weight vector of the neuron) and the input data
point in the SOM (i.e., using Brent’s optimization Brent, 2013).
Depending on the position of the winning neuron in the SOM,
the decoded/recovered value y(t) from the SOM neurons weights
is computed as follows:

y t( ) �
wp

in,i + dp
i if i≥

N

2

wp
in,i − dp

i if i<N

2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
where dpi �

�������������������������
2ξpi (k)2 log(

���
2π

√
api (k)ξpi (k)2)

√
for the winning

neuron with index i in the SOM, a preferred value wp
in,i and

ξki (k) tuning curve size and Δapi (k) � wp
cross,i,j(k)aqj(k). The

activation api (k) is computed by projecting one data point
through SOM q and subsequently through the Hebbian matrix

FIGURE3 |Detailed computational steps of our system, instantiated for tumor growth learning given the observed number of cells and themeasurement index data
from Comen et al. (2016).

Frontiers in Artificial Intelligence | www.frontiersin.org November 2021 | Volume 4 | Article 7136906

Kurz et al. Computational Framework for Physical Oncology

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


to compute the paired activity (i.e., at the other SOM p, Eq. (8))
describing the other data quantity.

Δapi k( ) � wp
cross,i,j k( )aqj k( ) (8)

where wp
cross,i,j(k) � rot90(wq

cross,i,j(k)) and rot90 is a clockwise
rotation. The processes described in the previous equations
denote the actual inference process following the training
phase (i.e., classifying new data). Basically, after applying the
input time series and finding the winner in the input SOM
population, the decoding decision is based on the position of
the winner. Two bounds (i.e., left and right) are defined with
respect to the winner’s position such that the recovered value is
obtained by running Brent’s algorithm between the preferred
values of the neurons with indices given by the bounds. The
method is guaranteed to converge to global minima (of the cost
function), and it is immune to boundary effects, if winners are
placed at the extremes of the SOM population. A thorough
analysis of the learned relations in the Hebbian matrix
demonstrated that because of the asymmetric neighborhood
function in the input SOMs. the activity saturated at the edges
of the latent representation space. Interestingly, this was also
visible in the coactivation pattern, such that the higher activity
values characterize the bounds of the Hebbian representation
toward the edges. When decoding the activity pattern from the
Hebbian matrix, we were able to recover a relatively good
probability distribution shape. This, interesting and useful,

behavior emphasizes the joint effect that the SOM distributed
representation boundary effects and the Hebbian temporal
coactivation have upon the data. The resulting distributions
have a convex profile, concentrating a large number of
samples toward the edges of the histogram with a large
variance, whereas precisely decoded areas follow a relatively
uniform distribution. We noticed that the decoder treated
equally (i.e., accuracy of decoding) linear relations with strong
boundary conditions and symmetric nonlinear relations without
boundary conditions. The decoding step is a fundamental aspect
contributing to the human-understandable output of our system.
This demonstrates that simple operations, such as competition
and cooperation in neural networks, can exploit the statistics of
clinical data and provide a human-understandable representation
of the governing mathematical relations behind tumor growth
processes.

2.3 Comparable Systems
In this section, we briefly introduce four state-of-the-art
approaches that we comparatively evaluated against our
system. Ranging from statistical methods, to machine learning,
and up to deep learning (DL), the selected systems were designed
to extract governing equations from the data.

Cook et al. The system of Cook et al. (2010) uses a combination
of simple computational mechanisms, like winner-take-all
(WTA) circuits, HL, and homeostatic activity regulation, to
extract mathematical relations among different data sources.

FIGURE 4 | Extracted mathematical relation describing the growth law and data statistics for the experimental observations in Figure 2A depicting a cubic breast
cancer tumor growth law among number of cells and irregular measurement over 150 weeks from Comen et al. (2016). Raw data time series is overlaid on the data
distribution and corresponding model encoding tuning curves shapes.
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Real-world values presented to the network are encoded in
population code representations. This approach is similar to
our approach in terms of the sparse representation used to
encode data. The difference resides in the fact that in our
model the input population (i.e., SOM network) connectivity
is learned. Using this capability, our model is capable of learning
the input data bounds and distribution directly from the input
data, without any prior information or fixed connectivity.
Furthermore, in this system, the dynamics between each
population encoded input is performed through plastic
Hebbian connections. Starting from a random connectivity
pattern, the matrix finally encoded the functional relation
between the variables that it connects. The Hebbian linkage
used between populations is the correlation detection
mechanism used also in our model, although in our
formulation we adjusted the learning rule to accommodate
both the increase and decrease of the connection weights.

Weber and Wermter. Using a different neurally inspired
substrate, the system of Weber and Wermter (2007) combines
competition and cooperation in a self-organizing network of
processing units to extract coordinate transformations. More
precisely, the model uses simple, biologically motivated
operations, in which coactivated units from population-coded
representations self-organize after learning a topological map.
This basically assumes solving the reference frame
transformation between the inputs (mapping function). Similar
to our model, the proposed approach extends the SOM network
by using sigma–pi units (i.e., weighted sum of products). The
connection weight between this type of processing units
implements a logical AND relation. The algorithm produces
invariant representations and a topographic map representation.

Mandal and Cichocki. Going away from biological inspiration,
the system of Mandal and Cichocki (2013) used a type of
nonlinear canonical correlation analysis (CCA), namely,
alpha–beta divergence correlation analysis (ABCA). The
ABCA system extracts relations between sets of
multidimensional random variables. The core idea of the
system is to first determine linear combinations of two
random variables (called canonical variables/variants) such
that the correlation between the canonical variables is the
highest among all such linear combinations. As traditional
CCA is only able to extract linear relations between two sets
of multidimensional random variable, the proposed model comes
as an extension to extract nonlinear relations, with the
requirement that relations are expressed as smooth functions
and can have a moderate amount of additive random noise on the
mapping. The model employs a probabilistic method based on
nonlinear correlation analysis using a more flexible metric
(i.e., divergence/distance) than typical CCA.

Champion et al. As DL is becoming a routine tool for data
discovery, as shown in the recent work of Champion et al. (2019),
Raissi (2018), Schaeffer (2017), and de Silva et al. (2020), we also
consider a DL system (inspired from Champion et al., 2019) and
evaluate it along the other methods. To apply this prediction
method to tumor growth, we need to formulate the setup as a time
series prediction problem. At any given point, we have the dates
and values of previous observations. Using these two features, we

can implement DL architectures that predict the size of the tumor at
a future step. Recurrent neural networks (RNNs) are the archetypal
DL architectures for time series prediction. The principal
characteristic of RNN, compared with simpler DL architectures,
is that they iterate over the values that have been observed, obtaining
valuable information from it, like the rate at which the objective
variable grows, and use that information to improve prediction
accuracy. The main drawback of using DL in the medical field is the
need of DL models to be presented with large amounts of data. We
address this problem by augmenting the data.We use support vector
machines (SVMs) for augmenting data, to obtain expected tumor
development with normal noise generates realistic measurements.
This approach presents the expected average development of
a tumor.

3 EXPERIMENTAL SETUP AND RESULTS

In order to evaluate our data-driven approach to learn
mathematical and physical relations from heterogeneous
oncology data, we introduce the five instantiations and their
data briefly introduced in the Study Focus section.

3.1 Datasets
In our experiments, we used publicly available tumor growth,
pharmacokinetics, and chemotherapy regimens datasets
(Table 1), with in vitro or in vivo clinical tumor volume
measurements, for breast cancer (datasets 1, 2, 5, 6, 7) and
other cancers (e.g., lung, leukemia—datasets 3 and 4,
respectively). This choice is to probe and demonstrate transfer
capabilities of the system to tumor growth patterns induced by
different cancer types. The choice of the dataset for each of the
experiments was determined by the actual task we wanted to
demonstrate. For instance, for demonstrating the capability to
predict preinvasive cancer volume, we used the DCIS dataset. For
the between-cancer predictions, we used four (i.e., two breast and
two nonbreast) out of the whole seven datasets, whereas for the
within-cancer-type analysis, we only looked at the breast cancer
growth prediction (i.e., four datasets). For the in vivo experiment,
we only considered the I-SPY2 trial data.

