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The steady-state visual evoked potential based brain–computer interface (SSVEP–
BCI) can provide high-speed alternative and augmentative communication in real-world
applications. For individuals using a long-term BCI, within-subject (i.e., cross-day and
cross-electrode) transfer learning could improve the BCI performance and reduce the
calibration burden. To validate the within-subject transfer learning scheme, this study
designs a 40-target SSVEP–BCI. Sixteen subjects are recruited, each of whom has
performed experiments on three different days and has undergone the experiments
of the SSVEP–BCIs based on the dry and wet electrodes. Several transfer directions,
including the cross-day directions in parallel with the cross-electrode directions, are
analyzed, and it is found that the transfer learning-based approach can maintain
stable performance by zero training. Compared with the fully calibrated approaches,
the transfer learning-based approach can achieve significantly better or comparable
performance in different transfer directions. This result verifies that the transfer learning-
based scheme is well suited for implementing a high-speed zero-training SSVEP–BCI,
especially the dry electrode-based SSVEP–BCI system. A validation experiment of the
cross-day wet-to-dry transfer, involving nine subjects, has shown that the average
accuracy is 85.97 ± 5.60% for the wet-to-dry transfer and 77.69 ± 6.42% for the fully
calibrated method with dry electrodes. By leveraging the electroencephalography data
acquired on different days by different electrodes via transfer learning, this study lays
the foundation for facilitating the long-term usage of the SSVEP–BCI and advancing the
frontier of the dry electrode-based SSVEP–BCI in real-world applications.

Keywords: brain–computer interface, steady-state visual evoked potential, electroencephalography, transfer
learning, cross day, cross electrode

INTRODUCTION

A brain–computer interface (BCI) establishes an information channel between the brain and
external devices without depending on a conventional spinal cord or a peripheral neuromuscular
system (Lebedev and Nicolelis, 2006). The BCI technology can be used in functional recovery
and replacement, providing alternative and augmentative communication for patients with motor
disabilities. The steady-state visual evoked potential (SSVEP) is the brain response to periodic
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visual stimuli, and it has been well known for its frequency
tagging attribute. The SSVEP has the same fundamental
frequency and harmonic components as the visual stimulus and
can maintain good time–lock and phase–lock characteristics with
the stimulus signal. The high signal-to-noise ratio (SNR) profile
of the SSVEP has been used to implement an SSVEP-based BCI
(SSVEP–BCI), which represents a simple and easy-to-use system
with a high information transfer rate (ITR) (Wang et al., 2006;
Bin et al., 2009). In the SSVEP–BCI implementation process,
frequency encoding and phase encoding have been the two
most commonly used encoding methods. In recent research,
phase coding has been integrated into frequency coding as an
effective method of joint frequency and phase coding (JFPM)
to increase the difference between the frequency coding targets
(Chen et al., 2015b).

Apart from the encoding methods, the past two decades
have witnessed rapid progress in the decoding and frequency
recognition methods for the SSVEP–BCIs. Initially, the power
spectral density (PSD) was employed for frequency detection to
identify the SSVEP frequency by detecting the peak frequency
in the Fourier transform (Wang et al., 2006). Then, the
spatial filtering was used to optimize the application of the
electroencephalography (EEG) data from multiple channels and
reduce the common noise in channels, thereby improving the
frequency recognition accuracy of the SSVEP (Wong et al.,
2020b). For instance, the canonical correlation analysis (CCA)
has been widely used in the SSVEP–BCI (Lin et al., 2007;
Bin et al., 2009). The widespread application of the standard
CCA method could be attributed to its training-free merit due
to the usage of sine and cosine signals as a prior reference.
Although the CCA is very efficient in frequency recognition,
the recognition accuracy of the CCA is highly limited by the
EEG data length due to the interference from spontaneous
brain electrical activity. Recently, supervised methods, which
leverage the training data for template matching, including the
individual template-based CCA (IT-CCA) (Bin et al., 2011),
multi-set CCA (Mset CCA) (Zhang et al., 2014), extended CCA
(eCCA) (Nakanishi et al., 2014; Chen et al., 2015b), task-related
component analysis (TRCA) (Nakanishi et al., 2018), and task-
discriminant component analysis (TDCA) (Liu et al., 2021), have
shown superior performance in SSVEP detection. The supervised
methods usually compute the SSVEP template and spatial filter
of different targets from the training data and then find the most
similar template signal by calculating the correlation coefficient
of the test data and the template after spatial filtering. Compared
with the sine and cosine reference signals used in the CCA, the
individual SSVEP template fully considers the subject-specific
SSVEP latency, as well as differences in harmonic components;
thus, improving the SSVEP detection performance. In addition,
compared with the training-free method that has been used only
for frequency detection, the supervised method is well suited to
solve the problem of SSVEP phase detection.

The EEG has been well known for its variability associated
with the anatomical structure and mental and behavioral state
(Gao et al., 2014). Anatomically, the variability between subjects
can be mainly attributed to the individual differences pertinent
to the brain, such as the head shape, skull conductivity,

