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Abstract

Background: Although the primary risk factors for developing oral cancers are well understood, less is known
about the relationship among the secondary factors that may modulate the progression of oral cancers, such as
high-risk human papillomavirus (HPV) infection and folic acid (FA) supplementation. This study examined high-risk
HPV and FA supplementation effects, both singly and in combination, to modulate the proliferative phenotypes of
the oral cancer cell lines CAL27, SCC25 and SCC15.

Results: Using a comprehensive series of integrated in vitro assays, distinct effects of HPV infection and FA
supplementation were observed. Both high-risk HPV strains 16 and 18 induced robust growth-stimulating effects in
CAL27 and normal HGF-1 cells, although strain-specific responses were observed in SCC25 and SCC15 cells.
Differential effects were also observed with FA administration, which significantly altered the growth rate of the
oral cancer cell lines CAL27, SCC15, and SCC25, but not HGF-1 cells. Unlike HPV, FA administration induced broad,
general increases in cell viability among all cell lines that were associated with p53 mRNA transcriptional down-
regulation. None of these cell lines were found to harbor the common C677T mutation in
methylenetetrahydrofolate reductase (MTHFR), which can reduce FA availability and may increase oral cancer risk.

Conclusion: Increased FA utilization and DNA hypermethylation are common features of oral cancers, and in these
cell lines, specifically. The results of this study provide further evidence that FA antimetabolites, such as Fluorouracil
(f5U or 5-FU) and Raltitrexed, may be alternative therapies for tumors resistant to other therapies. Moreover, since
the incidence of oral HPV infection has been increasing, and can influence oral cancer growth, the relationship
between FA bioavailability and concomitant HPV infection must be elucidated. This study is among the first pre-
clinical studies to evaluate FA- and HPV-induced effects in oral cancers, both separately and in combination, which
provides additional rationale for clinical screening of HPV infection prior to treatment.
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Background
Oral cancers take many years or decades to develop and
may involve many separate, but inter-related processes
[1,2]. Epidemiologic studies have provided evidence that
tobacco and alcohol use are the major oral cancer risk

factors, because of their direct and indirect carcinogenic
effects on oral tissues [3,4]. During this lengthy process
of carcinogenesis, many other factors are known to
interact with, and modulate, oral tumor growth, includ-
ing diet and infectious agents [5,6].
For example, a growing body of evidence has demon-

strated that human papillomavirus (HPV) is a separate,
independent oral cancer risk factor [7,8]. The high-risk
HPV types involved in cervical carcinogenesis, HPV16
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and HPV18, are present in a significant subset of oral
cancers, and may contribute to oral carcinogenesis by
similar mechanisms [7,9,10]. More specifically, the HPV
“early” oncoproteins, E6 and E7, which promote viral
replication, also bind p53 and disrupt tumor suppressor
functions of retinoblastoma (Rb) and Bcl-2 [11]. Thus,
infected cells bypass traditional G1/S cell cycle check-
points disrupting the normal cell cycle. This disruption
ultimately propels cell proliferation and drives carcino-
genesis. More recent evidence also demonstrates HPV
infection may function to modulate the growth of
already existing oral tumors [12,13].
Despite understanding the primary mechanisms of

HPV-mediated carcinogenesis [14], less is known about
the secondary factors that modulate this transformation.
A critical factor of HPV progression is methylation of
the HPV genome [15,16]. Site-specific CpG methylation,
mediated in part by adequate methyl donor availability
(folate sufficiency), may be sufficient to slow or suppress
HPV-driven carcinogenesis [17,18]. Partial demethyla-
tion or hypomethylation, which may result from inade-
quate methyl donor availability (folate insufficiency), is
now known to be required for HPV-mediated cellular
transformation [19].
Dietary folate intake facilitates specific metabolic pro-

