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Diabetic retinopathy (DR) is a common microvascular complication caused by diabetes mellitus (DM) and is a leading cause of
vision impairment and loss among adults. Here, we performed a comprehensive proteomic analysis to discover biomarkers for
DR. First, to identify biomarker candidates that are specifically expressed in human vitreous, we performed data-mining on both
previously published DR-related studies and our experimental data; 96 proteins were then selected. To confirm and validate the
selected biomarker candidates, candidates were selected, confirmed, and validated using plasma from diabetic patients without
DR (No DR) and diabetics with mild or moderate nonproliferative diabetic retinopathy (Mi or Mo NPDR) using semiquantitative
multiple reaction monitoring (SQ-MRM) and stable-isotope dilution multiple reaction monitoring (SID-MRM). Additionally, we
performed a multiplex assay using 15 biomarker candidates identified in the SID-MRM analysis, which resulted in merged AUC
values of 0.99 (No DR versus Mo NPDR) and 0.93 (No DR versus Mi and Mo NPDR). Although further validation with a larger
sample size is needed, the 4-protein marker panel (APO4, C7, CLU, and ITIH2) could represent a useful multibiomarker model for
detecting the early stages of DR.

1. Introduction

Diabetic retinopathy (DR) is a common microvascular com-
plication caused by diabetes mellitus (DM) and is a leading
cause of vision impairment and loss among adults [1]. It
ultimately affects more than 90% of diabetic patients to
some degree. Approximately 10% of patients with diabetes
for ≥15 years develop severe visual impairment, and about
2% of these patients become blind [2, 3]. Vision impairment
associated with DR can be further categorized into non-
proliferative diabetic retinopathy (NPDR) and proliferative
diabetic retinopathy (PDR); NPDR causes central vision loss
when it induces diabetic macular edema (DME) [4].

PDR is the more advanced stage of DR and is character-
ized by retinal neovascularization.Themanifestations of PDR
include vitreous hemorrhage, formation of fibrous perireti-
nal tissue accompanying neovascularization, traction retinal
detachment, and, finally, total vision loss [5, 6]. Currently,
the main treatments for DR are retinal photocoagulation and
vitreoretinal surgery; there are no specific drugs currently
available to prevent or slow down DR. Although the control
of systemic risk factors, such as hyperglycemia, hypertension,
and dyslipidemia [7], has been shown to improve clinical
therapies for diabetes-induced vision loss, more effective
clinical therapies for DR patients are needed.
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Recently, biomarker discovery has become important in
many aspects of disease diagnosis and drug discovery and
development [8–10]. Predictive biomarkers can save time
and money and lead to better diagnoses, ultimately aiding
the cure of diseases. Indeed, many biomarkers have an
important diagnostic role in the detection or prediction of
disease. However, convenient biomarkers must be detectable
in tests of blood, urine, or saliva, which can be performed
at the bedside or in an outpatient setting [11–13]. Although
urinary and tissue samples have been primarily used in the
past to identify biomarkers, plasma and serum can also
be collected noninvasively and contain factors that can be
more effective in biomarker development. Indeed, blood
is routinely collected and contains thousands of proteins,
including secreted proteins and proteins shed into the blood
by tumors [9, 14–16].

The pipeline for biomarker development usually includes
4 steps—discovery, verification, validation, and product
development. Clinical verification or validation is well known
to be the biggest barrier for biomarker development. To
overcome this barrier, effective methods to facilitate large-
scale biomarker validation are needed. Immunological meth-
ods and multiple reaction monitoring (MRM) are being
considered as possible solutions. Between these 2 methods,
the MRM approach has a much higher throughput and
accuracy and allows for substantial multiplexing [17]. With
the use of MRM analysis, more than 100 candidate proteins
can be simultaneously targeted and measured at the clinical
verification stage.

There have been many proteomic studies on DR that
analyze the retina, vitreous, or plasma, which have led to
a better understanding of the DR proteome [17–19]. Based
on these studies, we decided to use a systemic approach to
identify biomarkers for DR-related diseases.

First, to obtain biomarker candidates that are specifically
expressed in the tissues of macula hole (MH, nondiabetic
controls), NPDR, and PDR patients, we performed data-
mining on the previously publishedDR-related studies [6, 18–
25] and our experimental data set in human vitreous. This
proteomic information provided baseline data, including 96
possible DR biomarker candidates. Second, the 96 selected
candidates were used to carry out a semiquantitativemultiple
reaction monitoring (SQ-MRM) verification experiment,
in which we used plasma samples from type 2 diabetes
patients without DR (No DR), with mild nonproliferative DR
(Mi NPDR), and with moderate nonproliferative DR (Mo
NPDR). We were able to select 15 candidates by SQ-MRM
verification and, thereafter, subsequent stable-isotope dilu-
tion multiple reaction monitoring (SID-MRM) verification
narrowed these candidates down to 11 potential markers.
Third, we constructed a model for a multimarker panel using
these 11 verified markers and performed leave-one-out cross
validation (LOOCV) on the panel to avoid overfitting and to
calculate error rates. For this statistical evaluation, we used
linear discriminant analysis (LDA) methods.

Consequently, this systemic approach allowed us to select
optimal biomarker candidates for inclusion in a multimarker
panel. We determined that a 4-marker panel was a better
diagnostic tool for detecting early grade NPDR and was

associated with lower error rates than the use of the single
best marker alone.

2. Materials and Methods

2.1. Plasma Sample Preparation. To verify DR biomarker
candidates, we collected plasma from 20 diabetic patients
with no diabetic retinopathy (No DR), mild nonproliferative
diabetic retinopathy (Mi NPDR), or moderate nonprolifer-
ative diabetic retinopathy (Mo NPDR). DR was classified by
the international clinical diabetic retinopathy disease severity
scale [26]. Each plasma sample was collected in 10 mL tubes
containing K

2
-EDTA. Tubes were centrifuged at 3000×g for

10min at 4∘C, and 100 𝜇L was aliquoted into new tubes and
stored at −70∘C.