and cerebral cortex folding. As for endogenous factors, the
factors of blinking, psychophysiological fluctuations, and fatigue
contribute to the EEG data variability among subjects (Vaughan
et al., 2003). Namely, even for the same subject, EEG data
from different periods or sessions can be highly variable and
non-stationary, which represents the major challenge in the
SSVEP-BCI. Theoretically, this challenge could be addressed by
transfer learning, using a machine learning-based method to
implement the BCI via small-sample training or zero training
(Jayaram et al., 2016). The goal of transfer learning is to
use the knowledge learned from an environment or previous
tasks to facilitate learning in a new environment or task. The
domain adaptation is a representative transfer learning-based
method, which uses information-rich source–domain samples to
improve the performance of the target-domain model (Pan and
Yang, 2010). Two important concepts in the domain adaptation
problem are as follows: (1) the source domain (Ds) represents a
domain different from the test sample but has rich supervision
information, and (2) the target domain (Dt) represents the
domain where the test sample is located without labels or with
only a few labels. The source and target domains often refer to
the same type of task but have different distributions. Transfer
learning and domain adaptation have been proven to help to
mitigate the problem of SSVEP–BCI variability. For instance,
Yuan et al. (2015) proposed an SSVEP detection method based
on the brain–brain information transfer. Using the inherent
similarity in the SSVEP signals between subjects, the SSVEP
template and spatial filter information from the source subjects
with a larger sample were transferred to the new target subjects;
the transfer template-based CCA (ttCCA) performance was
better than that of the CCA. Nakanishi et al. (2016) have found
that the session-to-session transfer is effective for realizing a
high-speed BCI system and zero training based on the SSVEP.
Recently, a least-squares transformation (LST), which converts
the training data from several existing subjects into suitable
personal data and forms a supplement to personal data, was
proposed (Nakanishi et al., 2020). When the number of individual
trials is limited, the LST can significantly improve the SSVEP
decoding performance. In addition, a domain adaptation-based
method named the Align and Pool for EEG Headset Domain
Adaptation (ALPHA), which shows promising performances
in boosting the SSVEP–BCI system by leveraging within-day
auxiliary EEG data, was developed (Liu et al., 2022). The ALPHA
method can significantly outperform the ttCCA, LST, and CCA
methods and facilitate the application of dry-electrode systems
using the wet-electrode EEG.

For a long-term user in practical applications, e.g., an
amyotrophic lateral sclerosis (ALS) patient, the daily usage of a
BCI system is commonly accompanied by a library of personal
EEG data. The personal data are longitudinal and show certain
variability over time. Therefore, one of the main challenges is
how to make full use of the within-subject EEG data acquired
on the previous days or by other EEG electrodes. This also
represents an important problem in real-world applications
that demand the implementation of a high-speed training-free
BCI system. Another motivation of this study relates to the
usage of a dry electrode-based BCI system. Compared with a
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wet electrode-based system with the conductive paste, a dry
electrode-based system is free from paste preparation and thereby
promising for people’s real-life applications (Xing et al., 2018).
However, the performance of dry electrodes is inferior to that
of wet electrodes (Mihajlović et al., 2013). This problem can be
addressed by transferring data of a wet electrode to a dry electrode
to improve the performance of the dry electrode. In view of
this, this study investigates the possibility of transferring within-
subject data in the SSVEP–BCI by simultaneously exploiting the
EEG data acquired on different days by different electrodes. In
the transfer learning-based scheme, the ALPHA method is used
for the same subject to perform a training-free BCI task of 40-
target character spelling. The experiments conducted in this study
are based on the following assumptions. A subject’s EEG data
acquired on different days or by different electrodes share a
common model in the feature space, e.g., the spatial pattern. By
exploiting the existing EEG data and overcoming the domain
shift, it is possible to extract discriminative information from the
previous training data of the same subject and to apply it to a new
session (day) or a new electrode. This hypothesis is verified by the
offline and online experiments.

The rest of this study is stated as follows: Section “Materials
and Methods” describes the materials and methods including
the participants, experimental design, data collection and
preprocessing, target identification, filter-bank processing,
performance evaluation, and statistical analysis. Section
“Results” illustrates the results of similarity analysis, cross-day
wet to dry transfer, cross-day wet to wet transfer, cross-day and
cross-electrode comparison, training block number effect as well
as the result of validation experiment. Finally, the discussion and
conclusions are given in sections “Discussion” and “Conclusion,”
respectively.

MATERIALS AND METHODS

Participants
In this study, 16 healthy subjects, among whom seven males
and nine females, with an average age of 26 years and normal
or corrected vision, participated in the experiments. At the
beginning of the experiments, all subjects were required to read
and sign the informed consent form approved by the institutional
review board of Tsinghua University. Among them, nine subjects
participated in the validation experiment.

Experimental Design
In this study, a cued spelling SSVEP–BCI experiment with a 40-
target speller was designed. It was encoded by JFPM and 26
alphabets, and 10 digits and 4 symbols were presented on the
screen. In the SSVEP–BCI experiment, each subject participated
in both a wet-electrode headset session and a dry-electrode
headset session on the same day. The tasks of the two sessions
were the same, and the time interval between the two sessions
was about 20–30 min. When switching headsets, the position
of the electrodes was kept as close as possible, and the order of
wearing the headsets was random. In each session, the subjects
performed 40-target cued spelling experiments, and there was
a rest period between two consecutive blocks to reduce visual

fatigue. The order of stimuli was random. At the beginning of
each trial, there was a 1-s red square covering the target, then all
targets started to flash at the same time, and the stimulation time
was 4 s. In each session, the number of blocks was six. Participants
were asked to focus on the prompted target and avoid blinking
during the stimulation. As shown in Figure 1, the stimulation
frequency varied from 8 Hz to 15.8 Hz, and the frequency interval
was 0.2 Hz, while the phase varied from zero to 1.5π, and the
phase interval was 0.5 π.