cesses, including the formation of S-adenosylmethionine,
the primary methyl donor for DNA methylation reac-
tions [20,21]. Human folate deficiencies are associated
with many health disorders, including neural tube
defects, vascular disease, microcytic anemia, and many
types of cancer - including oral cancers [22-25]. Insuffi-
cient dietary intake of folate may result in dysregulation
of DNA methylation, interfering with DNA synthesis
and repair, which may initiate or trigger these adverse
health conditions [26,27]. Some evidence now demon-
strates that tobacco and alcohol use modulate folate
metabolism by interfering with folate absorption and
increasing renal excretion of folate, thereby lowering
bioavailable folate [5,6,28]. In addition, previous studies
also demonstrate that a common polymorphism in the
methylenetetrahydrofolate reductase (MTHFR) gene,
coding for the enzyme that produces the circulating
form of folate, decreases function and capacity of this
enzyme while increasing oral cancer risk [29,30].
To reduce the incidence of neural tube defect preg-

nancies associated with folate deficiency, the US Food
and Drug Administration (FDA) adopted requirements
for folate fortification of many food products starting in
1996 [31]. These measures were associated with an
increase in mean dietary folate intake within the popula-
tion, and a reduced incidence of neural tube defects and
other folate deficiency-associated health conditions [32].
However, although folate sufficiency protects normal,
non-neoplastic cells from turning cancerous through

maintainance of normal DNA synthesis, repair and
methylation, an opposite effect of supplementation on
pre-existing early-stage colorectal cancers has been
noted [33,34]. Most recently, some evidence now sug-
gests that folate supplementation may also drive the
growth and proliferation of oral cancers [35,36].
A thorough investigation of the inter-connected and

inter-related mechanisms of the secondary factors that
may modulate the growth and progression of oral can-
cers, such as high-risk HPV infection and folate supple-
mentation is needed to elucidate these relationships.
The purpose of this study is to elucidate the potential
for high-risk HPV and folate supplementation, both sin-
gly and in combination, to modulate the proliferative
phenotypes of well-characterized oral cancer cell lines.

Materials and methods
Cell culture
The human OSCC cell lines used in this study, CAL27
(CRL-2095), SCC15 (CRL-1623), SCC25 (CRL-1628),
and HGF-1 (CRL-2014) were obtained from American
Type Culture Collection (ATCC: Manassas, VA). CAL27
cells were maintained in Dulbecco’s Modified Eagle’s
Medium (DMEM) with 4 mM L-glutamine, adjusted to
contain 3.7 g/L sodium bicarbonate and 4.5 g/L glucose
from Hyclone (Logan, UT). SCC15 and SCC25 cells
were maintained in a 1:1 mixture of DMEM and Ham’s
F12 medium with 2.5 mM L-glutamine, modified to
contain 15 mM HEPES, 0.5 mM sodium pyruvate, and
1.2 g/L sodium bicarbonate (ATCC), supplemented with
400 ng/ml hydrocortisone from Sigma-Aldrich (St.
Louis, MO). The control oral cell line HGF-1 (CRL-
2014) was maintained in DMEM with 4 mM L-gluta-
mine, adjusted to contain 3.7 g/L sodium bicarbonate
and 4.5 g/L glucose, from Hyclone (Logan, UT). Media
for all cell lines was supplemented with 10% fetal bovine
serum (FBS), and with 1% Penicillin (10,000 units/mL)-
Streptomycin (10,000 μg/mL) solution (HyClone). Cell
cultures were maintained in 75 cm2 Becton, Dickinson
(BD) Falcon tissue-culture treated flasks (Bedford, MA)
at 37°C and 5% CO2 in humidified chambers.