All patients provided informed consent before being
enrolled in this study, in accordance with the protocol
approved by the Institutional Review Board at Seoul National
University Hospital (IRB number H-0807-086-251).

2.2. MARS Depletion. To deplete plasma using a MARS
column, plasma was diluted 5-fold withMARS buffer A (1 : 4)
and filtered with a 0.22 𝜇mUltrafree-MCDurapore centrifu-
gal filter (Cat. number UFC30GVNB, Millipore, Billerica,
MA, USA). Each plasma sample was applied to a MARS
column on an LC-10AT HPLC system (Shimadzu, Kyoto,
Japan). The sample loop volume of the HPLC was set to
200𝜇L, and 200𝜇L of 5-fold diluted plasma was injected
into the MARS column. The total LC run time of 37min
involved the following: 100% MARS buffer A at a flow rate
of 0.7mL/min for the first 11min, sample injection, wash for
11min, 100% MARS buffer B at a flow rate of 1.0mL/min for
5min, and 100%MARS buffer A at a flow rate of 0.7mL/min
for 10min.

The UV detector was set to 280 nm for plasma injection,
and the eluted fractions were collected in 250 𝜇L aliquots.
The flow-through and bound fractions were eluted in 10
fractions (total, 2.5mL), and the eluted fractions were pooled
for MRM.

2.3. Preparation of Plasma forMass Spectrometry. Theprotein
concentration in the vitreous and depleted plasma was mea-
sured using BCAmethods according to the protocol provided
by themanufacturer. Aliquots of 100𝜇g proteinwere reduced,
alkylated, and digested according to the protocol. Briefly,
60 𝜇L 9M urea (5.4054 g) and 30mM dithiothreitol (DTT;
0.04628 g) in 10mL 100mMTris-base (pH 8.0) were added to
each sample and incubated for 30min at 37∘C. Each sample
was allowed to cool at room temperature before 9𝜇L 500mM
iodoacetamide (IAA; 0.0925 g/mL) was added. The solution
was incubated for 20min at room temperature. To dilute the
urea from 6M to 0.6M, 771 𝜇L 100mM Tris buffer (pH 8.0)
was added to each sample. Each sample was then digested
with trypsin (Promega, Madison, WI, USA) at a protein-
to-enzyme ratio of 50 : 1 at 37∘C overnight. To quench the
digestion reaction, 50 𝜇L 0.1% TFA was added. The digested
peptide mixture was applied onto an HLB Oasis cartridge
(Waters Milford, MA, USA) for desalting, and peptides were
eluted using 1mL 60% ACN with 0.1% FA solution.
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2.4. Determination of Transitions Using the Skyline Program.
To determine the optimal MRM transition, including pre-
cursor (Q1) and fragment (Q3) ions, we used an in silico
method utilizing the Skyline program (version 2.1), which
is an open-source software application for developing MRM
methods and analyzing MRM data [27]. The FASTA file for
each protein selected by data-mining was imported into the
Skyline program; the precursor and fragment ions for each
protein were generated by performing in silico digestion. Our
peptide filter conditions were as follows: the precursor length
range was set at 8 to 20 amino acids, and peptides with repeat
arginine (Arg, R) or lysine (Lys, K) residues were not used.
To avoid using peptides that included potentially modified
forms in the sequence, methionine (Met, M) and cysteine
(Cys, C) residues were discarded. If proline (Pro) was next
to an arginine (Arg, R) or lysine (Lys, K) residue, the peptide
was not used. Peptides containing histidine (His, H)were also
discarded because of the possibility of alterations in the side
chain charge.

2.5. Multiple Reaction Monitoring Using Triple Quadrupole
Mass Spectrometry. Our semiquantitative multiple reaction
monitoring (SQ-MRM) and stable-isotope dilution multiple
reaction monitoring (SID-MRM) analyses were performed
using a triple quadrupole linear ion trap mass spectrometer
(a 4000QTRAP coupledwith a nano-TempoMDLC, Applied
Biosystems, Carlsbad, CA, USA), as described in a previous
study [28]. To reduce the void volume and obtain sharper
intensity peaks, we used a modified sample loop (100 𝜇m
ID capillary tubing containing 1.0 𝜇L sample) in an autosam-
pler. In our MRM analysis, a 15 cm homemade analytical
column was used—an IntegraFrit capillary (ID, 75𝜇m; OD,
360 𝜇m) was packed with Magic C18AQ (200 Å, Michrom
Bioresources, Madison, WI, USA). We directly injected 1 𝜇L
of our prepared sample with Sol A (98% DW, 2% ACN, and
0.1% FA) and Sol B (98% ACN, 2% DW, and 0.1% FA) into
the analytical column without a trap column; the flow rate
was set to 300 nL/min. Exponential gradient elution (60min)
was performed by increasing the mobile phase composition
from 0 to 40% Sol B.The gradient was then increased to 90%
B for 10min and 0%B for 10min to equilibrate the column for
the next run. The optimal parameters for a triple quadrupole
mass spectrometer that interfaced with a nanospray source
were set as follows: ion spray (IS), 2100V; source temperature,
160∘C; high collision gas, approximately 4-3 × 10−5 torr; and
curtain gas, 15.MS parameters for declustering potential (DP)
and collision energy (CE) were determined using the Skyline
program. In the MRM run, the scan time for each transition
and the pause time between transition scans were set to
15ms and 5ms, respectively. MRM analysis was composed
of 2 steps: the first MRM step determined the transition
and the second step monitored the target transition for
quantification. In the first MRM step, an enhanced mass scan
(EMS) ranging from 400 to 1200m/z (scan speed, 4000Da/s)
was performed, and an enhanced product ion (EPI) scan
was then carried out to obtain MS/MS spectra. A MASCOT
search was performed to identify the protein. In the second
MRM step, an MRM analysis was performed to quantify the
selected target transitionwithout any information-dependent

scan or MS/MS scan (see the Supplementary Methods for
more details in Supplementary Material available online
at http://dx.doi.org/10.1155/2015/6571976). In the SQ-MRM
analysis, we spiked each sample with 50 fmol betaGAL
(GDFQFNISR, 542.3/636.3 m/z) during our preparation of
the digested sample. In the SID-MRM analysis, 15 synthetic
heavy peptides (>95% purity) were used.