This study mainly used the transfer learning-based model to
transfer the information across electrodes and days. Figure 2
illustrates the flowchart of the experiments and briefly introduces
the transfer direction of the offline analysis. Figures 2A,B
illustrate the flow of the offline experiment of a single subject.
In the offline analysis, four transfer directions were investigated,
namely, within-day wet-to-dry, cross-day wet-to-dry, cross-day
wet-to-wet, and cross-day dry-to-dry directions. Figure 2A
displays the transfer diagrams of the within-day wet-to-dry
and cross-day wet-to-dry directions; the transfer diagrams of
the remaining directions were similar. Figure 2B illustrates
the specific experimental tasks of the two sessions and the
within-day wet-to-dry transfer process. In the experiments, a wet
electrode was denoted by Ds, and a dry electrode was denoted
by Dt . The domain adaptation method was used to transfer
similar information of the model trained by the wet electrode
to the dry electrode. Figure 2C presents the flowchart of the
validation experiment. The model was trained with the wet-
electrode EEG data of day 3 and tested with the dry-electrode
EEG data to conduct a 40-target SSVEP–BCI spelling experiment
on a different day. The offline experiment included the data
acquisition process and offline analysis of the three experiments.
A detailed offline fusion analysis was conducted on the collected
experimental data to select an optimal system. In the verification
experiment, the selected optimal system was used to verify the
results of the offline experiment to validate the feasibility of the
system used in the online experiment. This study adopted only
one day’s data for training in the offline analysis. The data of the
closest day to the verification experiment (i.e., day 3) were used
for the training in the verification experiment.

Data Collection and Preprocessing
The data collection system and method were the same as in
the study of Zhu et al. (2021). A wireless wearable NeuSenW
(Neuracle, China) EEG acquisition system based on the dry
and wet electrodes was used to record SSVEP data. The only
difference between the dry electrode-based system and the
wet electrode-based system was reflected in the electrode type.
The dry-electrode headset or headband used a dry multi-pin
electrode, whereas the wet electrode headset or headband used
conductive paste. Eight electrodes placed in the parietal and
occipital region, denoted by POz, PO3, PO4, PO5, PO6, Oz, O1,
and O2, were used to record EEG data; two electrodes were placed
on the forehead as reference and ground. Each data epoch started
0.4 s before the stimulus event, 0.14 s for visual latency (Chen
et al., 2015a), 4 s for the stimulus, and 0.26 s after the stimulus.
The collected data were downsampled to 250 Hz and then filtered
by a band-pass infinite impulse response (IIR) filter to obtain
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FIGURE 1 | (A) The 40-target brain–computer interface (BCI) speller. (B) The frequency and the initial phase distribution of each target. The upper number indicates
the frequency, and the bottom number denotes the initial phase information.

FIGURE 2 | The flowchart of experiments. (A) The within-day wet-to-dry and cross-day wet-to-dry transfers in the offline experiment. (B) Specific tasks and the
within-day wet-to-dry transfer in the offline experiment. (C) Block diagram of the validation experiment.

signals between 6 and 90 Hz. A 50-Hz notch filter was used to
remove the power frequency noise from the recorded data.

Target Identification
The ALPHA method was compared with four other algorithms,
including supervised TRCA and eCCA, ttCCA, and training-
free CCA. The CCA-based target recognition algorithm with
individual calibration templates was used, and templates were

transferred across electrodes or days. In addition, the standard
CCA, which is an unsupervised method, was used as a
baseline method.

Standard Canonical Correlation Analysis
The CCA is a statistical method for analyzing a linear relationship
between two sets of multi-dimensional variables, and it has
been widely used in frequency identification of the SSVEP
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(Lin et al., 2007; Bin et al., 2009). Bin et al. (2009) implemented
a CCA-based method in the online BCI system, which used
a fixed set of nine channels in the occipital region. Since
then, the CCA-based target recognition methods have gained
great popularity in the SSVEP–BCI. For convenience, the
CCA algorithm proposed in Bin et al. (2009) was denoted
as standard CCA.

Assume that X ∈ RC×N is a multi-channel EEG signal, Y ∈
R2Nh×N is a sine–cosine reference signal template, andC, N, Nh,
and fs denote the number of EEG channels, the number of
time points, the number of harmonics, and the sampling rate,
respectively. Then, the sine–cosine reference signal template is
given by

Y =


sin(2πfkt)
cos(2πfkt)

...

sin(2πNhfkt)
cos(2πNhfkt)

 , t =
[

1
fs

, . . . ,NP/fs
]

(1)

where fk is the stimulus frequency and k = 1, 2, . . . , Nf . Here,
Nf denotes the number of the stimuli.

In the CCA-based SSVEP detection method, the canonical
correlation between a multi-channel EEG signal X and the
reference signal Y is defined by

ρ (X,Y) = maxwx,wy

E
[
wT
x XY

Twy
]√

E
[
wT
x XXTwx

]
·E
[
wT
y YYTwy

] (2)

where wx and wy denote the spatial filters for X and Y ,
respectively; the value of ρ corresponds to the largest canonical
correlation between X and Y .

To identify the frequency of SSVEP in a multi-target BCI,
the CCA method calculates the canonical correlation coefficients
between X and Y at each stimulation frequency. The frequency
of the reference signal with the largest correlation coefficient is
selected as the SSVEP frequency, and it is calculated by

ftarget = arg max ρ(fk) (3)

The Canonical Correlation Analysis With Individual
Training Data
In the previous research, an extended method based on the CCA,
which combines personal training data, was proposed (Nakanishi
et al., 2014, 2015; Chen et al., 2015b). This method employs the
CCA-based spatial filter to compute the correlation coefficient
between the test set and the projected individual template, which
is then used as a feature in target recognition. This method
leverages important features of the individual training data to
improve target recognition. In this method, first, a spatial filter
wx̄y is obtained by performing the CCA on X̄k and Yfk , which
maximizes the SNR of the training set X̄k of the kth target. In
addition, by performing CCA on X and Yfk , a spatial filter wxy
that maximizes the SNR of the test EEG data X is obtained. After
that, the Pearson’s correlation coefficient between the test data X

and the training data X̄k is projected onto these two spatial filters,
and the final correlation coefficient is calculated by

rk =

 rk,1
rk,2
rk,3

 =
 r(XTwx̄y, X̄T

k wx̄y)

r(XTwxy, X̄T
k wxy)

r(XTwx,YT
fk
wy)

 (4)

where r(a, b) represents the Pearson’s correlation coefficient
between two one-dimensional signals, a and b.