Materials
Folic acid (FA) with molecular weight (MW) = 441.40
was obtained from Fisher Bioreagents (Fair Lawn, New
Jersey. Lot#075677). Proliferation and viability assays
were performed in the appropriate complete media, with
and without the addition of FA (100 μg/mL, 400 μg/
mL). These concentrations represent 0.23 mM and 0.91
mM FA, supraphysiologic concentrations which allow
for short-term in vitro effects to be observed.
100 μg/mL = 100 mg/L = 0.1 g FA/441.4 MW =

0.0002265 or 0.23 mM400 μg/mL = 400 mg/L = 0.4 g
FA/441.4 MW = 0.0009062 or 0.91 mM
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The US population mean folate serum concentration
range is 2.7 nM/L and 11.4 nM/L, which corresponds
with low-range and average US population folic acid
equivalents intake measures, as of 2005 (79-376 μg/mL)
[37]. The media used for these experiments, DMEM or
Ham’s F-12, with 10% FBS each contain 2.3 μM FA or
the equivalent of 1.015 μg/mL, which is approximately
0.25 - 1% of the experimental concentrations used [38].

Transfection
CAL27, SCC15, SCC25, and HGF-1 cells were seeded in
25 cm2 BD Falcon tissue-culture treated flasks in appro-
priate media as described above and allowed to achieve
70% confluence. Cells were then transiently transfected
by adding 1 μg/mL of the full-length HPV type 16,
cloned into the pBluescript SK-vector (ATCC #45113)
or the HPV type 18, cloned into the pBR322 vector
(ATCC #45152). The transfections were performed
using the Stratagene Mammalian Transfection Kit (La
Jolla, CA) according to the manufacturer’s recom-
mended protocol for CaPO4 transfection. Mock trans-
fectants (mTF) of each cell line were also established by
performing the same transfection protocol, but without
using virus. Transfections were confirmed by RT-PCR
analysis of HPV mRNA production using extracted cel-
lular RNA.

Proliferation
Proliferation assays were performed using cell lines,
transfected with HPV16, HPV18, and non-transfected
controls, with and without the addition of FA (100 μg/
mL, 400 μg/mL). Proliferation assays were performed
in the appropriate complete media in Corning Costar
96-well assay plates (Corning, NY) at a concentration
of 1.2 × 104 cells per well, and proliferation was mea-
sured over three days. Cultured cells were fixed at
three time points, after 24 hrs (day 1), after 48 hrs
(day 2), and after 72 hrs (day 3) using 50 μL of 10%
buffered formalin, and were stained with crystal violet
1% aqueous solution (Fisher Scientific: Fair Lawn, NJ).
The relative absorbance was measured at 630 nm
using a Bio-Tek ELx808 microplate reader (Winooski,
VT). Data were analyzed and graphed using Microsoft
Excel (Redmond, WA) and SPSS (Chicago, IL). Three
separate, independent replications of each experiment
were performed.

Relative-fold increase in proliferation
Trypsinizing and plating cells may have proliferation-sti-
mulating effects within laboratory cell culture-based
assays, which have been observed between d0 and d1 in
previously published work involving this specific method
of proliferation assay in these cell lines [36,39]. To
reduce the overall impact of these effects, the relative

change in proliferation, measured as the change or rela-
tive-fold increase (RFI) in absorbance between d3 and
d1, can be calculated to more accurately assess the
changes induced by these experimental treatments.

Statistics
Comparisons of the effects of treatments were made
using two-tailed t tests with a = .05. All samples were
analyzed using two-tailed t tests as departure from nor-
mality can make more of a difference in a one-tailed
than in a two-tailed t test [40]. As long as the sample
size is even moderate (> 20) for each group, quite severe
departures from normality make little practical differ-
ence in the conclusions reached from these analyses. To
confirm the effects observed from these experiments,
further analysis of the data was facilitated with ANOVA
using SPSS (Chicago, IL). Significance for ANOVA was
p < 0.05.

Survival and viability
Prior to plating cells for proliferation assays, aliquots of
trypsinized cells were stained using Trypan Blue (Sigma:
St. Louis, MO), and live cells were enumerated by
counting the number of Trypan-blue negative cells
using a VWR Scientific Counting Chamber (Plainfield,
NJ) and a Zeiss Axiovert 40 inverted microscope (Got-
tingen, Germany). At each time point (d1-d3), several
wells were processed using the Trypan stain, and live
cells were enumerated using this procedure.