2.6. Synthetic Peptides. For the SID-MRM analysis, we first
synthesized stable-isotope standard (SIS) peptides (>95%
purity) for 15 proteins (APLP2, APOA4, APOH, B3GNT1,
C4B, C5, C7, CD14, CLU, FN1, GSN, ITIH2, KRT1, SERPINF1,
and VTN). Synthetic peptides were obtained from 21st Cen-
tury Biochemicals (Marlboro, MA, USA). Peptide sequences
were synthesized as unmodified peptides with free N- and
C-terminal amino acids. The purity of the synthetic peptides
was >95%, as measured by HPLC. For stable isotope-labeled
peptides, the C-terminal arginine or lysine contained 13C-
and 15N-labeled atoms. Peptide stock concentrations were
determined by amino acid analysis (AAA).

2.7. Determination of the Lowest Limit of Detection (LLOD)
and the Lowest Limit of Quantification (LLOQ). Todetermine
the LLOD and LLOQ, we used the method described by
Keshishian et al. and other authors [29–31]. The LLOD was
calculated based on the variance of the blank sample (sample
b, with no “spiked” in analyte) and standard deviation (S.D.)
of the sample with the lowest concentration among the
“spiked” in samples (0.1 fmol/𝜇L). Equation (1) was used to
determine LLOD as follows:

LLOD = LOB + 𝑐
𝛽
× S.D.s. (1)

For this equation, if the analyte is detected when it is not
present and if the analyte is not detected when it is present,
the type I error rate 𝛼 and the type II error rate 𝛽 are 0.05 and
0.05, respectively.The limit of the blank (LOB) was defined as
the 95th percentile of the blank sample. For a relatively small
number of repeated measurements of the blank, the 𝑐

𝛽
was

approximated as follows: 𝑐
𝛽
= 𝑡
1−𝛽

; thus,

LLOD = mean
𝑏
+

𝑡
1−𝛽
(S.D.
𝑏
+ S.D.s)
√𝑛

. (2)

For this equation, 𝑡
1−𝛽

is equal to the (1 − 𝛽) percentile of the
standard 𝑡distributionwith 𝑛degrees of freedom; 𝑛 is equal to
the number of replicates. Consequently, the LLOD equation
can be expressed as in the following equation:

LLOD = mean
𝑏
+
𝑡0.95 (S.D.

𝑏
+ S.D.s)
√𝑛

. (3)

The LLOQ was calculated using the following standard
calculation [29–31]: LLOD × 3 = LLOQ.

2.8. Statistical Analyses. To enhance the classification power
of the biomarkers, we constructed a multimarker panel using
individual biomarkers and then performed a statistical evalu-
ation of the panel. Using the SPSS Statistics software program

http://dx.doi.org/10.1155/2015/6571976
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Figure 1: The overall scheme for DR biomarker development. The first step to develop biomarkers is to identify candidates. To that end, we
performed a comprehensive proteomics study of DR samples, which included 2 steps: (1) discovering and (2) validating biomarker candidates.
In the discovery stage, 96 proteins were selected as DR-specific proteins in human vitreous. Using a MASCOT search, 39 proteins were
confirmed in human plasma. In the verification stage, SQ-MRM and SID-MRM analyses were performed to verify the candidates. Finally,
statistical analysis was performed on the 15 verified candidates.

(IBM Inc., Armonk, NY, USA, ver. 20), we first conducted
a correlation analysis to examine the variable stability by
Pearson’s correlation analysis. Second, Student’s t-test and
stepwise multivariate analysis of variance (MANOVA) anal-
ysis [32] were performed to select the multimarker proteins
that contributed to the discriminatory power between the
No DR and Mo NPDR groups. Finally, to validate the
multimarkermodels frommultivariate analysis, LOOCVwas
conducted to avoid overfitting and to calculate the error
rate of the model by comparing the No DR and Mo NPDR
groups. To validate the multimarker panel, we used the
linear discriminant analysis (LDA) method. We used the
MedCalc (MedCalc Software,Mariakerke, Belgium) program
to perform the ANOVA and chi-square tests and to generate
receiver operating characteristic (ROC) curves.

2.9. Gene Ontology (GO) and Functional Analysis. To analyze
the GO terms in the protein data sets, we used the DAVID
bioinformatics resource (http://david.abcc.ncifcrf.gov/),
which allows both the functional classification and the ID
conversion of the proteins that we identified. The “biological
process” and “molecular function” classifications were
analyzed using PANTHER ID numbers (http://www.panth-
erdb.org/).

3. Results

3.1. Plasma Characteristics of the No DR, Mi NPDR, and Mo
NPDR Groups. We collected 20 plasma samples with a 1 : 1

gender ratio from each of the No DR, Mi NPDR, and Mo
NPDR patient groups. The patient gender, patient age, DM
status, HbAlc, and plasma concentration for these 60 plasma
samples are shown in Supplementary Table 1. We sorted
patients that had no complications from diabetes except
diabetic retinopathy and, thus, all patients in this study have
no kidney diseases like diabetic nephropathy.

To examinewhether any other factors could interferewith
the MRM analysis, we carried out ANOVA tests for age, DM
duration, and HbAlc and used chi-square tests for gender
and hypertension (Supplementary Table 2). We detected no
significant differences related to gender, age, hypertension,
or HbAlc. For DM duration, increased DM duration was
observed in the NPDR group compared to the No DR group.
There were also differences in DM duration between the
No DR and Mo NPDR groups, as indicated by the ANOVA
findings (F-statistics).

3.2. Our Overall Scheme for DR Biomarker Development. The
first step in biomarker development is to identify candidates.
To this end, we performed a comprehensive proteomics study
of DR samples, which included 2 steps: (1) discovery of
biomarker candidates in vitreous samples and (2) verification
of biomarker candidates in plasma samples (Figure 1).