An ensemble classifier is used to combine these three features.
In fact, the weighted correlation coefficient is used as a final
feature in target recognition, and it is obtained by

ρk =
∑3

i=1
sign(rk,i)·r2

k,i (5)

where sign(·) is a function used to retain identification
information from the negative correlation coefficient between the
test and training data or reference signals.

In this study, two training datasets were used to obtain
separate models to evaluate the within-electrode and inter-
electrode or inter-day variability in the SSVEP detection, and
the corresponding methods were named the extended template-
based CCA (eCCA) (Nakanishi et al., 2014, 2015) and the ttCCA
(Yuan et al., 2015).

Task-Related Component Analysis
The TRCA improves the SNR of SSVEP signals by eliminating the
EEG background activity, thereby enhancing the reproducibility
of SSVEPs in multiple trials (Nakanishi et al., 2018). The TRCA
solves the problem of recovering task-related signals from the
observed EEG signals by maximizing the covariance between
trials. Let us suppose Xi ∈ RC×N and Xj ∈ RC×N denote the
ith and jth trials of a subject, respectively. The constrained
optimization is given by generalized Rayleigh quotient problem
as follows:

w = arg maxw
wTSw
wTQw

(6)

where Q is the aggregated covariance, and it is calculated by

Q =
Nb∑
i,j=1

Cov(Xi,Xj) (7)

and S is the inter-trial covariance, which is given by

S =
Nb∑

i, j = 1
i 6= j

Cov(Xi,Xj) (8)

where Nb is the number of training trials.
The optimal coefficient vector w can be obtained as an

eigenvector of matrix Q−1S corresponding to the largest eigen-
value. Then, the spatial filter wk1 of the k1th stimulus frequency
can be obtained. Since there are a number of individual training
data samples corresponding to visual stimuli, a number of
different spatial filters can be obtained. These spatial filters can
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be considered similar in the frequency range (Srinivasan et al.,
2006; Ales and Norcia, 2009). This indicates that the recognition
performance may be further improved by integrating all spatial
filters. In this study, an ensemble spatial filter W ∈ RC×Nf was
used, and it is expressed as follows:

W =
[
w1,w2, . . . ,wNf

]
(9)

The correlation coefficient rk between the test trial Xt /∈ RC×N
and the average training data X̄k can be calculated by

rk = ρ(XT
t W, X̄T

k W) (10)

Then, the target frequency ft can be obtained by

ft = max
k

(rk), k = 1, . . . ,Nf (11)

The ALPHA Algorithm
The ALPHA algorithm mainly includes the following three parts:
Subspace decomposition, subspace alignment, and subspace
pooling. By analyzing the multi-dimensional data in the low-
dimensional space, the key information and features in the
source domain are transferred to the target domain through
decomposition, alignment, and pooling. This method leverages
domain adaptation, and it belongs to the category of transfer
learning. The main idea is to map data features of different
domains (e.g., different datasets) to the same feature space so
that data from the other domains can be used to enhance target
domain. In the following, the subspace alignment process is
briefly introduced.

Align Spatial Pattern
The goal of subspace alignment is to align Ds and Dt to the same
subspace to bridge the gap between these two domains. Two types
of subspace alignment are used in the ALPHA, namely, Align
Spatial Pattern (ASP) and Align Covariance (AC). In the ASP, the
spatial filters W1 and W2 correspond to Ds and Dt , respectively.
Then, the corresponding spatial pattern can be calculated by

A1 =W−T1 ,A2 =W−T2 (12)

In this study, it assumes that Ds and Dt have the same basic
spatial pattern after rotation. Therefore, the ASP method seeks
to transform the matrix P orthogonally to the estimated spatial
pattern, which yields to the following optimization problem:

minimizeP||A1 − A2PT ||2F, PP
T
= I (13)

The solution of the Procrustes problem is given by

P = UVT (14)

where U and V are the left and right singular vectors of AT
1 A2 .

Then, the transformation equation of spatial filter W2 is
given by

WASP
1 =W2PT (15)

Through the ASP transformation, the characteristic
information in W2 can be transferred to WASP

1 .

Align Covariance
In addition to changes in spatial patterns, this study assumes
that domain gaps also exist in covariance changes. Therefore, to
reduce the covariance shift, the covariance between Ds and Dt
distributions should be aligned. Here, we use a method based on
correlation alignment (Sun et al., 2017) to achieve the goal. Also,
CORAL finds a linear transformation Q to minimize the distance
between the second-order statistics of Ds and Dt .

minimizeQ||QTCsQ− Ct||
2
F (16)

Then, Cs and Ct can be, respectively, obtained by

Ci
s =

1
NtN − 1

Xi
mCNtNX

iT
m , i = 1, · · · ,Nf (17)

Ct =
1

N − 1
XtCNXT

t (18)

where Cn = I − 1
n 11T is a centering matrix, Xi

m is the
concatenation of trials Xs corresponding to the i target, and Nt
denotes the number of training blocks.

Next, the optimal solution to Eq. (16) is given by

Q = C
−

1
2

s C
1
2
t (19)

For the spatial filter after AC, WX can be expressed as

WAC
X = QWX (20)

For a detailed introduction in the ALPHA, see Liu et al. (2022).

Filter–Bank Processing
The filter–bank technique decomposes the SSVEP into sub-band
components first and then extracts the high-SNR independent
information embedded in the harmonic components. Therefore,
the filter–bank technique can facilitate target classification (Chen
et al., 2015a). In this study, the lower and upper cut-off
frequencies of sub-band Sb were set to (Sb × 8)− 2 Hz and
90 Hz, and Sb was set up to five. The correlation coefficients
obtained for all sub-bands were weighted to obtain the final target
recognition as follows:

ρ̃k =

Sb∑
n=1

v(n)·(ρnk)
2 (21)

where v (n) = n−a + b, n ∈
[

1 Sb
]

is the weight function.
According to Chen et al. (2015a), a was set to 1.25 and b
was set to 0.25.