It is important to note that tumor cancer types are staged
based on the size and spread of tumors, basically their volume.
However, because leukemia occurs in the developing blood cells
in the bone marrow, its staging is different from solid tumors. In
order to emphasize the versatility of the evaluated systems, for the
leukemia datasets, we used experiments that monitored human
leukemic cell engraftment over time bymonitoring tumor volume
in scaffolds (Antonelli et al., 2016). For the pharmacokinetics
experiments (i.e., mainly focused on taxanes family for
experiments on MCF-7 breast cancer cell line from Tan et al.
(2015)), we used the data from Kuh et al. (2000) describing
intracellular and extracellular concentrations of Paclitaxel during
uptake. The datasets and the code for all the systems used in our
evaluation are available on GitLab2.

2Experimental codebase: https://gitlab.com/akii-microlab/math-comp-ml.
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3.2 Procedures
In order to train the different approaches we considered in our
study, basically the datasets were preprocessed to represent
two-dimensional dynamics, namely, tumor growth or drug
concentration evolution and irregular time evolution,
respectively. Each of the two time series was directly
encoded in neural distributed neural populations for the
work by Cook et al., Weber et al., and our approach,
whereas the approaches of Mandal et al. and Champion
et al. fused the time series in a single input vector. For the
training part, the work by Mandal et al. used alternating
conditional expectation algorithm to calculate optimal
transformations by fast boxcar averaging the rank-ordered
data, whereas the Champion et al. approach used
backpropagation. The neurally inspired approaches in Cook
et al., Weber et al., and our system used HL, Sigma-Pi (Sum-
Product) learning, and a combination of competition and
cooperation for correlation learning, respectively. Finally,
for inference, we used the systems resulting from the
training phase (without modification) for one pass (forward
pass) of unseen data through the system (i.e., basically
accounting to a series of linear algebra operations).

Our system in all of our experiments, data depicting tumor
growth, pharmacokinetics, and chemotherapy regimens are fed to
our system, which encodes each time series in the SOMs and
learns the underlying relations in the Hebbian matrix. The SOMs
are responsible for bringing the time series in the same latent
representation space where they can interact (i.e., through their
internal correlation). Throughout the experiments, each of the
SOM has N � 100 neurons, the Hebbian connection matrix has
size N × N, and parametrization is done as follows: α � [0.01, 0.1]
decaying, η � 0.9, σ � N

2 decaying following an inverse time law.
The training procedure of our system follows the next steps:

• normalize the input dataset;
• set up condition to reach relaxed state (i.e., no more
fluctuations [Δϵ] in the SOM neural activation and
Hebbian matrix);

• for each new data item, go through the pairs of neural
populations (i.e., SOMs) and compute activation;

• for cross-connection among SOMs compute the Hebbian
matrix entries;

• after convergence (i.e., reached Δϵ), the system comprises
the learned relation encoded in the matrix;

The testing procedure of our system follows the next steps:

• decode the encoded relation from the Hebbian matrix;
• denormalize data to match the original input space;
• compare with ground truth.

An important aspect is that for our system, after convergence
(i.e., reaching an Δϵ of changes in weights), the content of the
Hebbian matrix is decoded. This amounts to a process in which
the (now) static layout of values in the matrix actually depicts the
underlying function y � f (x). Our system is basically updating the
weights and shapes of the tuning curves (i.e., preferred values) of
the SOMs and the cross-SOM Hebbian weights in the training
process. After training, for inference and testing, the decoded
function (i.e., using Brent’s derivative-free optimization method)
accounts for a typical regression neural network for which cross-
validation is applied. More precisely, we ran a fourfold cross-
validation for each dataset.

Cook et al. For the neural network system proposed by Cook
et al. (2010), in all our experiments, we used neural populations
with 200 neurons each, a 0.001 WTA settling threshold, 0.005
scaling factor in homeostatic activity regulation, 0.4 amplitude
target for homeostatic activity regulation, and 250 training
epochs. More details and the reference codebase are available
on GitLab.

Weber et al. For the neural network system proposed by
Weber and Wermter (2007), in all our experiments, we used a
network with 15 neurons, 0.001 learning rate, 200,000 training
epochs, and unit normalization factor. The fully parametrized
codebase is available, along the other systems reference
implementations, on GitLab.

TABLE 1 | Description of the datasets used in the experiments.

Experimental dataset setup

Dataset Cancer type Data type Data points Data freq.

1 Breast1 (MDA-MB-231 cell line) Fluorescence imaging 7 2×/week
2 Breast2 (MDA-MB-435 cell line) Digital caliper 14 2×/week
3 Lung3 Caliper 10 7×/week
4 Leukemia4 Microscopy 23 7×/week
5 Breast5 (MCF-7 cell line) Microscopic imaging 8 1×/week
6 Breast6 (LM2-4LUC + cell line) Digital caliper 10 3×/week
7 Breast7 (stage 2/3 cancers) Functional magnetic resonance imaging 5 1×/week
8 Breast8 (ductal carcinoma in situ) Histopathology 5 1×/week
1Dataset from the study by Rodallec et al. (2019)
2Dataset from the study by Volk et al. (2011)
3Dataset from the study by Benzekry et al. (2019)
4Dataset from the study by Simpson-Herren and Lloyd (1970)
5Dataset from the study by Tan et al. (2015)
6Dataset from the study by Mastri et al. (2019)
7Dataset from the study by Yee et al. (2020)
8Dataset from the study by Edgerton et al. (2011)
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Mandal et al. For the CCA-based system proposed by Mandal
and Cichocki (2013), in all our comparative experiments, we used
a sample size of 100, replication factor 10, 0.5 divergence factor,
1,000 variable permutations, and 1.06 bandwidth for Gaussian
kernel density estimate. The full codebase is provided, along the
other systems reference implementations, on GitLab.

Champion et al. For our DL implementation, we used the
system of Champion et al. (2019) as a reference. We then
modified the structure to accommodate the peculiarities of the
clinical data. In all the experiments, the DL system contained
hidden layers of size 128 neurons, trained for 100 epochs, with a
mini-batch size of 1, and 50% augmentation percentage. The full
codebase is provided, along the other systems reference
implementations, on GitLab. Another important
implementation aspect is that we use a combination of SVM
and DL approaches. While SVM can work with a limited amount
of data, DL models tend to perform worse when big data are not
available. Therefore, we test multiple approaches to artificially
augment the training data:

• DLwith no augmentation, DL.We train the model directly
from the data without further transformations.

• DL with SVM augmentation, DL + SVM. We used the
SVMmodel trained beforehand to enhance the data. We set
a number of observations that we want to enhance and
generate random timestamps we use for prediction using
SVM. Then we add those artificial values as new
observations for training.

• DL with SVM augmentation and random noise, DL +
SVM + noise. We follow the same process as in SVM
augmentation, but before adding the predictions to the
training pool, we add normal noise.

For the SVM we use one input feature, the days passed, and
one output feature, the size of the tumor. For DL, we use the gated
recurrent units (GRUs; Chung et al. (2014)) as building blocks to
design a structure inspired by the work of Champion et al. (2019).
The architecture consists on one GRU layer, one ReLU activation,
a fully connected layer, and another ReLU activation. We
designed a simple architecture to better suit the model to the
scarce availability of data inspired by the study by Berg and
Nyström (2019). As the DL model is a recurrent model, our input
data consist of all data available from a certain patient up to a
point. Both models normalize the data (both days and tumor size)
by dividing by the maximum value observed. For consistency
across methods, we run a fourfold cross-validation for each
dataset (except dataset 0, which has only two samples;
therefore, we run a twofold cross-validation). We present the
average results over the cross-validation. The complete
parametrization and implementation are available on GitLab.