First, we performed data-mining on previously published
DR-related studies and our experimental data from human
vitreous samples. In the candidate discovery stage, 96 pro-
teinswere selected from literatures and our experimental data
(Supplementary Tables 3–5).The 1870 transitions for these 96

http://david.abcc.ncifcrf.gov/
http://www.pantherdb.org/
http://www.pantherdb.org/
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proteins were generated using the Skyline program and then
were confirmed by MRM analysis, where 39 proteins were
confirmed (Supplementary Table 6). The 39 candidates were
then examined by SQ-MRManalysis, where the expression of
15 proteins significantly differed between the No DR and Mi
NPDR orMoNPDR groups with anAUC > 0.7. Furthermore,
the 15 candidate proteins were also verified by SID-MRM
analysis using the same plasma samples.

For the final stage of biomarker development, mod-
els were constructed for multimarker panels composed of
protein variables having discriminatory power. First, we
checked for correlation and multicollinearity among the 15
potential markers to evaluate the discrimination power. Next,
using Student’s t-test and stepwise MANOVA analyses, we
selected 4 potential markers with an expression pattern that
differed significantly between the No DR and Mo NPDR
groups.Using the 4 differentially expressedmarker proteins, a
multimarker panel was constructed and statistical validation
was performed using LOOCV. To examine the efficacy of
the model, the LDA method was used for statistical analysis
(Figure 1).

3.3. Selection of Biomarker Candidates. We carried out data-
mining on all previously published DR-related studies in
humans [6, 18–25] (Supplementary Table 5). For standardiza-
tion and integration of protein names, all accession number
formats, such as Uniprot, IPI, GI number, and GenBank
number, were converted into gene symbols. Protein data,
such as identification and quantification in a DR-related
study, were extracted; data were compiled from 9 DR pro-
teomics studies that reported quantitative data, and a total
of 465 proteins were collected by data-mining. Additionally,
we also collected LC-ESI-MS/MS experimental data, 136
differentially expressed proteins. In the data-mining stage,
490 proteins were ultimately identified. To select the most
reliable candidates, proteins found in more than 4 hits in
10 datasets were selected (our experimental data set had
“2 weighted hits”). Consequently, 96 proteins were finally
selected as candidates and 1870 transitions were generated for
these proteins using the Skyline program.

ForMRManalysis, we first optimized the collision energy
(CE) and declustering potential (DP) using the Skyline
parameter optimizationmodule.We then confirmedwhether
the 1870 transitions could be detected in pooled plasma and
also tested whether these transitions could be identified as
target proteins using a MASCOT search. From MASCOT
searches, 39 proteins were ultimately confirmed, for which
22 proteins had 2 peptides and 17 proteins had 1 peptide
(Supplementary Table 6).

3.4. Confirmation of Biomarker Candidates by SQ-MRMAnal-
ysis. Before performing MRM analysis, we first determined
the MRM reproducibility in 3 replicate experiments using
pooled plasma samples for the detection of 15 representative
proteins (Figure 2). We found that APLP2, FN1, ITIH2,
and SERPINF1 had higher CV values (19%, 14%, 18%, and
13%, resp.), while the other proteins had lower CV values
(Figure 2). However, the CV values for all of the proteins

were less than 20%, even though we did not use an internal
standard for normalization.

To obtain a stable quantitative peak area in the SQ-
MRM analysis, we spiked 50 fmol betaGAL (GDFQFNISR,
542.3/636.3 m/z) into the individual digested samples. To
verify the selected biomarker candidates, we measured the
relative concentration of the 39 candidates in the No DR,
Mi NPDR, and Mo NPDR groups. Using MRM analysis, we
confirmeddifferentialmeasurements of these proteins among
the No DR (𝑛 = 20), Mi NPDR (𝑛 = 20), and Mo NPDR
(𝑛 = 20) groups.

In our quantification analysis (Figure 3), 15 proteins
(amyloid-like protein 2, APLP2; apolipoprotein A-IV,
APOA4; beta-2-glycoprotein 1, APOH; N-acetyllactosam-
inide beta-1,3-N-acetylglucosaminyltransferase, B3GNT1;
complements C4-B, C4B; complements C5, C5; complement
components C7, C7; monocyte differentiation antigens
CD14, CD14; clusterin, CLU; fibronectin, FN1; gelsolin, GSN;
inter-alpha-trypsin inhibitor heavy chain H2, ITIH2; keratin
type II cytoskeletal 1, KRT1; pigment epithelium-derived
factor, SERPINF1; and vitronectin, VTN) were significantly
differentially expressed either in the No DR versus Mi NPDR
(AUC value > 0.7) or in the No DR versus Mo NPDR (AUC
value > 0.7) comparisons. Notably, B3GNT1 (0.88) and both
C7 and ITIH2 (0.85) showed the highest AUC values in the
No DR versus Mi NPDR and the No DR versus Mo NPDR
comparisons, respectively. We performed MRM verification
using SID-MRM on the 15 selected candidate proteins
associated with an AUC value > 0.7.

3.5. Functional Analysis of the 15 Verified Proteins. To exam-
ine the biological functions of the 15 proteins from the SQ-
MRM analysis, proteins were assigned biological process and
molecular function categories using the PANTHER classifi-
cation program. The largest assigned biological process and
molecular function category were “immunity and defense”
(33% and 20%, resp.) (Supplementary Figure 1A). Moreover,
5 proteins (APOH, C4B, C5, C7, and CD14), which are
involved in biological process subcategories of “immunity
and defense,” all showed a downregulated pattern (100%)
when the No DR group was compared to the Mo NPDR
group. Two proteins (APLP2 and KRT1), which are related to
the biological process subcategory “developmental process,”
also showed a downregulated pattern (100%) compared to the
No DR and Mo NPDR groups.