The filter–bank analysis method could extract meaningful
features from different sub-band components of the EEG signal
and improve the SSVEP recognition accuracy. In the results
of the offline analysis and validation experiment, the filter–
bank analysis method was applied to all target recognition
methods. In this study, the CCA was the traditional filter–
bank CCA (FBCCA).
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Performance Evaluation
The performance was evaluated using two evaluation metrics, the
target identification accuracy (%) and ITR (bits/min). The ITR is
calculated by

ITR = (log2 Nf + P log2 P + (1− P) log2

[
1− P
Nf − 1

]
)× (

60
T

)

(22)
where Nf is the number of visual stimuli, P is the target
identification accuracy, and T is the average selection time.

In this study, the gaze shifting time was set to 1 s. When
calculating the ITR, 1 s was added to T.

For the TRCA and eCCA, a sixfold cross-validation was
used. In each fold, five blocks were used for training, and
one block was used for the testing. The number of test
trials was identical for all the methods. For the ALPHA
and ttCCA, all six blocks of within-day-cross-electrode or
cross-day data were used for the training. The within-day
wet-to-dry was the average of three experiments. Cross-day
wet-to-dry (or wet-to-wet or dry-to-dry) was the average of
six directions in three experiments, e.g., day1-wet to day2-
dry, day2-wet to day1-dry, day1-wet to day3-dry, day3-wet
to day1-dry, day2-wet to day3-dry and day3-wet to day2-
dry. The average accuracies and ITR of the five methods
(CCA, ttCCA, eCCA, TRCA, and ALPHA) were compared for
different data lengths. All analyses in this study used data from
the same subject.

Statistical Analysis
To compare the methods, the two-way repeated measures
analysis of variance (ANOVA) was performed to determine
whether there was a statistically significant relationship between
the method performance and the data length. The Greenhouse–
Geisser correction was applied due to the violation of sphericity.
There was no analysis of multiple comparisons. In the
comparison of the methods or sets, the planned paired t-test
was used to evaluate the statistical significance. The planned
paired t-test was performed by the test function in MATLAB.
The paired sample t-test was used to make the test decision for
the original hypothesis, which assumed that the mean of the
paired difference between two datasets was equal to zero and the
variance was unknown.

RESULTS

As shown in Table 1, the transfer direction from two aspects:
session (within-day or cross-day) and electrode (wet-to-wet, wet-
to-dry or dry-to-dry) was divided into several types in this study.
There were no transfer in within-day wet and within-day dry. The
impedance value was recorded before each block. The impedance
on day 1, day 2, and day 3 was stable across days, and the average
impedances for the dry and wet electrodes were about 363.94
and 6.64 k�, respectively. As shown in Table 2, there was no
significant difference in impedance between any 2 of the 3 days,
with all p > 0.05.

TABLE 1 | The type of transfer direction.

Type Session Electrode type

a Within-day Wet

b Dry

c Wet to dry

d Cross-day Wet to wet

e Dry to dry

f Wet to dry

TABLE 2 | The statistical significance of p-value in the impedance
comparison of experiments.

Cross-day Dry Wet

Day 1–day 2 0.92 (345.21 k� vs. 349.41 k�) 0.42 (6.27 k� vs. 7.02 k�)

Day 2–day 3 0.30 (349.41 k� vs. 397.21 k�) 0.38 (7.02 k� vs. 6.64 k�)

Day 1–day 3 0.33 (345.21 k� vs. 397.21 k�) 0.65 (6.27 k� vs. 6.64 k�)

Similarity Analysis Results
According to the previous studies (Wong et al., 2020a, 2021b),
subjects’ brain topography has a similar spatial pattern at
all stimulation frequencies. Figures 3A,B display the SSVEP
responses and similarity of a representative subject (Subject
S6), respectively. Each column in Figure 3A indicates the
SSVEP responses (from occipital) for a specified block, where
the SSVEP amplitudes denote the averaged values of 40
stimulation frequencies. Each row represents the electrode’s
location, and the color indicates the normalized amplitude
value. The similarity value was calculated using the correlation
coefficient between any two blocks. As shown in Figure 3B, the
correlation coefficient matrix of the 6 × 6 square represented
by each letter was between the same or different session
and electrode. For each subject, the brain topographical
mapping similarity was divided into the following four
types: within-day-within-electrode (WDWE), within-day-cross-
electrode (WDCE), cross-day-within-electrode (CDWE), and
cross-day-cross-electrode (CDCE).

As illustrated in Figure 3B, for subject S6, the average
correlation coefficient between the brain mappings
corresponding to different types was as follows. For the
WDWE, for the dry electrodes, the average correlation coefficient
was 0.98, and for the wet electrodes, the average correlation
coefficient was 0.99. For the WDCE, the average correlation
coefficient was 0.87. For the CDWE, for the dry electrodes,
the average correlation coefficient was 0.84, and for the wet
electrodes, the average correlation coefficient was 0.98. For the
CDCE, the average correlation coefficient was 0.88. As shown
in Figure 3C, the overall average similarity over all subjects was
as follows. For the WDWE, for the dry electrodes, the overall
average similarity was 0.90± 0.03, and for the wet electrodes, the
overall average similarity was 0.94 ± 0.02. For the WDCE, the
overall average similarity was 0.76 ± 0.04. For the CDWE, for
the dry electrodes, the overall average similarity was 0.76 ± 0.05,
and for the wet electrodes, the overall average similarity was
0.78 ± 0.05. For the CDCE, the overall average similarity was
0.74 ± 0.04. The similarity results showed that the transfer
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FIGURE 3 | (A) The multi-channel steady-state visual evoked potential (SSVEP) responses over six blocks on day 1 for the wet electrodes of subject S6; the color
bar indicates the normalized amplitude. (B) The correlation coefficient matrix between any two blocks of subject S6 for four types; the color bar indicates the
similarity. (C) The overall average similarity of the topographical maps of all subjects. (D) The overall average similarity of the covariance matrices of all subjects. The
asterisks indicate a difference in the paired t-test results (∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001).

difficulty of the CDCE was greater than that of the CDWE.
The similarity between the wet electrodes was higher than that
between the dry electrodes, which indicated that the signal
collected by the wet electrodes was relatively stable.