3.3 Results
As previously mentioned, we evaluate the systems on a series of
instantiations depicting various decision support tasks relevant
for clinical use. All of the five models were evaluated through
multiple metrics (Table 2) on each of the four cell line datasets. In
order to evaluate the distribution of the measurement error as a

function of the measured volumes of the tumors, the work of
Benzekry et al. (2014) recommended the following model for the
standard deviation of the error σi at each measurement time
point i,

σ i � σ yi
m( )α, ifyi

m ≥yi

σ yi( )α, ifyi
m <yi{

This model shows that when overestimating (ym ≥ y), the
measurement error α is subproportional, and when
underestimating (ym < y), the obtained error is the same as
the measured data points. In our experiments, we consider
α � 0.84 and σ � 0.21 as a good trade-off of error penalty and
enhancement. We use this measurement error formulation to
calculate the typical performance indices (i.e., sum of squared
errors [SSE], root mean squared error [RMSE], symmetric mean
absolute percentage error [sMAPE]) and goodness-of-fit and
parsimony (i.e., Akaike information criterion [AIC] and
Bayesian information criterion [BIC]), as shown in Table 2.

3.3.1 Learning Growth Patterns of Preinvasive Breast
Cancer
Analyzing tumor infiltration patterns, clinicians can evaluate the
evolution of neoplastic processes, for instance, from DCIS to breast
cancer. Such an analysis can provide very important benefits, in early
detection, in order to (1) increase patient survival, (2) decrease the
likelihood for multiple surgeries, and (3) determine the choice of
adjuvant versus neoadjuvant chemotherapy. For a full analysis and
in-depth discussion of our system’s capabilities for such a task, refer
to Axenie and Kurz (2020b). For this task, we assessed the capability
of the evaluated systems to learn the dependency between
histopathologic and morphological data. We fed the systems with
DCIS data from Edgerton et al. (2011), namely, time series of
nutrient diffusion penetration length within the breast tissue (L),
ratio of cell apoptosis to proliferation rates (A), and radius of the
breast tumor (R). The study by Edgerton et al. (2011) postulated that
the value of R depends on A and L following a “master equation”
Eq. 9

A � 3
L

R

1

tanh R
L( ) − L

R
⎛⎝ ⎞⎠ (9)

whose predictions are consistent with nearly 80% of in situ
tumors identified by mammographic screenings. For this

TABLE 2 | Evaluation metrics for data-driven relation learning systems. We
consider N—number of measurements, σ—standard deviation of data,
p—number of parameters of the model.

Metric Equation

SSE ΣN
i�1(y

i−yim
σ i
σ

)
RMSE

���
SSE
N−p

√
sMAPE 1

NΣN
i�1(2 |yi−yim |

(|yi |+|yim |))
AIC N ln(SSEN ) + 2p
BIC N ln(SSEN ) + ln(N)p
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initial evaluation of the data-driven mathematical
relations learning systems, we consider three typical
performance metrics (i.e., SSE, RMSE, and sMAPE,
respectively) against the experimental data (i.e., ground
truth and Eq. 9):

As one can see in Table 3, our system overcomes the other
approaches on predicting the nonlinear dependency between
radius of the breast tumor (R) given the nutrient diffusion
penetration length within the breast tissue (L) and ratio of cell
apoptosis to proliferation rates (A) from real in vivo
histopathologic and morphological data.

3.3.2 Learning Unperturbed Tumor Growth Curves
Within and Between Cancer Types
In the second task, we evaluated the systems on learning
unperturbed (i.e., growth without treatment) tumor growth
curves. The choice of different cancer types (i.e., two breast
cell lines, lung, and leukemia) is to probe and demonstrate
between- and within-tumor-type prediction versatility.

Our system provides overall better accuracy between- and
within-tumor-type growth curve prediction, as shown in Table 4

TABLE 3 | Evaluation of the data-driven relation learning systems.

Evaluation metrics

Dataset/system SSE RMSE sMAPE

Breast (DCIS), Edgerton et al. (2011)
Cook et al. 56.321 0.4867 0.5901
Weber et al. 59.879 0.5099 0.6512
Mandal et al. 62.346 0.5617 0.6800
Champion et al. 58.645 0.4721 0.6054
Our system 54.216 0.4656 0.5734

TABLE 4 | Evaluation of the data-driven relation learning systems on tumor growth curve extraction.

Evaluation metrics (smaller value is better)

Dataset/system SSE RMSE sMAPE AIC BIC Rank3

Breast4 cancer
Cook et al. 7,009.6 37.4423 1.7088 52.3639 52.2557 2
Weber et al. 8,004.9 44.7350 1.7088 55.2933 55.1310 5
Mandal et al. 7,971.8 39.9294 1.7088 53.2643 53.1561 4
Champion et al. 6,639.1 40.7403 1.4855 53.9837 53.8215 3
Our system 119.3 4.1285 0.0768 19.8508 19.8508 1

Breast5 cancer
Cook et al. 0.2936 0.1713 0.1437 −40.5269 −39.5571 4
Weber et al. 0.2315 0.1604 0.1437 −41.3780 −39.9233 2
Mandal et al. 0.3175 0.1782 0.1437 −39.5853 −38.6155 5
Champion et al. 0.2699 0.1732 0.1512 −39.5351 −38.0804 3
Our system 0.0977 0.0902 0.0763 −57.7261 −57.7261 1

Breast6 cancer
Cook et al. 3.0007 0.7071 1.0606 50.1322 51.2887 2
Weber et al. 3.2942 0.8116 1.6626 56.4133 55.1915 5
Mandal et al. 3.1908 0.7292 1.3506 53.2643 52.5421 4
Champion et al. 3.4772 0.8339 1.1288 53.9837 53.7775 3
Our system 0.7668 0.3096 0.2615 19.3208 19.1298 1

Breast7 cancer
Cook et al. 45.6031 2.3875 1.2216 −40.0084 −39.9975 4
Weber et al. 56.0738 2.8302 1.8346 −41.2345 −39.1234 2
Mandal et al. 53.2428 2.5797 1.4816 −39.5853 −37.1260 5
Champion et al. 54.7189 2.7958 1.5086 −39.1234 −38.0664 3
Our system 0.2008 0.1417 0.0364 −57.1221 −57.6112 1

Lung cancer
Cook et al. 44.5261 2.2243 1.5684 19.3800 20.1758 2
Weber et al. 54.1147 2.6008 1.5684 23.5253 24.7190 5
Mandal et al. 53.2475 2.4324 1.5684 21.3476 22.1434 4
Champion et al. 50.6671 2.5166 1.5361 22.8012 23.9949 3
Our system 3.6903 0.5792 0.2121 −12.0140 −12.0140 1

Leukemia
Cook et al. 223.7271 3.2640 1.6368 56.3235 58.5944 2
Weber et al. 273.6770 3.6992 1.6368 62.9585 66.3649 5
Mandal et al. 259.9277 3.5182 1.6368 59.7729 62.0439 4
Champion et al. 248.5784 3.5255 1.6001 60.7461 64.1526 3
Our system 35.2541 1.2381 0.3232 9.8230 9.8230 1

Notes: 3—Calculated as best in 3/5 metrics; 4—MDA-MB-231 cell line; 5—MDA-MB-435 cell line; 6—MCF-7, T47D cell line; 7—LM2-4LUC + cell line.
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and the summary statistics (depicted in Figure 5). The superior
performance is given by the fact that our system can overcome the
other approaches when facing incomplete biological descriptions,
the diversity of tumor types, and the small size of the data.
Interested readers can refer to Axenie and Kurz (2021) for a
deeper performance analysis of our system.

3.3.3 Extracting Tumor Phenotypic Stage Transitions
The next evaluation task looks at learning the mathematical
relations describing the phenotypic transitions of tumors in
breast cancer. For this experiment, we considered the study of 17
breast cancer patients in the study by Edgerton et al. (2011).
Typically, in the breast cancer phenotypic state space, quiescent
cancer cells (Q) can become proliferative (P) or apoptotic (A). In
addition, nonnecrotic cells become hypoxic if the oxygen supply
drops below a threshold value. But, hypoxic cells can recover to their
previous state or become necrotic, as shown byMacklin et al. (2012).