To investigate the signaling pathways related to the 15
verified proteins, we conducted a signaling pathway analysis.
We identified 2 signaling pathways (the actin cytoskeleton
and complement cascade pathways) associated with these
proteins in the KEGG database (Supplementary Figures 1B
and C). CD14, FN1, and GSN play roles in the actin
cytoskeleton pathway; CD14 and GSN were downregulated,
whereas FN1 was upregulated. C4B, C5, and C7 play roles
in the complement cascade pathway; all 3 proteins were
downregulated.

3.6. The Verification of the 15 Candidate Proteins Using SID-
MRMAnalysis. Beforewe synthesized the SIS heavy peptides
for SID-MRManalysis, we first examined howmany peptides
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Figure 2: Continued.
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Figure 2: The reproducibility of the 3 independent MRM analyses. Before performing the SQ-MRM analysis, we first determined the
reproducibility in 3 independent experiments using pooled plasma samples; representative results of 15 proteins are shown.The reproducibility
testing showed that APLP2, FN1, ITIH2, and SERPINF1 had higher CV values (19%, 14%, 18%, and 13%, resp.), while the other proteins had
lower CV values.

we should synthesize to obtain the reliable quantitated data.
As a preliminary SQ-MRM experiment, we analyzed the cor-
relation of peak area values between two peptides for the 22
proteinswith 2 peptides and, then, the peak similarities of two
peptides were analyzed by Pearson’s correlation analysis. The
patterns of peak intensity were highly correlated between two
peptides in each protein showing the median value of 0.927
(Supplementary Figure 2). Consequently, the peptide, which
had the highest intensity (best detectability) of the multiple
peptides per protein, was finally selected and synthesized for
SID-MRM analysis (>95% purity).

First, the purity of the SIS heavy peptides for SID-
MRM was confirmed by MALDI-TOF analysis (Table 1 and
Supplementary Figure 3). All of the SIS heavy peptides had
equivalent theoretical and experimental molecular weights.
For accurate confirmation of spectral similarity between the
experimental spectra obtained in our MRM analysis and the
spectra derived from a DR spectral library, we constructed
a DR-specific MS/MS spectral library (MS/MS spectra for
3067 peptides); to generate DR-specificMS/MS spectra, a DR
sample, which consisted of pooled plasma (1 𝜇g/𝜇L) and the
15 SIS peptides mixture (50 fmol/𝜇L), was analyzed by Q-
Exactive quadrupole-Orbitrap mass spectrometry (Supple-
mentary Methods).

Prior to performing a second round of MRM verification
of the 15 selected candidates, we first checked endogenous
light peptide levels by analyzing TEST sample #1, which was
composed of endogenous light peptides (pooled digested
plasma, 1 𝜇g/𝜇L) and heavy peptides (50 fmol of the 15 heavy
peptides mixture). We were able to confirm low (APLP2,
B3GNT1, CD14, and KRT1), middle (C5, C7, FN1, GSN,
ITIH2, and SERPINF1), and high (APOA4, APOH, C4B,
CLU, and VTN) endogenous concentrations of the proteins,
wherein the ranges of low, middle, and high concentrations
were defined by comparing endogenous peptide with heavy
peptide concentrations (<10 fmol, <50 fmol, and >50 fmol,
resp.) (Figure 4). Second, we checked the noise signal of

the heavy peptide level by analyzing TEST sample #2, which
was composed of only endogenous light peptides (pooled
plasma, 1 𝜇g without heavy peptide). We found that the
detected signal at the heavy peptide position represented
noise whenwe performedMRManalysis using the individual
plasma samples (endogenous light peptide). A range of noise
signals were detected for APLP2, B3GNT1, CD14, and GSN,
while noise signals were barely detected for the other proteins
(Figure 5).

To verify the biomarker candidates using SID-MRManal-
ysis, we evaluated the linearity of the 15 proteins by analyzing
a standard curve generated by serial dilutions of a known
concentration of a heavy peptide. Next, we determined the
LLOD and LLOQ for the 15 selected biomarker candidates.
The LLOD was calculated based on the variance of the blank
sample and standard deviation (S.D.) of the sample with
the lowest level of “spiked” in SIS peptides (see Section 2
for details). Finally, using the heavy peptide mixture as an
internal standard, individual plasma concentrations were
measured using SID-MRM.

To generate a calibration curve for the 15 proteins,
heavy peptides were serially diluted to yield 12 different
concentrations (0.1–200 fmol) of the light peptide (digested
pooled plasma protein, 1 𝜇g). Each experiment was repeated
in triplicate to plot the calibration curve. The area ratio
of heavy peptide (12 concentrations from 0.1–200 fmol) to
light peptide (internal standard, 1 𝜇g plasma) was determined
from the extracted ion chromatogram (XIC) of each selected
transition.These calibration curves demonstrated linearity of
approximately 3 orders of magnitude for the concentration
range, and a strong linear correlation (𝑅2 > 0.98) was
observed for 13 of the 15 calibration curves, in which APLP2
and B3GNT1 showed lower 𝑅2 values of 0.96 and 0.94,
respectively (Supplementary Figures 4A and 4B andTable 2).
Figure 6 shows the representative calibration curve for the
APOA4 peptide (LAPLAEDVR 2++).
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Figure 3: Continued.
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Figure 3: Verification of biomarker candidates using SQ-MRManalysis. To verify the selected biomarker candidates, wemeasured the relative
concentrations of the 39 candidates in the samples from theNoDR,MiNPDR, andMoNPDRgroups. In the SQ-MRManalysis, we confirmed
a differential measurement of these proteins among the No DR (𝑛 = 20), Mi NPDR (𝑛 = 20), and Mo NPDR (𝑛 = 20) groups. ROC
with AUC values were generated based on the SQ-MRM analysis. In the SQ-MRM analysis, we “spiked” the samples with 50 fmol betaGAL
(GDFQFNISR, 542.3/636.3m/z).