DNA isolation, PCR, and RFLP
To determine if these cell lines harbored the most com-
mon DNA polymorphism in the MTHFR gene (C677T)
or any endogenous HPV virus, DNA was isolated from
1.5 × 107 cells from each cell line using the Genomic-
Prep DNA isolation kit (Amersham Biosciences: Buckin-
ghamshire, UK), using the procedure recommended by
the manufacturer. DNA concentration was measured
using the optical density absorbance value measured by
a spectrophotometer at 260 nm. DNA purity was calcu-
lated using ratio measurements of absorbance at 260
and 280 nm; A260:A280 purity range should be between
1.7 and 2.0. DNA from each cell line was used to per-
form polymerase chain reaction (PCR) with the Fisher
exACTGene complete PCR kit (Fisher Scientific: Fair
Lawn, NJ) and a Mastercycler gradient thermocycler
(Eppendorf: Hamburg, Germany) using the following
MTHFR [41], and HPV [13,35] primers, synthesized by
SeqWright (Houston, TX):

MTHFR 677 forward primer, 5’-TGAAGGA-
GAAGGTGTCTGCGGGA-3’
MTHFR 677 reverse primer, 5’-
AGGACGGTGCGGTGAGAGTG’3’
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HPV18 forward primer,
ATGGCGCGCTTTGAGGATCC;
HPV18 reverse primer,
GCATGCGGTATACTGTCTCT;
HPV16 forward primer,
ATGTTTCAGGACCCACAGGA;
HPV16 reverse primer,
CCTCACGTCGCAGTAACTGT;

One μg of template DNA was used for each reaction.
The initial denaturation step ran for 1 minute at 94°C.
Thirty amplification cycles were run, consisting of 30
second denaturation at 94°C, 60 seconds of annealing at
58°C, and 6.5 minutes of extension at 68°C. Final exten-
sion was run for 5 minutes at 68°C. No cell lines were
found to harbor HPV16 or HPV18 DNA.
The C677T MTHFR polymorphism creates a Hinf1

cleavage site, yielding DNA fragment lengths of 175 bp
and 23 bp in the presence of the variant T allele. Thus
the restriction fragment length polymorphisms (RFLP)
or 677 MTHFR genotype banding patterns are as fol-
lows; wild type (C/C) 198 bp, heterozygote (C/T) 198
bp, 175 bp and 23 bp, and homozygote recessive 175 bp
and 23 bp [42,43]. The MTHFR PCR reaction products
(fragment length 198 bp) were therefore digested over-
night at 37°C using the restriction enzyme HinfI (New
England Biolabs: Ipswich, MA) and the reaction pro-
ducts were separated by gel electrophoresis using Reliant
4% NuSieve® 3:1 Plus Agarose gels (Lonza: Rockland,
ME). Bands were visualized by UV illumination of ethi-
dium-bromide-stained gels and captured using a Kodak
Gel Logic 100 Imaging System and 1D Image Analysis
Software (Eastman Kodak: Rochester, NY).

RT-PCR
To determine the cellular phenotype of p53 mRNA
transcription, as well as to confirm HPV-specific mRNA
production post-transfection, RNA was isolated from 1.5
× 107 cells after HPV transfection and also following FA
administration using ABgene Total RNA Isolation
Reagent (Epsom: Surrey, UK) and the procedure recom-
mended by the manufacturer. RT-PCR was performed
with the ABgene Reverse-iT One-Step RT-PCR Kit
ReadyMix Version and a Mastercycler gradient thermo-
cycler (Eppendorf: Hamburg, Germany) using primers
for the control, Glyceraldehyde 3-phosphate dehydro-
genase (GAPDH) [44], and p53 [45], as well as for
HPV16 and 18:

p53 forward primer, 5’-
ACCAGGGCAGCTACGGTTTC’3’
p53 reverse primer, 5’-CCTGGGCATCCTT-
GAGTTCC-3’

GAPDH forward primer,
ATCTTCCAGGAGCGAGATCC;
GAPDH reverse primer,
ACCACTGACACGTTGGCAGT;