In this instantiation, we focus on a simplified three-state
phenotypic model (i.e., containing P, Q, A states). The
transitions among tumor states are stochastic events generated
by Poisson processes. Each of the data-driven relation learning
systems is fed with time series of raw immunohistochemistry and
morphometric data for each of the 17 tumor cases (Edgerton
et al., 2011; Supplementary Tables S1, S2) as follows: cell cycle

time τP, cell apoptosis time τA, proliferation index PI, and
apoptosis index AI. Given this time series input, each system
needs to infer the mathematical relations for αP, the mean
quiescent-to-proliferation (Q–P) transition rate, and αA, the
quiescent-to-apoptosis (Q–A) transition rate, respectively
(Figure 6). Their analytical form state transition is given by:

αP �
1
τP

PI + PI2( ) − 1
τA
AIPI

1 − AI − PI
, αA �

1
τA

AI − AI2( ) + 1
τP
AIPI

1 − AI − PI
(10)

Q–A and Q–P state transitions of cancer cells are depicted in
Figure 6, where we also present the relation that our system
learned. Both in Figure 6 and Table 5, we can see that our system
is able to recover the correct underlying mathematical function
with respect to ground truth (clinically extracted and modeled
Eq. 10 from the study by Macklin et al. (2012).

3.3.4 Simultaneously Extracting Drug-Perturbed
Tumor Growth and Drug Pharmacokinetics
Chemotherapy use in the neoadjuvant and adjuvant settings
generally provides the same long-term outcome (de Wiel et al.,
2017). But what is the best choice for a particular patient? This
question points at those quantifiable patient-specific factors (e.g.,

FIGURE 5 | Evaluation of the data-driven relation learning systems on tumor growth: summary statistics.
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tumor growth curve under chemotherapy, drug pharmacokinetics)
that influence the sequencing of chemotherapy and surgery in a
therapy plan. A large variety of breast cancer tumor growth patterns
used in cancer treatments planningwere identified experimentally and
clinically and modeled over the years (Gerlee, 2013). In addition,
progress in pharmacokinetic modeling allowed clinicians to
investigate the effect of covariates in drug administration, as shown
in the work by Zaheed et al. (2019). Considering breast cancer,
paclitaxel is a typical drug choice with broad use in monotherapy
as well as immune-combined therapies (Stage et al., 2018).

In the current section, we present the experimental results of
all the evaluated systems and consider (1) accuracy in learning the
chemotherapy-perturbed tumor growth model and (2) accuracy
in learning the pharmacokinetics of the chemotoxic drug
(i.e., paclitaxel) dose. For the tumor growth curve extraction,
we considered four cell lines of breast cancer (i.e., MDA-MB-231,
MDA-MB-435, MCF-7, LM2-LUC + cell lines; Table1). The
evaluation results of the systems in the perturbed tumor

growth scenario are provided in Figure 7. Note that our
system learns the temporal relationships among the quantities
fed to the two sides of the system (Figure 3), which can,
subsequently, be used to infer one (unavailable) quantity based
on the one available. For instance, if the system had learned the
change in volume at irregular time points, given a next time point,
the system will recover the most plausible volume
value—basically accounting for a one-step-ahead prediction.
For a longer prediction horizon, one can recurrently apply this
process for new predictions and so on.

Table 6 presents the results using SVM and the different
versions of DL. We can see that usually vanilla DL outperforms
SVM. DL is a more complex model, as well as uses more input data,
so this result is expected. Once we add the augmentation from SVM,
themodel has a comparable performance to SVM.Our theory is that
this is caused by DL learning to imitate SVM instead of real data.
Once we add noise to the augmentation, the data become more
realistic and usually yield improvements in performance.

For the pharmacokinetics learning experiments, we used the
data from the computational model of intracellular
pharmacokinetics of paclitaxel of Kuh et al. (2000) describing
the kinetics of paclitaxel uptake, binding, and efflux from cancer
cells in both intracellular and extracellular contexts.

As one can see in Figure 8A, the intracellular concentration
kinetics of paclitaxel is highly nonlinear. Our system is able to
extract the underlying function describing the data without any
assumption about the data and other prior information, opposite
to the model from (Kuh et al., 2000). Interestingly, our system
captured a relevant effect consistent with multiple paclitaxel
studies (Stage et al., 2018), namely, that the intracellular
concentration increased with time and approached plateau
levels, with the longest time to reach plateau levels at the
lowest extracellular concentration—as shown in Figure 8.

Analyzing the extracellular concentration in Figure 8B, we
can see that our system extracted the trend and the individual
variation of drug concentration after the administration of the
drug (i.e., in the first 6 h) and learned an accurate fit without any
prior or other biological assumptions. Interestingly, our system
captured the fact that the intracellular drug concentration

FIGURE 6 | Learning cancer cells phenotypic states transitions mathematical relations.

TABLE 5 | Evaluation of the data-driven relation learning systems for extracting
phenotypic transitions relations.

Evaluation metrics

State transition/system SSE RMSE sMAPE

Quiescent(Q) to proliferation(P) transition relation
Cook et al. 0.820 0.240 0.190
Weber et al. 0.865 0.294 0.196
Mandal et al. 0.904 0.320 0.214
Champion et al. 0.845 0.274 0.189
Our system 0.750 0.210 0.172

Quiescent(Q) to apoptosis(A) transition relation
Cook et al. 0.421 0.162 0.140
Weber et al. 0.484 0.178 0.154
Mandal et al. 0.490 0.182 0.151
Champion et al. 0.441 0.166 0.147
Our system 0.398 0.153 0.131

Note that none of the evaluated system had prior knowledge of the data distribution or
biological assumptions. To have a more detailed overview on the capabilities of our
system to capture phenotypic dynamics, refer to Axenie and Kurz (2020c).
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increased linearly with extracellular concentration decrease, as
shown in Figure 8.

The overall evaluation of pharmacokinetics learning is given in
Table 7.

In this series of experiments, all of the systems learned that
changes in cell number were represented by changes in volume,
which (1) increased with time at low initial total extracellular drug
concentrations due to continued cell proliferation and (2)
decreased with time at high initial total extracellular drug
concentrations due to the antiproliferative and/or cytotoxic
drug effects, as reported by Kuh et al. (2000). In order to
assess the impact the predictions have on therapy sequencing
(i.e., neoadjuvant vs. adjuvant chemotherapy), refer to Axenie
and Kurz (2020a).

3.3.5 Predicting Tumor Growth/Recession Under
Chemotherapy
In the last series of experiments, we used real patient data from
the I-SPY 1 TRIAL: ACRIN 6657 (Yee et al., 2020). Data for the
136 patients treated for breast cancer in the IPSY-1 clinical
trial were obtained from the cancer imaging archive3 and the
Breast Imaging Research Program at UCSF. The time series
data contained only the largest tumor volume from magnetic
resonance imaging measured before therapy, 1 to 3 days after
therapy, between therapy cycles, and before surgery,

FIGURE 7 | Evaluation of the data-driven relation learning system on perturbed tumor growth: accuracy evaluation. The decrease in the MCF7 dataset is due to a
high-dose chemotherapy administration and demonstrates the adaptivity of the methods to cope such abnormal growth behaviors.

TABLE 6 | Description of the DL approach inspired by Champion et al. (2019).

Evaluation of the deep learning approach

Dataset Cancer (cell line) RMSESVM RMSEDL RMSEDL+SVM RMSEDL+SVM+noise

1 Breast (MDA-MB-231) 1.8424 1.5382 1.7544 1.7088
2 Breast (MDA-MB-435) 1.0977 1.5990 0.9584 0.9012
3 Breast (MCF-7) 1.4112 1.7295 1.3632 1.0607
4 Breast (LM2-4LUC+) 1.8945 1.8345 1.7620 1.4816

Note that for all of the evaluation datasets, the best performing DL approach [i.e., inspired by Champion et al. (2019)] is the combined DL—SVM—noise configuration.