To determine the concentration range of quantification
for each peptide, we determined the LLOD and LLOQ for
each of the 15 proteins. The LLOD and LLOQ for 4 proteins
(APOA4, CLU, ITIH2, and VTN) were very low (0.06–
0.32 fmol/𝜇L and 0.19–0.96 fmol/𝜇L, resp.), among which
CLU had the lowest LLOD and LLOQ (0.06 fmol/𝜇L and
0.09 fmol/𝜇L, resp.). By contrast, the LLODandLLOQranges
for APLP2, B3GNT1, CD14, and GSN were higher (2.57–
5.96 fmol/𝜇L and 7.71–17.88 fmol/𝜇L, resp.), andCD14 had the
highest LLOD and LLOQ (5.96 fmol/𝜇L and 17.88 fmol/𝜇L,
resp.) (Table 1 and Supplementary Figures 4A and 4B).

Using the heavy peptide mixture (50 fmol/𝜇L) of the
15 proteins as an internal standard, individual plasma
samples were validated using SID-MRM analysis. In this
analysis of individual samples, we could confirm a dif-
ferential concentration of these proteins among the No
DR (𝑛 = 20), Mi NPDR (𝑛 = 20), and Mo NPDR
(𝑛 = 20) groups. Figure 7 shows a representative result
of the individual SID-MRM analysis for the ITIH2 peptide
(VQSTITSR 2++), depicting a differential concentration
range in 60 individual plasma samples, the average elu-
tion time for 15 peptides, an XIC for heavy and light
peptides of a peptide (VQSTITSR 2++), and a MS/MS
spectrum for a fragmented peptide (VQSTITSR 2++). In
our individual SID-MRM analysis, the CV% for reten-
tion time (RT) in the No DR, Mi NPDR, and Mo
NPDR groups showed ranges of 0.87–8.35, 0.23–4.81, and
0.11–4.92min, respectively (Table 1 and Supplementary
Figure 5).

In this quantitative analysis (Figures 8(a) and 8(b)), the
endogenous concentrations of 12 proteins (APOA4, APOH,
B3GNT1, C4B, C5, C7, CD14, CLU, GSN, ITIH2, KRT1, and
VTN) were significantly different between the No DR and
Mi NPDR (AUC value > 0.7) and the No DR and Mo
NPDR (AUC value > 0.7) groups. By contrast, no significant
difference in the concentrations of 3 proteins (APLP2, FN1,
and SERPINF1) was observed between the NoDR andNPDR
groups.

3.7. Construction of a Multimarker Panel Based on the SID-
MRM Results. Statistical analyses was carried out using the
SID-MRMdata for the 15 proteins, which were obtained from
patients with No DR (𝑛 = 20), Mi NPDR (𝑛 = 20), and
Mo NPDR (𝑛 = 20). First, we chose a multimarker panel
that showed the best discriminatory power between the No
DR andMo NPDR groups. We then applied the multimarker
panel to evaluate its discriminatory power between the
No DR and Mi + Mo NPDR groups. Because Mi NPDR
represents an early stage of NPDR, it was not easy to observe
differences between the No DR and Mi NPDR groups. To
screen NPDR, it may be more reliable to screen Mo NPDR
than Mi NPDR. Therefore, to determine the performance of
the multimarker panel, we compared the No DR and Mo
NPDR samples to measure its classification power.

Student’s t-test was performed to compare the No DR
and Mo NPDR groups, and 11 proteins showed significant
differences (APOA4, APOH, B3GNT1, C4B, C5, C7, CD14,
CLU, GSN, ITIH2, and KRT1). Before constructing the
multimarker panel, we conducted a correlation analysis
between all of the markers to test for multicollinearity among
the 11 candidates that we verified by SID-MRM analysis
using linear regression analysis. Multicollinearity generally
indicates that there is a high correlation of at least one
independent variable with a combination of the other inde-
pendent variables. The variation inflation factor (VIF) and
tolerance of the 11 candidate ranged from 1.5 to 7.2 and 0.13
to 0.65, respectively (Supplementary Figure 6A). Generally,
multicollinearity becomes problematic when the VIF value is
greater than 10 and the tolerance is close to 0.

To construct prediction models using the variables that
contribute to the discrimination power, we performed step-
wise MANOVA to determine whether each candidate should
be included in a multimarker panel. The MANOVA test not
only could reveal the significant differences between 2 groups
but also showed relationships between 2 dependent variables
and independent or dependent variables. From the stepwise
MANOVA (Supplementary Figure 6B), 4 verified markers
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Figure 4:Detection of endogenous light peptide levels in pooled plasma.The endogenous light peptide levels in pooled plasmaweremeasured
by analyzing TEST sample #1, which was composed of endogenous light peptides (pooled digested plasma, 1𝜇g/𝜇L) and heavy peptides
(50 fmol of the heavy peptide mixture). From this analysis, low (APLP2, B3GNT1, CD14, and KRT1), middle (C5, C7, FN1, GSN, ITIH2, and
SERPINF1), and high (APOA4, APOH, C4B, CLU, and VTN) concentration ranges of proteins were confirmed.

(ITIH2, APOA4, C7, and CLU) were selected for inclusion in
a multimarker panel.

3.8. Evaluation of a 4-Protein Multimarker Panel in the No
DR versus Mo NPDR Comparison. The 4 verified markers
were used to construct a 4-marker panel, whichwas evaluated
for its discriminatory performance. An algorithm of LDA
was used to examine the discriminatory power in the No
DR versus Mo NPDR comparison; subsequently, LOOCV
was used to avoid overfitting. In the LDA model of the 4-
marker panel, 19 of 20 patients in both the NoDR and theMo
NPDR groups were correctly classified with an error rate of
5% (Figure 9(b)). To compare the discriminatory power of the
4-marker panel with the single best marker (ITIH2), a model
coupledwith LDA for the single bestmarker (ITIH2)was also
built in which LOOCV was performed in the No DR versus
Mo NPDR comparison (Figures 9(a) and 9(b)). As indicated
by the SID-MRM results (Figure 8(a)), ITIH2 showed the
highest AUC value among the 15 verified candidate proteins
and was therefore selected as the best single marker.