One μg of template (total) RNA was used for each reac-
tion. The reverse transcription step ran for 30 minutes at
47°C, followed by denaturation for 2 minutes at 94°C.
Thirty-five amplification cycles were run, consisting of 20
second denaturation at 94°C, 30 seconds of annealing at
58°C, and 6.5 minutes of extension at 72°C. Final extension
was run for 5 minutes at 72°C. Reaction products were
separated by gel electrophoresis using Reliant 4% NuSieve®

3:1 Plus Agarose gels (Lonza: Rockland, ME). Bands were
visualized by UV illumination of ethidium-bromide-stained
gels and captured using a Kodak Gel Logic 100 Imaging
System and 1D Image Analysis Software (Eastman Kodak:
Rochester, NY). Quantitation of RT-PCR band densitome-
try was performed using Adobe (San Jose, CA) Photoshop
imaging software, Image Analysis tools.

Results
The oral squamous cell carcinoma lines, CAL27, SCC25,
and SCC15, were grown in 96-well assay plates over
three days in separate, independent experiments to
establish baseline measurements of growth among
untreated cells (Figure 1). All three cell lines rapidly
increased in confluence more than four-fold over three
days. The growth of the normal, non-tumorigenic cell
line, HGF-1, increased slightly more than two-fold, from
less than 10% confluence to approximately 22% during
the same period. To reduce the proliferation-stimulating
effects of trypsinizing and plating cells, previously
observed as an initial cell division observed between d0
and d1 in these cell lines [13,36,46,47], the RFI, mea-
sured as the absorbance value at d3 minus the value at
d1, was evaluated. This analysis revealed that the prolif-
eration of CAL27 cells was mainly observed between d1
and d3, with HPV16, HPV18, FA [100 μg/mL] and FA
[400 μg/mL]. However, the combined effects of FA and
HPV were then assessed, which revealed that the conco-
mitant addition of FA at either concentration signifi-
cantly inhibited HPV-mediated growth (p < 0.05).
More specifically, CAL27 HPV16-mediated growth

was reduced by FA administration at the lower concen-
tration (100 μg/mL) to 0.15-fold over baseline growth
and inhibited to -0.31-fold at the higher concentration
and GSMAX (400 μg/mL). Similarly, HPV18-mediated
growth of CAL27 cells was inhibited by FA administra-
tion at these concentrations to -0.45 and -0.55-fold,
respectively (p < 0.05).
Similarly, SCC15 proliferation was mainly observed

between d1 and d3, with HPV16, HPV18, FA [100 μg/
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Figure 1 Measurement of relative-fold increase (RFI): FA modulation of HPV effects. Analysis of RFI in CAL27 cells revealed the growth
stimulating effects of HPV16, HPV18, FA [100] and FA [400] are reduced or inhibited when HPV and FA are concomitantly administered. Similarly,
SCC15 cell growth stimulated by HPV18, FA [100 μg/mL] and FA [400 μg/mL] is either reduced or inhibited by concomitant HPV and FA
administration. SCC25 cell growth, stimulated by HPV16, FA [100 μg/mL] and FA [400 μg/mL] is also significantly reduced, although not
completely inhibited by concomitant HPV and FA administration. HGF-1 cell growth, stimulated by HPV16 and HPV18 but not FA administration,
was robustly enhanced by concomitant administration of HPV and FA. Both HPV16 and HPV18 enhanced HGF-1 proliferation at either
concentration of FA [100 or 400 μg/mL].
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mL] and FA [400 μg/mL]. However, the combined
effects of HPV16 and FA at 100 μg/mL did not stimu-
late SCC15 growth (-0.075-fold, p > 0.05), but did at
400 μg/mL (+0.15-fold, p < 0.05). The combination of
HPV18 and FA at 100 μg/mL also did not stimulate
SCC15 growth (0.01-fold, p > 0.05), but did at 400 μg/
mL (+0.225-fold, p < 0.05).
Finally, the combined effects of HPV16 and FA on