3https://wiki.cancerimagingarchive.net/display/Public/ISPY1.
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respectively. To summarize, the properties of the dataset are
depicted in Figure 9.

As we can observe in Table 8, our system learns a superior fit to
the tumor growth data, with respect to the other systems, despite the
limited number of samples (i.e., 7 data points for MDA-MD-231 cell
line dataset and up to 14 data points for MDA-MD-435 cell line
dataset). It is important to note that when analyzing tumor growth
functions and response under chemotherapy, we faced the high
variability among patients given by the typical constellation of
hormone receptor indicators (i.e., HR and HER2neu, which
covered the full spectrum of positive and negative values) for
positive and negative prognoses. All data-driven learning systems
capture such aspects to some extent. Our system learns a superior fit
overall the three metrics, capturing the intrinsic impact
chemotherapy has upon the tumor growth function, despite the
limited number of samples (i.e., 4 data points of the dataset overall
evaluation dataset of 20% of patients). An extended evaluation of our
system on a broader set of datasets for therapy outcome prediction is
given by Kurz and Axenie (2020).

4 DISCUSSION

We complement the quantitative evaluation in the previous
section with an analysis of the most important features of all
the systems capable to extract mathematical relations in the
aforementioned clinical oncology tasks. As the performance
evaluation was done in the previous section, we will now focus
on other specific comparison terms relevant for the adoption of
such systems in clinical practice.

One initial aspect is the design and functionality. Using either
distributed representations (Cook et al., 2010; Weber and
Wermter, 2007; Champion et al., 2019) or compact
mathematical forms Mandal and Cichocki (2013), all methods
encoded the input variables in a new representation to facilitate
computation. At this level, using neural network dynamics (Cook
et al., 2010; Weber and Wermter, 2007) or pure mathematical
multivariate optimization (Mandal and Cichocki, 2013;
Champion et al., 2019), the solution was obtained through
iterative processes that converged to consistent representations
of the data. Our system employs a lightweight learning
mechanism, offering a transparent processing scheme and
human-understandable representation of the learned relations
as shown in Figure 4. Besides the capability to extract the
correlation among the two features, the system can
simultaneously extract the shape of the distribution of the
feature spaces. This is an important feature when working
with rather limited medical data samples.

A second aspect refers to the amount of prior information
embedded by the designer in the system. It is typical that,
depending on the instantiation, a new set of parameters is
needed, making the models less flexible. Although less
intuitive, the pure mathematical approaches (Mandal and
Cichocki, 2013) (i.e., using CCA) need less tuning effort due
to the fact that their parameters are the result of an optimization
procedure. On the other side, the neural network approaches
(Cook et al., 2010; Weber and Wermter, 2007; Champion et al.,
2019) need a more judicious parameter tuning, as their dynamics

FIGURE 8 | Learning the pharmacokinetics of the intracellular (A) and extracellular (B) paclitaxel concentration. Data from Kuh et al. (2000), log scale plot.

TABLE 7 | Evaluation of the data-driven relation learning systems for
pharmacokinetics extraction.

Evaluation metrics

Pharmacokinetics data/system SSE RMSE sMAPE

Intracellular paclitaxel
Cook et al. 0.6234 0.2812 0.1487
Weber et al. 0.7212 0.3689 0.1794
Mandal et al. 0.6743 0.3046 0.1602
Champion et al. 0.6539 0.2607 0.1500
Our system 0.5960 0.2141 0.1403

Extracellular paclitaxel
Cook et al. 0.5676 0.2341 0.1213
Weber et al. 0.6674 0.2891 0.1289
Mandal et al. 0.6128 0.2974 0.1366
Champion et al. 0.5790 0.2633 0.1156
Our system 0.5484 0.2054 0.1068
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are more sensitive and can reach either instability (e.g., recurrent
networks) or local minima. Except parametrization, prior
information about inputs is generally needed when
instantiating the system for a certain scenario. Sensory value
bounds and probability distributions must be explicitly encoded
in the models through explicit distribution of the input space
across neurons in the studies by Cook et al. (2010) andWeber and
Wermter (2007), linear coefficients in vector combinations
(Mandal and Cichocki, 2013), or standardization routines of
input variables (Champion et al., 2019). Our system exploits
only the available data to simultaneously extract the data
distribution and the underlying mathematical relation
governing tumor growth processes. Capable of embedding
priors (i.e., mechanistic models) in its structure, our system
can speed up its computation, through a data-driven model
refinement similar in nature with the unsupervised learning
process. Basically, in order to combine the learning process
with a mechanistic model, the only update will be done in the
factorization of the weight update in Eq. 6.

A third aspect relevant to the analysis is the stability and
robustness of the obtained representation. The representation of
the hidden relation (1) can be encoded in a weight matrix Cook
et al. (2010) and Weber and Wermter (2007) such that, after
learning, given new input, the representation is continuously
refined to accommodate new inputs; (2) can be fixed in vector
directions of random variables requiring a new iterative
algorithm run from initial conditions to accommodate new
input (Mandal and Cichocki, 2013); or (3) can be obtained as
an optimization process given the new available input signals
(Champion et al., 2019). Given initial conditions, prior
knowledge and an optimization criteria (Mandal and Cichocki,
2013) or a recurrent relaxation process toward a point attractor
(Cook et al., 2010; Weber and Wermter, 2007; Champion et al.,
2019) are required to reach a desired tolerance. Our system
exploits the temporal regularities among tumor growth data
covariates, to learn the governing relations using a robust
distributed representation of each data quantity. The choice of
a distributed representation to encode and process the input data
gives out the system an advantage in terms of explainability for
clinical adoption. As shown in Figure 3, each scalar quantity can
be projected in a high dimension where the shape of the
distribution can be inferred. Such insights can support the
decisions of the system by explaining its predictions.

The capability to handle noisy data is an important aspect
concerning the applicability in real-world scenarios. Using either
computational mechanisms for denoising (Cook et al., 2010; Weber
andWermter, 2007), iterative updates to minimize a distance metric
Mandal and Cichocki (2013), or optimization Champion et al.
(2019), each method is capable to cope with moderate amounts
of noise. Despite this, some methods have intrinsic methods to cope
with noisy data intrinsically, through their dynamics, by recurrently

FIGURE 9 | The I-SPY2 trial dataset properties.

TABLE 8 | Evaluation of the data-driven relation learning systems on real patient
breast cancer data.

Evaluation metrics

Dataset/model SSE RMSE sMAPE

I-SPY2 trial Yee et al. (2020)
Cook et al. 1.3735 1.1439 0.1133
Weber et al. 1.7543 1.2005 0.2539
Mandal et al. 2.963 1.0963 0.7834
Champion et al. 2.0747 1.04100 0.1073
Our system 0.8650 0.4650 0.0389
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propagating correct estimates and balancing new samples (Cook
et al., 2010). The distributed representation used in our system
ensures that the system is robust to noise, and the local learning rules
ensure fast convergence on real-world data—as our experiments
demonstrated.

Another relevant feature is the capability to infer
(i.e., predict/anticipate) missing quantities once the
mathematical relation is learned. The capability to use the
learned relations to determine missing quantities is not
available in all presented systems, such as the system of
Mandal and Cichocki (2013). This is due to the fact that the
divergence and correlation coefficient expressions might be
noninvertible functions that support a simple pass-through of
available values to extract missing ones. On the other side, using
either the learned co-activation weight matrix (Cook et al., 2010;
Weber andWermter, 2007) or the known standard deviations of
the canonical variants (Champion et al., 2019), some systems are
able to predict missing quantities. Our system stores learned
mathematical relations in the Hebbian matrix, which can be
used bidirectionally to recover missing quantities on one side of
the input given the other available quantity. This feature is
crucial for the predictive aspects of our system. Basically, in its
typical operation, the system learns from sets of observations the
underlying relations among quantities describing the tumor’s
state (e.g., growth curve, phenotypic stage, extracellular drug
concentration). For prediction purposes, the system is fed with
only one quantity (e.g., time index) and, given the learned
relation, will recover the most plausible value for the
correlated quantity that was trained with (e.g., growth curve)
for the next step.