In the LDAmodel, for the parameters of sensitivity (0.95),
specificity (0.95), error rate (5%), and AUC value (0.99),
the 4-marker panel was superior to the best single marker
(ITIH2) (Figure 9(b)). The best single marker model showed
a lower sensitivity (0.85), specificity (0.85), AUC value (0.91),
and a higher error rate (15%) when compared to the 4-marker
panel.

3.9. Evaluation of the 4-Marker Panel in theNoDR versusMi +
Mo NPDR Comparison. Next, we used the 4-marker panel to
evaluate its discriminatory power in the No DR versus Mi +
Mo NPDR comparison. In the LDA model, the 4-marker
panel showed that 19 of 20 No DR patients and 36 of 40 Mi +
Mo NPDR patients were correctly classified, while the best
single marker showed that 13 of 20 No DR patients and 22
of 40 Mi + Mo NPDR patients were correctly classified. The
4-marker panel (sensitivity, 0.90; specificity, 0.95; error rate,

8%; and AUC, 0.93) showed better performance than the best
single marker (sensitivity, 0.55; specificity, 0.65; error rate,
41%; and AUC, 0.67) (Figures 9(a) and 9(b)).

4. Discussion

4.1. Selection of DR Biomarker Candidates from the FirstMRM
Analysis. To select biomarker candidates, we performed
data-mining on previously published DR-related studies and
our experimental data. We included human, mouse, and rat
datasets and selected 1202 proteins (data not shown).

However, considering the low number of common pro-
teins between human vitreous fluid and the retina of animal
models, alongwith the use of human plasma in the biomarker
validation step, we decided to only use the human data-
mining data sets for the selection of biomarker candidates.
From the human data-mining analysis, a total of 490 pro-
teins were identified. To confirm the MRM transition, 96
proteins (387 peptides and 1870 transitions) were ultimately
selected.

Based on a MASCOT search to confirm each transition
in pooled plasma, 39 proteins were selected, including 22
proteins that had 2 peptides and 17 proteins that had 1
peptide (Supplementary Table 6). Briefly, 1870 transitions
(387 peptides) for 96 proteins that were found in pooled
plasma were selected. Based on the MASCOT search results,
296 transitions (61 peptides) of 1870 transitions (387 peptides)
were finally identified as peptides derived from the original
protein. The data indicated that 319 (82.4%) of 387 peptides
were coeluted with other peptides, while 61 (15.8%) of
387 peptides were true peptides derived from the original
proteins, which is a very low recovery efficiency. According to
Addona et al. [34], the most common sample-related source
of quantification errors in MRM is ion interference from
other coeluting peptides.

The 39 candidates were then examined in the SQ-MRM
quantification analysis, and we found 15 proteins that were
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Figure 5: The detection of noise signals for heavy peptides in the pooled plasma. Noise signals of heavy peptides were assessed by analyzing
TEST sample #2, which was composed of only endogenous light peptides (pooled plasma, 1𝜇g without heavy peptide). A range of noise
signals was detected for APLP2, B3GNT1, CD14, and GSN, while a noise signal was barely detected for the other proteins.
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Figure 6: Representative calibration curves. To generate calibration
curves for the 15 proteins, heavy peptides were serially diluted (12
concentrations, 0.1–200 fmol) with the light peptide as an internal
standard (digested pooled plasma protein, 1 𝜇g) that was added
into each serially diluted sample. A representative calibration curve
for APOA4 LAPLAEDVR (y2++) is shown. Insets show the linear
ranges of the curves using 𝑅2 ≥ 0.99 to determine the LLOQ.

significantly differentially expressed between the No DR, Mi
NPDR, and Mo NPDR groups.

4.2. A Comparison of the Mean Concentrations in the No
DR, Mi NPDR, and Mo NPDR Groups. To measure the
concentration of the 15 proteins in the No DR (𝑛 = 20),
Mi NPDR (𝑛 = 20), and Mo NPDR (𝑛 = 20) groups, we
first determined the LLOQ range using the pooled plasma
samples. For the 4 proteins (APOA4, CLU, ITIH2, and VTN)
that had a very low LLOQ range (0.19–0.96 fmol/𝜇L), all of
the measured average concentrations had a higher LLOQ
range in the No DR, Mi NPDR, and Mo NPDR groups

(Table 2 and Supplementary Figures 4B and 7). To compare
the concentration ranges between the normal and NPDR
groups, we identified the normal plasma concentrations
reported in the literature [9, 35–38]. The previously reported
concentrations of APOA4 [35] and ITIH2 [36] were higher
or similar when compared to the No DR, Mi NPDR, and
MoNPDR groups, while the reported concentrations of CLU
[35, 36] and VTN [35, 36] were lower than in the DR groups
reported here (Table 2 and Supplementary Figure 7).

By contrast, APLP2, B3GNT1, CD14, and GSN had a
higher LLOQrange (7.71–17.88 fmol/𝜇L).The average concen-
trations of CD14 and APLP2 in the No DR, Mi NPDR, and
Mo NPDR groups were higher than the LLOQ concentration
range, whereas the average concentrations of B3GNT1 and
GSN were lower than the LLOQ concentration range. For
APLP2 and B3GNT1, we assumed that the high LLOD levels
resulted from low endogenous light peptide concentrations
and high levels of noise signals. The concentrations of CD14
[38] and GSN [36] in normal plasma were higher than
the average concentrations in the No DR, Mi NPDR, and
Mo NPDR groups (Table 2 and Supplementary Figure 7).
However, there were no values available in the literature
for the normal plasma concentration ranges of APLP2 and
B3GNT1, so we could not make a comparison between the
reported and measured concentrations.