SCC25 cells at 100 μg/mL strongly enhanced growth
(0.6-fold, p < 0.05), as did FA at 400 μg/mL (0.45-fold, p
< 0.05). The combined effects of HPV18 and FA on
SCC25 cells at either 100 or 400 μg/mL were similar,
increasing growth modestly (0.15-fold, p < 0.05)
Intriguingly, the effects of HPV16 and HPV18 on

HGF-1 cell proliferation were strongly enhanced by FA
administration. FA supplementation increased HPV16-
mediated HGF-1 growth by 2.8-fold and 2.6-fold at the
lower and higher concentrations evaluated (p < 0.05),
while HPV18-mediated growth was increased by 3.2-fold
and 2.4-fold at these concentrations (p < 0.05).

Survival and viability
To determine if the observed effects on cell growth
induced by HPV transfection or FA supplementation
were due, in part, to changes in cell survival, each cell
line and experimental treatment were analyzed at each
time point of the proliferation assays and under each of
the treatment conditions (Table 1). The addition of
HPV16 or HPV18 increased survival among CAL27 cells
from an average of 73% in non-transfected cells to 94%
and 95%, respectively. Significant increases in survival
were also observed under both high and low concentra-
tions of FA.
SCC15 baseline survival (79%) was relatively unaf-

fected by HPV16 (80%), but was significantly enhanced
HPV18 (88%). However, significant increases in survival
were observed under both conditions of FA administra-
tion, to 94% (100 μg/mL) and 91% (400 μg/mL).
Although HPV16 increased SCC25 survival to 86% from
a baseline of 80%, no such increase in survival observed
with HPV18 (79%). FA administration was associated
with significant increases in SCC25 survival. Survival
among HGF-1 cells (84%) was also significantly

increased by HPV16, HPV18 and FA treatments by
nearly equal levels (~10%).

MTHFR RFLP screening
Because folate bioavailability may be reduced by a com-
mon DNA single nucleotide polymorphism (SNP) in the
methylenetetrahydrofolate reductase (MTHFR) gene,
which encodes the enzyme responsible for producing
the circulating form of folate, each cell line was exam-
ined to determine if the most common MTHFR DNA
polymorphism (C677T) was present. The RFLP analysis
demonstrated that CAL27, SCC25, SCC15 and HGF-1
cells were not found to contain the MTHFR C677T
polymorphism (Figure 2A). To rule out confounding
effects of DNA concentration, absorbance measurements
were taken, revealing similar DNA concentrations from
each cell line, which ranged from 821 - 895 ng/μL (Fig-
ure 2B). Analysis of A260/A280 ratio confirmed the
similarity of purity from the DNA isolates, which aver-
aged between 1.76 and 1.92. PCR amplifying the house-
keeping gene, GAPDH, revealed nearly identical band
patterns of similar intensity (Figure 2C).

p53 mRNA transcription
Some evidence has demonstrated the differing effects of
folic acid supplementation according to the p53 tran-
scription profile of the tumor. The p53 mRNA tran-
scription profile for each cell line under each
experimental condition, untreated (control: Ctl), FA at
400 μg/mL (+FA), HPV16 or HPV18 + FA was exam-
ined (Figure 3A). Densitometric measurements of rela-
tive end-point RT-PCR band intensity revealed
administration of FA significantly reduced p53 mRNA
transcription in CAL27, SCC25, and SCC15 cells nearly
completely. HGF-1 mRNA transcription, however, was
relatively unaffected (-5%).
The concomitant administration of HPV and FA also

exhibited differential effects on p53 mRNA transcription
in each cell line. In CAL27 cells, p53 mRNA transcrip-
tion was restored and indistinguishable from untreated
CAL27 cells. In SCC25 cells, however, HPV18 + FA was
associated with more than three-fourths reduction in
p53 mRNA transcription (-76%), while HPV16 + FA
administration was associated with a more modest inhi-
bition (-25%). Interestingly, p53 mRNA transcription in
SCC15 cells was inhibited under all conditions evalu-
ated, +FA, HPV16 + FA, and HPV18 + FA. The normal
cell line, HGF-1, however exhibited no significant
changes in p53 mRNA transcription under FA adminis-
tration alone, although a nearly complete reduction
under HPV16 + FA and HPV18 + FA was observed.
GAPDH mRNA transcription in each cell line, however,
remained relatively constant.