Finally, because of the fact that all methods reencode the
real-world values in new representation, it is important to
study the capability to decode the learned representation and
subsequently measure the precision of the learned
representation. Although not explicitly treated in the
presented systems, decoding the extracted representations is
not trivial. Using a tiled mapping of the input values along the
neural network representations, the system of Cook et al.
(2010) decoded the encoded value in activity patterns by
simply computing the distribution of the input space over
the neural population units, whereas Weber and Wermter
(2007) used a simple WTA readout, given that the
representation was constrained to have a uniquely defined
mapping. Given that the model learns the relations in data
space through optimization processes, as in the system of
Champion et al. (2019), one can use learned curves to
simply project available sensory values through the learned
function to get the second value, as the scale is preserved.
Albeit its capability to precisely extract nonlinear relations
from high-dimensional random datasets, the system of Mandal
and Cichocki (2013) cannot provide any readout mechanisms
to support a proper decoded representation of the extracted
relations. This is due to the fact that the method cannot recover
the sign and scale of the relations. The human-understandable
relation learned by our system is efficiently decoded from the
Hebbian matrix back to real-world values. As our experiments
demonstrate, the approach introduced through our system

excels in capturing the peculiarities that clinical data carry.
Contributing to the explainability features of our system, the
read-out mechanism is able to turn the human-understandable
visual representation of the learned relation (Figure 4) into a
function providing the most plausible values of the queried
quantities.

5 CONCLUSION

Data-driven approaches to improve decision-making in clinical
oncology are now going beyond diagnosis. From early
detection of infiltrating tumors to unperturbed tumor
growth phenotypic staging, and from pharmacokinetics-
dictated therapy planning to treatment outcome, data-
driven tools capable of learning hidden correlations in the
data are now taking the foreground in mathematical and
computational oncology. Our study introduces a novel
framework and versatile system capable of learning physical
and mathematical relations in heterogeneous oncology data.
Together with a lightweight and transparent computational
substrate, our system provides human-understandable
solutions. This is achieved by capturing the distribution of
the data in order to achieve superior fit and prediction
capabilities between and within cancer types. Supported by
an exhaustive evaluation on in vitro and in vivo data, against
state-of-the-art machine learning and DL systems, the
proposed system stands out as a promising candidate for
clinical adoption. Mathematical and computational
oncology is an emerging field where efficient, transparent,
and understandable data-driven systems hold the promise
of paving the way to individualized therapy. But this can
only be achieved by capturing the peculiarities of a patient’s
tumor across scales and data types.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: https://gitlab.com/akii-microlab/chimera/-/
tree/master/datasets.

AUTHOR CONTRIBUTIONS

DK designed the research, collected clinical datasets, and
performed data analysis of clinical studies used in the
experiments. CS developed the source code for the
experiments and the analysis. CA designed the research and
developed the source code for the experiments.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/frai.2021.713690/
full#supplementary-material

Frontiers in Artificial Intelligence | www.frontiersin.org November 2021 | Volume 4 | Article 71369017

Kurz et al. Computational Framework for Physical Oncology

https://gitlab.com/akii-microlab/chimera/-/tree/master/datasets
https://gitlab.com/akii-microlab/chimera/-/tree/master/datasets
https://www.frontiersin.org/articles/10.3389/frai.2021.713690/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frai.2021.713690/full#supplementary-material
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


REFERENCES

Abler, D., Büchler, P., and Rockne, R. C. (2019). “Towards Model-Based
Characterization of Biomechanical Tumor Growth Phenotypes,” in
Mathematical and Computational Oncology. Editors G. Bebis, T. Benos,
K. Chen, K. Jahn, and E. Lima (Cham: Springer International Publishing),
75–86. doi:10.1007/978-3-030-35210-3_6

Antonelli, A., Noort, W. A., Jaques, J., de Boer, B., de Jong-Korlaar, R., Brouwers-
Vos, A. Z., et al. (2016). Establishing Human Leukemia Xenograft Mouse
Models by Implanting Human Bone Marrow-like Scaffold-Based Niches. Blood
J. Am. Soc. Hematol. 128, 2949–2959. doi:10.1182/blood-2016-05-719021

Axenie, C., and Kurz, D. (2020a). “Chimera: Combining Mechanistic Models and
Machine Learning for Personalized Chemotherapy and Surgery Sequencing in
Breast Cancer,” in International Symposium on Mathematical and
Computational Oncology (Springer), 13–24. doi:10.1007/978-3-030-64511-3_2

Axenie, C., and Kurz, D. (2021). “Glueck: Growth Pattern Learning for
Unsupervised Extraction of Cancer Kinetics,” in Machine Learning and
Knowledge Discovery in Databases. Applied Data Science and Demo Track:
European Conference, ECML PKDD 2020, Ghent, Belgium, September 14–18,
2020, Proceedings, Part V (Springer International Publishing), 171–186.
doi:10.1007/978-3-030-67670-4_11

Axenie, C., and Kurz, D. (2020b). “Princess: Prediction of Individual Breast Cancer
Evolution to Surgical Size,” in 2020 IEEE 33rd International Symposium on
Computer-Based Medical Systems (CBMS) (IEEE), 457–462. doi:10.1109/
cbms49503.2020.00093

Axenie, C., and Kurz, D. (2020c). “Tumor Characterization Using Unsupervised
Learning of Mathematical Relations within Breast Cancer Data,” in
International Conference on Artificial Neural Networks (Springer), 838–849.
doi:10.1007/978-3-030-61616-8_67

Ben-Shmuel, A., Biber, G., and Barda-Saad, M. (2020). Unleashing Natural Killer
Cells in the Tumor Microenvironment-The Next Generation of
Immunotherapy?. Front. Immunol. 11, 275. doi:10.3389/fimmu.2020.00275

Benzekry, S., Lamont, C., Weremowicz, J., Beheshti, A., Hlatky, L., and Hahnfeldt,
P. (2019). Tumor Growth Kinetics of Subcutaneously Implanted Lewis Lung
Carcinoma Cells. Zenodo, 3572401. doi:10.5281/zenodo.3572401

Benzekry, S. (2020). Artificial Intelligence and Mechanistic Modeling for Clinical
Decision Making in Oncology. Clin. Pharmacol. Ther. 108, 471–486.
doi:10.1002/cpt.1951

Benzekry, S., Lamont, C., Beheshti, A., Tracz, A., Ebos, J. M. L., Hlatky, L., et al.
(2014). Classical Mathematical Models for Description and Prediction of
Experimental Tumor Growth. Plos Comput. Biol. 10 (8), e1003800.
doi:10.1371/journal.pcbi.1003800

Berg, J., and Nyström, K. (2019). Data-driven Discovery of Pdes in Complex
Datasets. J. Comput. Phys. 384, 239–252. doi:10.1016/j.jcp.2019.01.036

Brent, R. P. (2013). Algorithms for Minimization without Derivatives. Chelmsford,
United States: Courier Corporation.

Champion, K., Lusch, B., Kutz, J. N., and Brunton, S. L. (2019). Data-driven
Discovery of Coordinates and Governing Equations. Proc. Natl. Acad. Sci. USA
116, 22445–22451. doi:10.1073/pnas.1906995116

Chamseddine, I. M., and Rejniak, K. A. (2020). Hybrid Modeling Frameworks of
Tumor Development and Treatment.Wiley Interdiscip. Rev. Syst. Biol. Med. 12,
e1461. doi:10.1002/wsbm.1461

Chen, N., Li, Y., Ye, Y., Palmisano, M., Chopra, R., and Zhou, S. (2014).
Pharmacokinetics and Pharmacodynamics of Nab -paclitaxel in Patients
with Solid Tumors: Disposition Kinetics and Pharmacology Distinct from
Solvent-based Paclitaxel. J. Clin. Pharmacol. 54, 1097–1107. doi:10.1002/
jcph.304

Chen, Z., Haykin, S., Eggermont, J. J., and Becker, S. (2008). Correlative Learning: A
Basis for Brain and Adaptive Systems, Vol. 49. John Wiley & Sons.