Among the 15 selected proteins, the other 7 (APOH,
C4B, C5, C7, FN1, KRT1, and SERPINF1) had a mid-
LLOQ range (1.01–3.93 fmol/𝜇L) in this study. The average
measured concentrations for all 7 proteins in the No DR,
Mi NPDR, and Mo NPDR groups were higher than the
LLOQ range (Table 2 and Supplementary Figure 7). The
previously reported concentration ranges of C7 [9, 36] and
FN1 [9, 35–37] were higher in normal plasma, whereas
those of C4B [36] and SERPINF1 [36] were lower than the
average concentration in the No DR, Mi NPDR, and Mo
NPDR groups (Table 2 and Supplementary Figure 7). The
previously published concentration of APOH [36] in normal
plasma was similar to the measured average concentrations
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Figure 7: Representative MRM results of the ITIH2 analysis in the No DR, Mi NPDR, and Mo NPDR groups. A representative MRM result
for ITIH2-peptide (VQSTITSR 2++) is shown.The differential concentration range in 60 individual plasmas (a), elution time points for each
peptide (b), XIC for the heavy and light peptides of VQSTITSR 2++ (c), and the MS/MS spectrum for fragmented peptides (d) are indicated.
In our individual SID-MRM analysis, the CV% for retention time (RT) in the No DR, Mi NPDR, and Mo NPDR groups showed ranges of
0.87–8.35, 0.23–4.81, and 0.11–4.92, respectively. All images were extracted using the Skyline program.
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Figure 8: Verification of biomarker candidates using SID-MRM analysis. The 15 selected proteins from our SQ-MRM analysis underwent a
second round of verification using SID-MRM analysis in the NoDR (𝑁 = 20), Mi NPDR (𝑁 = 20), andMoNPDR (𝑁 = 20) plasma samples.
Box plots (a) and ROC with AUC values (b) were generated based on the SID-MRM analysis.
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in the No DR, Mi NPDR, andMoNPDR groups (Table 2 and
Supplementary Figure 7). For C5 [36], its concentration in
normal plasmawas lower in theNoDRandMiNPDRgroups,
while its level was higher in theMoNPDR group (Table 2 and
Supplementary Figure 7). The normal plasma concentration
range of KRT1 has not been previously reported.

In the quantitative analysis using 60 individual samples
(Figures 8(a) and 8(b)), the concentrations of 12 proteins
(APOA4, APOH, B3GNT1, C4B, C5, C7, CD14, CLU, GSN,
ITIH2, KRT1, andVTN)were significantly different in theNo
DR versus Mi NPDR (AUC value > 0.7) and No DR versus
Mo NPDR (AUC value > 0.7) comparisons. By contrast,
no significant difference in the concentration of 3 proteins
(APLP2, FN1, and SERPINF1) was detected among the No
DR, Mi NPDR, and Mo NPDR groups.

4.3. Evaluation of the 4-Marker Panel among the No DR, Mi
NPDR, and Mo NPDR Groups. To improve the classification
discriminating power between the NoDR andNPDR groups,
we constructed a multimarker panel and subjected it to
statistical evaluation. A similar approach has been carried
out to identify a novel biomarker that can distinguish disease
status between affected and healthy groups; a multimarker
panel that included more than 1 protein showed better
performance than a single marker [33, 39–42].

Before we selected variables for the multimarker panel,
we first considered which combination of sample groups
(No DR, Mi NPDR, and Mo NPDR) would show the best
discriminating power.MiNPDR is a very early stage ofNPDR
and it was not easy to observe differences in the NoDR group
versus the Mi NPDR group. However, Mo NPDR is a more
advanced stage of NPDR and may be more representative
of a NPDR diagnosis than Mi NPDR. Thus, the detection
of Mo NPDR might be more suitable for NPDR screening.
Therefore, we first selected a multimarker panel that showed
the best discriminatory power between the No DR and Mo
NPDR groups. We then applied this multimarker panel to
evaluate its discriminatory power in No DR versus the Mi +
Mo NPDR.

We first determined the correlation and multicollinearity
among the 15 potential markers as variables to evaluate
performance. Thereafter, we selected 4 potential markers
that showed significantly different patterns in the No DR
and Mo NPDR groups using Student’s t-test and stepwise
MANOVA. Using the 4 significantly different marker pro-
teins (ITIH2, APOA4, C7, and CLU), the multimarker panel
was constructed and statistical validation was performed
using LOOCV.The LDAmethod was employed for statistical
analysis of the model.

In a comparison of the No DR group with the Mo NPDR
group, the 4-marker panel showed better sensitivity (0.95),
specificity (0.95), error rate (5%), and AUC value (0.99)
than the best single marker (ITIH2). Indeed, the single best
candidate model showed lower sensitivity (0.85), specificity
(0.85), AUC value (0.91), and a higher error rate (15%).
Moreover, for the NoDR versusMi +MoNPDR comparison,
the 4-marker panel (sensitivity, 0.90; specificity, 0.95; error
rate, 8%; and AUC, 0.93) also showed better performance
than the best single marker (sensitivity, 0.55; specificity, 0.65;

error rate, 41%; and AUC, 0.67). These data demonstrate that
the discriminatory power of the 4-marker marker panel was
higher than the best single marker model.

Finally, we suggest that the multimarker panel (ITIH2,
APOA4, C7, and CLU) is able to distinguish DR status
between the patient and normal groups. However, more
precise validation with a larger sample size is needed. Further
validation in a larger sample size might yield a better
understanding of statistical analysis and correlated variables,
facilitating the development of better biomarkers for DR.

5. Conclusion

We have performed a comprehensive proteomics study to
identify biomarkers for DR. We first performed data-mining
on the previously published DR-related studies and our
experimental data; 96 proteins were then selected. To verify
the selected biomarker candidates in plasma, candidates were
selected, confirmed, and validated in the plasma of patients in
theNoDR,MiNPDR, andMoNPDRgroups using SQ-MRM
and SID-MRM analyses. In the final stage, we constructed a
model for a multimarker panel using the 11 verified markers
derived fromour SID-MRManalysis. Ourmultimarker panel
showed merged AUC values of 0.99 (No DR versus Mo
NPDR) and 0.93 (No DR versus Mi + Mo NPDR). The 4-
protein marker panel (APO4, C7, CLU, and ITIH2) can be
used as baseline data for the discovery of novel biomarkers
for detecting early stage DR and for further validation using
a larger panel of proteins.
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