In addition, the covariance matrix was computed for each trial,
and the similarity of the covariance matrix of the four types, i.e.,
WDWE, WDCE, CDWE, and CDCE was compared. As shown
in Figure 3D, the overall average similarity over all subjects was
as follows. For the WDWE, for the wet electrodes, the overall
average similarity was 0.79 ± 0.02, and for the dry electrodes,
the overall average similarity was 0.72 ± 0.02. For the WDCE,
the overall average similarity was 0.66± 0.02. For the CDWE, for
the wet electrodes, the overall average similarity was 0.68 ± 0.03,
and for the dry electrodes, the overall average similarity was
0.62 ± 0.02. For the CDCE, the overall average similarity was
0.62 ± 0.02. The similarity results were roughly the same as
the brain topographic map results. Generally, the within-day
similarity was significantly higher than the cross-day similarity
regardless of the electrode type (p < 0.001). Both cross-electrode
and the cross-day have impact on the transfer of information.

Cross-Day Wet-to-Dry Transfer
Experiment Results
The performances of the transfer learning-based methods
(ALPHA and ttCCA), fully calibrated methods (TRCA and

eCCA), and a training-free method (CCA) are presented in
Figure 4. The two-way ANOVA showed that there was a
significant interaction between the methods’ performances and
data length; F (1.765, 26.47) = 11.37, p < 0.001 for accuracy,
and F (1.778, 26.67) = 15.67, p < 0.001 for the ITR value. As
shown in Figure 4A, the ALPHA outperformed the ttCCA and
CCA for all data lengths (p < 0.05, planned paired t-test) and
eCCA (p < 0.05) for all data lengths except for the data length of
4 s (p = 0.08). There was no significant difference in performance
between the TRCA and eCCA (p > 0.05) except for the data
length of 0.4 s (p = 0.02). Compared with the TRCA, the ALPHA
significantly improved the accuracy except for the data length
of 0.4 s (ALPHA vs. TRCA: 40.56 ± 4.07% vs. 38.48 ± 5.28%,
p = 0.41). The performance of the eCCA was significantly better
than that of the ttCCA for all data lengths (p < 0.05). This was
because the model of eCCA was the WDWE type, while that
of the ttCCA was the CDCE type. Overall, the performance of
the ALPHA was better than those of the TRCA and eCCA. For
all methods, the ITR changing trends with the data length were
consistent with the changing trends of the accuracy. When the
time length was 1.2 s, the ITR values were as follows: The ALPHA
had the ITR value of 90.92 ± 8.81 bits/min; the TRCA had the
ITR value of 74.85 ± 10.21 bits/min; the eCCA had the ITR
value of 79.39 ± 9.52 bits/min; the ttCCA had the ITR value
of 70.30 ± 9.06 bits/min; and the CCA had the ITR value of
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FIGURE 4 | Comparison of the accuracy and ITR results of the five methods in the cross-day wet-to-dry transfer experiment. (A) Accuracy. (B) ITR value. The
horizontal axis represents the data length; the error bars indicate standard errors.

27.94 ± 5.84 bits/min. In general, the ALPHA improved the ITR
significantly. The results showed that the ALPHA in the cross-
day wet-to-dry transfer performed significantly better than the
fully calibrated TRCA and eCCA, indicating that ALPHA could
achieve cross-day and cross-electrode recalibration-free transfer
learning.

Cross-Day Wet-to-Wet Transfer
Experiment Results
Next, the cross-day wet-to-wet transfer experiment was
conducted. Compared with the dry electrodes, the EEG
from the wet electrodes had relatively stable signals and less
noise. The cross-day wet-to-wet transfer also can reflect the
advantages of the ALPHA.

The results of the cross-day wet-to-wet transfer are shown
in Figure 5, where the results of accuracy and ITR at all data
lengths are presented. The two-way ANOVA’s results showed
that there was a significant interaction between the method
performance and data length for both accuracy and the ITR value;
F (1.809, 27.14) = 16.39, p < 0.001 in accuracy (Figure 5A) and
F (1.854, 27.81) = 21.29, p < 0.001 in ITR (Figure 5B). The
ALPHA significantly improved the accuracy compared with the
ttCCA and CCA for all data lengths (p < 0.05). There was no
significant difference in accuracy between the ALPHA and eCCA
for all data length (p > 0.05). Also, there was no significant
difference in accuracy between the ALPHA and TRCA except
for the data length of 0.4 s (ALPHA vs. TRCA: 44.74 ± 5.95%
vs. 50.28 ± 5.86%, p = 0.03 in the planned paired t-test). When
the data length was relatively short (i.e., 0.4, 0.8, or 1.2 s), the
TRCA performance was significantly better than that of the
eCCA, and there was no significant difference between them
with the increase in the data length. The performance of the
eCCA was significantly better than that of the ttCCA for all
data lengths (p < 0.05). When the data length was 1.2 s, the
ITR values of the methods were as follows. The ALPHA had

the ITR value of 104.88 ± 9.12 bits/min; the TRCA had the
ITR value of 102.37 ± 9.84 bits/min; the eCCA had the ITR
value of 99.07 ± 9.82 bits/min; the ttCCA had the ITR value
of 87.66 ± 10.71 bits/min; and the CCA had the ITR value of
45.65 ± 9.16 bits/min. The difference in the ITR value between
the methods for different data lengths was roughly the same as
the difference in the accuracy.