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Empirical Evaluation of
Gated Recurrent Neural Networks on Sequence Modeling. arXiv preprint arXiv:
1412.3555.

Comen, E., Gilewski, T. A., and Norton, L. (2016). Tumor Growth Kinetics.
Hoboken, United States: Holland-Frei Cancer Medicine, 1–11.

Cook, M., Jug, F., Krautz, C., and Steger, A. (2010). “Unsupervised Learning of
Relations,” in International Conference on Artificial Neural Networks
(Springer), 164–173. doi:10.1007/978-3-642-15819-3_21

Cornish, A. J., and Markowetz, F. (2014). Santa: Quantifying the Functional
Content of Molecular Networks. Plos Comput. Biol. 10, e1003808.
doi:10.1371/journal.pcbi.1003808

Cristini, V., Koay, E., and Wang, Z. (2017). An Introduction to Physical Oncology:
How Mechanistic Mathematical Modeling Can Improve Cancer Therapy
Outcomes. Boca Raton: CRC Press.

de Silva, B. M., Higdon, D. M., Brunton, S. L., and Kutz, J. N. (2020). Discovery of
Physics from Data: Universal Laws and Discrepancies. Front. Artif. Intell. 3, 25.
doi:10.3389/frai.2020.00025

Edgerton, M. E., Chuang, Y.-L., Macklin, P., Yang,W., Bearer, E. L., and Cristini, V.
(2011). A Novel, Patient-specific Mathematical Pathology Approach for
Assessment of Surgical Volume: Application to Ductal Carcinomain Situof
the Breast. Anal. Cell. Pathol. 34, 247–263. doi:10.1155/2011/803816

Gaddy, T. D., Wu, Q., Arnheim, A. D., and Finley, S. D. (2017). Mechanistic
Modeling Quantifies the Influence of Tumor Growth Kinetics on the Response
to Anti-angiogenic Treatment. Plos Comput. Biol. 13, e1005874. doi:10.1371/
journal.pcbi.1005874

Gerlee, P. (2013). The Model Muddle: in Search of Tumor Growth Laws. Cancer
Res. 73, 2407–2411. doi:10.1158/0008-5472.can-12-4355

Griffon-Etienne, G., Boucher, Y., Brekken, C., Suit, H. D., and Jain, R. K. (1999).
Taxane-induced Apoptosis Decompresses Blood Vessels and Lowers Interstitial
Fluid Pressure in Solid Tumors: Clinical Implications. Cancer Res. 59,
3776–3782. doi:10.1158/0008-5472

Jansen, T., Geleijnse, G., Van Maaren, M., Hendriks, M. P., Ten Teije, A., and
Moncada-Torres, A. (2020). “Machine Learning Explainability in Breast Cancer
Survival,” in 30th Medical Informatics Europe Conference, MIE 2020
(Amsterdam, Netherlands: IOS Press), 307–311.

Kohonen, T. (1982). Self-organized Formation of Topologically Correct Feature
Maps. Biol. Cybern. 43, 59–69. doi:10.1007/bf00337288

Kondylakis, H., Axenie, C., Bastola, D., Katehakis, D. G., Kouroubali, A., Kurz, D.,
et al. (2020). Status and Recommendations of Technological and Data-Driven
Innovations in Cancer Care: Focus Group Study. J. Med. Internet Res. 22,
e22034. doi:10.2196/22034

Kuh, H. J., Jang, S. H., Wientjes, M. G., and Au, J. L. (2000). Computational Model of
Intracellular Pharmacokinetics of Paclitaxel. J. Pharmacol. Exp. Ther. 293, 761–770.

Kurz, D., and Axenie, C. (2020). “Perfecto: Prediction of Extended Response and
Growth Functions for Estimating Chemotherapy Outcomes in Breast Cancer,”
in 2020 IEEE International Conference on Bioinformatics and Biomedicine
(BIBM) (IEEE), 609–614. doi:10.1109/bibm49941.2020.9313551

Lamy, J.-B., Sekar, B., Guezennec, G., Bouaud, J., and Séroussi, B. (2019).
Explainable Artificial Intelligence for Breast Cancer: A Visual Case-Based
Reasoning Approach. Artif. intelligence Med. 94, 42–53. doi:10.1016/
j.artmed.2019.01.001

Long, Z., Lu, Y., Ma, X., and Dong, B. (2018). “Pde-net: Learning Pdes from Data,”
in International Conference on Machine Learning (Brookline: Microtome
Publishing), 3208–3216.

Macklin, P., Edgerton, M. E., Thompson, A. M., and Cristini, V. (2012). Patient-
calibrated Agent-Based Modelling of Ductal Carcinoma In Situ (Dcis): from
Microscopic Measurements toMacroscopic Predictions of Clinical Progression.
J. Theor. Biol. 301, 122–140. doi:10.1016/j.jtbi.2012.02.002

Mandal, A., and Cichocki, A. (2013). Non-linear Canonical Correlation Analysis
Using Alpha-Beta Divergence. Entropy 15, 2788–2804. doi:10.3390/e15072788

Markowetz, F., and Troyanskaya, O. G. (2007). Computational Identification of Cellular
Networks and Pathways. Mol. Biosyst. 3, 478–482. doi:10.1039/b617014p

Mastri, M., Tracz, A., and Ebos, J. M. (2019). Population Modeling of Tumor
Growth Curves and the Reduced Gompertz Model Improve Prediction of the
Age of Experimental Tumors. PLoS Comput. Biol. 16, e1007178. doi:10.1371/
journal.pcbi.1007178

Nathanson, S. D., and Nelson, L. (1994). Interstitial Fluid Pressure in Breast
Cancer, Benign Breast Conditions, and Breast Parenchyma. Ann. Surg. Oncol. 1,
333–338. doi:10.1007/bf03187139

Nia, H. T., Liu, H., Seano, G., Datta, M., Jones, D., Rahbari, N., et al. (2016). Solid
Stress and Elastic Energy as Measures of Tumour Mechanopathology. Nat.
Biomed. Eng. 1, 1–11. doi:10.1038/s41551-016-0004

Nia, H. T., Munn, L. L., and Jain, R. K. (2020). Physical Traits of Cancer. Science
370, eaaz0868. doi:10.1126/science.aaz0868

Raissi, M. (2018). Deep Hidden Physics Models: Deep Learning of Nonlinear
Partial Differential Equations. J. Machine Learn. Res. 19, 932–955.

Frontiers in Artificial Intelligence | www.frontiersin.org November 2021 | Volume 4 | Article 71369018