Table 1 Cell viability

CAL27 SCC15 SCC25 HGF-1

73% 79% 80% 84%

HPV16 94% 80% 86% 94%

HPV18 95% 88% 79% 93%

FA [100 μg/mL] 96% 94% 97% 91%

FA [400 μg/mL] 96% 91% 99% 93%
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HPV screening
Finally, to confirm these cell lines did not already harbor
endogenous HPV, which could potentially confound
these observations, DNA and RNA from each cell line
was used to perform PCR and RT-PCR screenings using
primers specific for HPV16 and HPV18 (Figure 3B and
3C). These results demonstrated that HGF-1, SCC25,
SCC15 and CAL27 cells did not harbor HPV16 or
HPV18 DNA (Figure 3B). DNA isolated from HPV-posi-
tive cervical cancer cell lines (CaSKi, HPV16; GH354,
HPV18) was used as PCR positive controls. In addition,
DNA presence post-transfection was confirmed using
PCR, which demonstrated HPV-specific DNA was pre-
sent each cell line, but not in the mock transfectants
(mTF) (Figure 3C). In addition, HPV-specific mRNA
was expressed in all cell lines following transfection,
which was similar to mRNA expression levels in control
cells.

Discussion
Although epidemiologists and oral health researchers
concur that the majority of oral cancers originate from
the use of tobacco and alcohol, recent studies have also
suggested that both HPV infection and folate sufficiency
accelerated oral cancer growth [7,8,48,49]. The goal of
this study was to investigate the possibility that high-
risk HPV infection and FA administration, both singly
and in combination, could mediate the proliferation of
well-characterized oral cancers. To test these hypoth-
eses, a comprehensive series of integrated in vitro assays
were performed that clearly demonstrated distinct
effects of HPV infection and FA supplementation in

each cell line examined. For example, although both
high-risk HPV strains induced robust growth-stimulat-
ing effects in CAL27 and HGF-1 cells, strain-specific
responses were observed in both SCC25 and SCC15
cells. These results are consistent with previous reports
of HPV strain-specific effects [13], as well as evidence
that oral cancers are not dependent upon the inhibition
of a single signal transduction or tumor suppression
pathway for growth and development [50].
It is important to note that increased survival and via-

bility was also observed under conditions of HPV-stimu-
lated growth. These observations suggest that
modulation of either p53 or Rb-specific pathways by
HPV E6 and E7 genes could be responsible for lowering
the barriers to G1/S cell cycle progression, thereby
simultaneously increasing both the rates of proliferation
as well as cell viability as previously observed [51-53].
Furthermore, that FA administration increased prolifera-
tion and simultaneously down-regulated p53 mRNA
transcription in all three oral cancer cell lines, but not
HGF-1 cells, strongly suggests this pathway may be, in
part, critical to our understanding of these processes.
Another key finding was the observation of differential

effects induced by FA administration, which significantly
altered the growth rate of oral cancers, but not normal
cells. This evidence suggests folate bioavailability may be
a rate-limiting step among oral cancers that have
impaired or reduced function in one or more cell cycle
inhibition pathways, which is further supported by the
observation that these dose-dependent effects can be
saturated [36,54]. Unlike HPV, FA administration
induced broad, general increases in cell viability among