Cross-Day and Cross-Electrode Transfer
Comparison Results
From a practical point of view, dry electrodes are more
convenient and easier to use than wet electrodes. However, the
dry electrodes have the disadvantages of high impedance and
much noise, which leads to poor performance. Therefore, the
model trained with the wet-electrode data was applied to the dry-
electrode data to improve the performance of the dry electrodes
and promote the application of the SSVEP–BCI in people’s lives.
The performances of the within-day wet-to-dry, cross-day wet-
to-dry, and cross-day dry-to-dry transfers were compared. The
within-day wet-to-dry transfer result was the average result of day
1, day 2, and day 3, and the results of the cross-day wet-to-dry
and cross-day dry-to-dry transfers were the average results of the
results in the six transfer directions.

As shown in Figure 6, the overall performance of the within-
day wet-to-dry transfer was better than that of the cross-day
wet-to-dry transfer. When the data length was relatively short,
the performance of the within-day wet-to-dry transfer was
significantly better than those of the cross-day wet-to-dry and
cross-day dry-to-dry transfer, with p < 0.05. As the data length
increased, there was no significant difference between the three
transfer types. It is worth mentioning that there was no significant
difference in performance between the cross-day wet-to-dry and
cross-day dry-to-dry transfers with the data length, p > 0.05. The
stability of the wet-electrode data was better than that of the
dry-electrode data, and transferring two dimensions was more
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FIGURE 5 | Comparison of the accuracy and ITR results of the five methods in the cross-day wet-to-wet transfer experiment. (A) Accuracy. (B) ITR value. The
horizontal axis represents the data length; the error bars indicate standard errors.

FIGURE 6 | Performance comparison of the ALPHA method for different transfer types. (A) Accuracy. (B) ITR value. The cross-day transfer corresponds to the time
dimension, while the wet-to-dry and dry-to-dry transfers correspond to the electrode dimension. The error bars indicate standard errors. The asterisks indicate a
difference in the paired t-test results (∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001).

difficult than transferring one dimension. The cross-day wet-
to-dry transfer had two dimensions to transfer, i.e., time and
electrode, which decreased the performance compared to the
within-day wet-to-dry transfer. The difference in the ITR value
between the three transfer types was consistent with that of the
accuracy. The statistical results of the t-test are presented in
Figure 6.

Next, it was analyzed whether the length of the cross-day
wet-to-dry transfer had an effect on the ALPHA algorithm’s
performance. The analysis results are shown in Figure 7. In
the experiments, the average interval between day 1 and day
2 for all subjects was approximately 9 days, and the interval
between day 2 and day 3 was approximately 18 days. Statistical
analysis results showed that there was no significant difference
in performance with the increase of the data length (p > 0.05,

planned paired t-test). The result indicated that the cross-day
time of about 1 month had no effect on the ALPHA performance.
Although it was almost impossible to place the electrodes in
exactly the same position on different days, the spatial filtering
and feature extraction of the ALPHA could improve the template
matching performance. As for the cross-day wet-to-dry transfer,
in order to confirm the feasibility of the transfer effect of ALPHA,
we carried out a series of feature visual analysis before and after
ALPHA in the Supplementary Material. Compared to the dry-
TRCA (the TRCA with the dry electrodes), the ALPHA could
maintain stable performance by zero training across days.

Training Block Number Effect
An important parameter of reducing training time is to reduce
the number of training blocks. To reduce the impact between the
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blocks, cross-validation was performed. For instance, consider
the number of training blocks was two. For TRCA, two blocks
were randomly selected for training and the remaining blocks
were used for the testing every time, and performed the same
process six times in total. For ALPHA, two blocks from the wet
electrodes were randomly selected for training and six blocks
from the wet electrodes or dry electrodes were used for the testing
every time, and performed the same process six times in total.
The results showed that as the number of individual training
blocks decreased, ALPHA could be robust enough to detect the
SSVEP with sufficient accuracy. The average accuracy results
of the ALPHA and TRCA methods for different numbers of

individual training blocks in the cross-day wet-to-dry and cross-
day wet-to-wet transfer experiments are presented in Figure 8.
In these experiments, the data length was 1.2 s. According to
the results, with the increase in the training block number, the
accuracy improved.

For the wet-to-dry transfer, the ALPHA significantly improved
the detection accuracy; the results of ALPHA vs. TRCA were
as follows: In the two-block experiment, 62.08 ± 5.87% vs.
36.06 ± 6.62%; in the three-block experiment, 68.92 ± 5.55% vs.
49.47 ± 7.16%; in the four-block experiment, 71.27 ± 5.38% vs.
57.50 ± 6.83%; and in the five-block experiment, 73.12 ± 5.19%
vs. 63.72 ± 6.18%, respectively. For the wet-to-wet transfer,

FIGURE 7 | The influence of the number of days between experiments on the ALPHA performance. (A) Accuracy. (B) ITR value. The presented results denote the
average results of the mutual transfer between two days. The error bars indicate standard errors.