Kurz et al. Computational Framework for Physical Oncology

https://doi.org/10.1007/978-3-030-35210-3_6
https://doi.org/10.1182/blood-2016-05-719021
https://doi.org/10.1007/978-3-030-64511-3_2
https://doi.org/10.1007/978-3-030-67670-4_11
https://doi.org/10.1109/cbms49503.2020.00093
https://doi.org/10.1109/cbms49503.2020.00093
https://doi.org/10.1007/978-3-030-61616-8_67
https://doi.org/10.3389/fimmu.2020.00275
https://doi.org/10.5281/zenodo.3572401
https://doi.org/10.1002/cpt.1951
https://doi.org/10.1371/journal.pcbi.1003800
https://doi.org/10.1016/j.jcp.2019.01.036
https://doi.org/10.1073/pnas.1906995116
https://doi.org/10.1002/wsbm.1461
https://doi.org/10.1002/jcph.304
https://doi.org/10.1002/jcph.304
https://doi.org/10.1007/978-3-642-15819-3_21
https://doi.org/10.1371/journal.pcbi.1003808
https://doi.org/10.3389/frai.2020.00025
https://doi.org/10.1155/2011/803816
https://doi.org/10.1371/journal.pcbi.1005874
https://doi.org/10.1371/journal.pcbi.1005874
https://doi.org/10.1158/0008-5472.can-12-4355
https://doi.org/10.1158/0008-5472
https://doi.org/10.1007/bf00337288
https://doi.org/10.2196/22034
https://doi.org/10.1109/bibm49941.2020.9313551
https://doi.org/10.1016/j.artmed.2019.01.001
https://doi.org/10.1016/j.artmed.2019.01.001
https://doi.org/10.1016/j.jtbi.2012.02.002
https://doi.org/10.3390/e15072788
https://doi.org/10.1039/b617014p
https://doi.org/10.1371/journal.pcbi.1007178
https://doi.org/10.1371/journal.pcbi.1007178
https://doi.org/10.1007/bf03187139
https://doi.org/10.1038/s41551-016-0004
https://doi.org/10.1126/science.aaz0868
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Rodallec, A., Giacometti, S., Ciccolini, J., and Fanciullino, R. (2019). Tumor Growth
Kinetics of Human MDA-MB-231 Cells Transfected with dTomato Lentivirus.
Springer. doi:10.5281/zenodo.3593919

Roland, C. L., Dineen, S. P., Lynn, K. D., Sullivan, L. A., Dellinger, M. T., Sadegh, L.,
et al. (2009). Inhibition of Vascular Endothelial Growth Factor Reduces
Angiogenesis and Modulates Immune Cell Infiltration of Orthotopic Breast
Cancer Xenografts. Mol. Cancer Ther. 8, 1761–1771. doi:10.1158/1535-
7163.MCT-09-0280

Rouvière, O., Melodelima, C., Hoang Dinh, A., Bratan, F., Pagnoux, G., Sanzalone,
T., et al. (2017). Stiffness of Benign and Malignant Prostate Tissue Measured by
Shear-Wave Elastography: a Preliminary Study. Eur. Radiol. 27, 1858–1866.
doi:10.1007/s00330-016-4534-9

Sarapata, E. A., and de Pillis, L. G. (2014). A Comparison and Catalog of Intrinsic
Tumor Growth Models. Bull. Math. Biol. 76, 2010–2024. doi:10.1007/s11538-
014-9986-y

Schaeffer, H. (2017). Learning Partial Differential Equations via Data Discovery
and Sparse Optimization. Proc. R. Soc. A. 473, 20160446. doi:10.1098/
rspa.2016.0446

Simpson-Herren, L., and Lloyd, H. H. (1970). Kinetic Parameters and Growth
Curves for Experimental Tumor Systems. Cancer Chemother. Rep. 54, 143–174.

Stage, T. B., Bergmann, T. K., and Kroetz, D. L. (2018). Clinical Pharmacokinetics
of Paclitaxel Monotherapy: an Updated Literature Review. Clin.
Pharmacokinet. 57, 7–19. doi:10.1007/s40262-017-0563-z

Tan, G., Kasuya, H., Sahin, T. T., Yamamura, K., Wu, Z., Koide, Y., et al. (2015).
Combination Therapy of Oncolytic Herpes Simplex Virus Hf10 and
Bevacizumab against Experimental Model of Human Breast Carcinoma
Xenograft. Int. J. Cancer 136, 1718–1730. doi:10.1002/ijc.29163

Uzhachenko, R. V., and Shanker, A. (2019). Cd8+ T Lymphocyte and Nk Cell
Network: Circuitry in the Cytotoxic Domain of Immunity. Front. Immunol. 10,
1906. doi:10.3389/fimmu.2019.01906

Van de Wiel, M., Dockx, Y., Van den Wyngaert, T., Stroobants, S., Tjalma, W. A.
A., and Huizing, M. T. (2017). Neoadjuvant Systemic Therapy in Breast Cancer:
Challenges and Uncertainties. Eur. J. Obstet. Gynecol. Reprod. Biol. 210,
144–156. doi:10.1016/j.ejogrb.2016.12.014

Volk, L. D., Flister, M. J., Chihade, D., Desai, N., Trieu, V., and Ran, S. (2011).
Synergy of Nab-Paclitaxel and Bevacizumab in Eradicating Large Orthotopic

Breast Tumors and Preexisting Metastases. Neoplasia 13, 327–IN14.
doi:10.1593/neo.101490

Weber, C., and Wermter, S. (2007). A Self-Organizing Map of Sigma-Pi Units.
Neurocomputing 70, 2552–2560. doi:10.1016/j.neucom.2006.05.014

Werner, B., Scott, J. G., Sottoriva, A., Anderson, A. R. A., Traulsen, A., andAltrock, P.M.
(2016). The Cancer Stem Cell Fraction in Hierarchically Organized Tumors Can Be
Estimated Using Mathematical Modeling and Patient-specific Treatment
Trajectories. Cancer Res. 76, 1705–1713. doi:10.1158/0008-5472.can-15-2069

White, F. M., Gatenby, R. A., and Fischbach, C. (2019). The Physics of Cancer.
Cancer Res. 79, 2107–2110. doi:10.1158/0008-5472.can-18-3937

Yee, D., DeMichele, A. M., Yau, C., Isaacs, C., Symmans, W. F., Albain, K. S., et al.
(2020). Association of Event-free and Distant Recurrence–free Survival with
Individual-Level Pathologic Complete Response in Neoadjuvant Treatment of
Stages 2 and 3 Breast Cancer: Three-Year Follow-Up Analysis for the I-Spy2
Adaptively Randomized Clinical Trial. Chicago: JAMA.

Zaheed, M., Wilcken, N., Willson, M. L., O’Connell, D. L., and Goodwin, A. (2019).
Sequencing of Anthracyclines and Taxanes in Neoadjuvant and Adjuvant
Therapy for Early Breast Cancer. Hoboken: John Wiley & Sons Ltd.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Kurz, Sánchez and Axenie. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Artificial Intelligence | www.frontiersin.org November 2021 | Volume 4 | Article 71369019

Kurz et al. Computational Framework for Physical Oncology

https://doi.org/10.5281/zenodo.3593919
https://doi.org/10.1158/1535-7163.MCT-09-0280
https://doi.org/10.1158/1535-7163.MCT-09-0280
https://doi.org/10.1007/s00330-016-4534-9
https://doi.org/10.1007/s11538-014-9986-y
https://doi.org/10.1007/s11538-014-9986-y
https://doi.org/10.1098/rspa.2016.0446
https://doi.org/10.1098/rspa.2016.0446
https://doi.org/10.1007/s40262-017-0563-z
https://doi.org/10.1002/ijc.29163
https://doi.org/10.3389/fimmu.2019.01906
https://doi.org/10.1016/j.ejogrb.2016.12.014
https://doi.org/10.1593/neo.101490
https://doi.org/10.1016/j.neucom.2006.05.014
https://doi.org/10.1158/0008-5472.can-15-2069
https://doi.org/10.1158/0008-5472.can-18-3937
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

	Data-Driven Discovery of Mathematical and Physical Relations in Oncology Data Using Human-Understandable Machine Learning
	1 Introduction
	1.1 Study Focus
	1.2 Study Motivation

	2 Materials and Methods
	2.1 System Basics
	2.2 Computational Substrate
	2.3 Comparable Systems

	3 Experimental Setup and Results
	3.1 Datasets
	3.2 Procedures
	3.3 Results
	3.3.1 Learning Growth Patterns of Preinvasive Breast Cancer
	3.3.2 Learning Unperturbed Tumor Growth Curves Within and Between Cancer Types
	3.3.3 Extracting Tumor Phenotypic Stage Transitions
	3.3.4 Simultaneously Extracting Drug-Perturbed Tumor Growth and Drug Pharmacokinetics
	3.3.5 Predicting Tumor Growth/Recession Under Chemotherapy


	4 Discussion
	5 Conclusion
	Data Availability Statement
	Author Contributions
	Supplementary Material
	References