μμμμ
μμμμ
μμμμ
μμμμ

Figure 2 DNA and RFLP analysis. A) Hinf1 restriction digestion (RFLP) of PCR products (C/C: 198 bp) were used to screen for C677T SNP
genotype of MTHFR. The C677T MTHFR polymorphism creates a Hinf1 cleavage site, yielding DNA fragment lengths of 175 bp and 23 bp in the
presence of the variant T allele. The normal (HGF-1) and all three oral cancer cell lines (SCC25, SCC15, CAL27) were found to harbor wild type (C/
C) genetic profiles; no heterozygotes (C/T) or homozygous mutants (T/T) were observed. B) DNA concentration and purity derived from
absorbance readings at 260 and 280 nm revealed similar concentrations (821-895 ng/μL) and purity (1.76 - 1.92) from each cell line. C) PCR using
control using GAPDH established similar band intensities from each cell line.
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all cell lines, which may support the observations that
folate bioavailability may also play critical roles in bio-
synthetic and epigenetic pathways that are not directly
related to cellular growth or proliferation [22,29,30].
Although FA administration increased cellular viability
in the normal cell line, this increase was comparatively
smaller than the effects in the oral cancer cell lines,
which might suggest these larger changes in survival
and viability might function to exacerbate the observed
proliferation-stimulating effects among oral cancers over
time.
Previous studies have demonstrated the proliferation

stimulating effects of HPV and FA administration on
oral cancers may suggest that concomitant removal or
reduction of p53 and Rb tumor suppression pathways
and increased folate bioavailability could greatly amplify
cellular growth [7,8,22,24,27]. In fact, this was observed
in the responses of the normal cell line, HGF-1.

However, the combined effects of HPV and FA adminis-
tration were strikingly different, with a reduction or
complete inhibition of growth observed in all three oral
cancer cell lines. Further analysis revealed several studies
that now confirm CpG site-specific methylation of HPV
DNA, mediated in part by folate availability, is sufficient
to suppress neoplastic progression [17,18,55,56].
Although preferential DNA methylation in p53 exons
248 and 273 by DNA methyltransferases may occur dur-
ing oral carcinogenesis [57,58], CpG methylation of the
HPV genome is among the most important factors that
limit viral production and HPV-mediated phenotypes
[15,16,59]. Based upon this understanding, a more thor-
ough and complete investigation is warranted to explore
the role of folate in mediating the availability of methyl
groups for CpG-specific DNA methylation, influencing
p53 and HPV mRNA transcription, as well as biosyn-
thetic pathways in oral cancers.
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Finally, a limitation of this and other preclinical stu-
dies involves the use of oral cancer cell lines, as there
may be underlying dissimilar genetic mutations that
might potentially influence the experimental outcomes.
For example, the SCC25 cell line has been found to con-
tain a deletion in the cdk1 promoter that contains a key
transcriptional repressor region [60]. The CAL27 cell
line contains a nonsense mutation in the SMAD4 gene,
while SCC15 cells were found to harbor a missense
mutation in SMAD2 - both signal TGF-b transduction
proteins [61]. In addition, both CAL27 and SCC15 cells
contains a single nucleotide polymorphism in the
S100A2 gene, a calcium-binding tumor suppressor pro-
tein, although this did not appear to alter their propen-
sity for growth, migration or invasion [62]. However, a
growing body of evidence demonstrates that dysregula-
tion and reduced expression of key tumor suppressors,
such as p16, in these cell lines may, in fact, be the result
of hypermethylation - providing further justification to
elucidate the interconnected roles of FA bioavailability
and utilization may play in the growth and progression
of oral cancers [63-65].

Conclusions
Although individual studies have suggested that either
high-risk HPV infection or FA administration may influ-
ence the growth and progression of oral cancers, evi-
dence is now emerging that indicates folate
bioavailability and oral HPV infection are very closely
inter-connected. The policy of folate food fortification,
routine multivitamin use and FA supplementation, com-
bined with an ever-increasing prevalence of oral HPV
infections, suggests a more complete and thorough
investigation of these inter-relationships is needed. This
study is among the first to examine these relationships
and provide specific information about p53-specific
pathway modulation and MTHFR genotypes in oral can-
cers, which may be particularly useful to oncologists and
oral health researchers as they develop rubrics for gen-
eralizing the effects and most effective treatment options
for patients with oral cancer.
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