FIGURE 8 | The performance comparison of the ALPHA and TRCA methods for different numbers of training blocks. (A) Accuracy. (B) Accuracy. The error bars
indicate standard errors. The asterisks indicate a difference in the paired t-test results (*p < 0.05, **p < 0.01, and ***p < 0.001).
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when the number of training blocks was small, the performance
of the ALPHA was better than that of the TRCA. With the
increase in the training block number, there was no significant
difference between the ALPHA and TRCA methods. The
results of ALPHA vs. TRCA were as follows: In the two-block
experiment, 71.45 ± 6.25% vs. 54.48 ± 7.08%; in the three-
block experiment, 76.72 ± 5.61% vs. 69.04 ± 6.71%; in the
four-block experiment, 78.83 ± 5.32% vs. 75.10 ± 6.15%; and
in the five-block experiment, 80.22 ± 5.10% vs. 79.56 ± 5.37%,
respectively. It is worth noting that in the cross-day wet-to-dry
transfer experiment, the performance of the ALPHA for two
training blocks was similar to that of the TRCA for five training
blocks; namely, the performances of the ALPHA and TRCA
methods were 62.08 ± 5.87% and 63.72 ± 6.18%, respectively.
With the increase in the training block number, the performances
of the ALPHA and TRCA methods could be improved. Moreover,
the ALPHA method generally performed better than the TRCA
method in both wet-to-dry and wet-to-wet transfer experiments.

Validation Experiment and Results
According to the offline analysis result, this study chose the
cross-day wet-to-dry transfer system for the online verification
experiment based on practicability and performance. The
stimulation time of the validation experiment was 1.2 s. The
wet electrode data of the third experiment were used for the
training, and the validation experiments were performed with
the dry electrodes a few days after the third experiment. Nine
subjects with good offline experimental results participated
in the validation experiment. The average interval between
the verification experiment and the day 3 experiment was
approximately 54 days. The results of the nine subjects are
given in Table 3, and according to the results, the performance
of the ALPHA was better than that of the dry-TRCA. The
results of ALPHA and dry-TRCA were, respectively, as follows:
Regarding the accuracy, 85.97 ± 5.60% and 77.69 ± 6.42%,
and p = 0.03; regarding the ITR value, 112.84 ± 10.60 bits/min
and 96.56 ± 12.22 bits/min, and p = 0.03. For the ALPHA

TABLE 3 | Result comparison of the validation experiment and offline analysis.

Accuracy (%)/ITR (bits/min)

Subject ALPHA
(validation)

TRCA
(validation)

ALPHA (offline) TRCA (offline)

S1 75.83/88.72 55.83/55.00 86.81/114.42 87.08/112.16

S2 93.33/126.15 80.00/97.29 87.01/112.03 85.28/107.96

S3 98.33/139.67 99.17/142.41 92.71/126.62 88.47/117.75

S4 96.67/134.90 90.42/119.27 88.89/116.64 71.52/84.41

S5 98.75/141.04 97.50/137.40 92.85/125.98 97.36/137.40

S6 90.00/118.55 67.08/72.85 96.94/135.84 89.86/119.99

S7 87.08/111.91 75.00/87.26 77.78/93.46 30.28/21.60

S8 88.33/114.48 90.83/120.30 84.79/107.13 74.72/88.03

S9 45.42/40.10 43.33/37.25 67.22/74.37 50.00/49.10

Mean 85.97/112.84 77.69/96.56 86.11/111.50 74.95/93.16

SD 5.60/10.60 6.42/12.22 3.00/6.21 7.26/12.38

Bold values are used to emphasize the average level of all subjects.

and TRCA methods, there was no significant difference between
the validation and offline results in terms of the accuracy;
namely, the ALPHA had p = 0.97, and the TRCA had p =
0.73. The ITR results of the two methods were consistent with
those of the accuracy. For subjects S1 and S9, the results of
the validation experiment were much lower than those of the
offline experiment for both ALPHA and TRCA. This could be
because the impedance of the verification experiment was higher
than that of the offline experiment. Thus, if the impedance of
the dry electrode could be further reduced, the performances
of the ALPHA and dry-TRCA methods would be improved
(Zhu et al., 2021).

DISCUSSION

The benefit of leveraging training data across 2 days (session)
in the offline analysis was further investigated. In the cross-
validation experiment, data of day 1, day 2, and day 3 were used,
namely, data of 2 days were used for the training, and data of
the remaining day were used for the testing. The training data
were the average data of the 2 days. The results of the wet-to-dry
transfer experiment are shown in Figure 9, where it can be seen
that the training performance for two-day data was significantly
better than that of the one-day data, with p < 0.05. The results
demonstrated an increasing benefit of transfer learning as more
EEG data were available in the daily usage of BCI. Therefore, for
the long-term BCI applications, the wet electrodes could be more
convenient for performance calibration and offline validation at
the beginning, but then it should be gradually transitioned to
the dry electrodes, thus forming a personal database containing
the EEG data from both dry and wet electrodes. This personal
database could be exploited to implement a high-speed zero-
training SSVEP–BCI in the future.

As for transfer learning, this study extends the wet-to-dry
transfer (Liu et al., 2022) to a cross-day scenario and verifies the
effectiveness of the ALPHA method in the cross-day and cross-
electrode transfers for the 40-target SSVEP–BCIs. The results
show that the ALPHA can extract similar information of the same
subject and suppress the variability across days and electrodes.
In the ALPHA method, there are three essential steps for feature
extraction and domain adaptation, i.e., subspace decomposition,
subspace alignment, and subspace pooling. Subspace alignment
aligns information in the source and target domains, and
subspace pooling performs feature fusion. For instance, He and
Wu (He and Wu, 2020) applied the subspace alignment to the
motor imagery paradigm by aligning the EEG of different subjects
in the Euclidean space and then applying it to new subjects.
Chen et al. (2019) proposed a progressive feature alignment
network, which gradually and effectively aligns cross-domain
discriminant features according to the intra-class changes in
the target domain.

Apart from leveraging information across electrodes and
sessions, transfer learning could also be used to exploit common
information of SSVEP response across subjects. For instance,
(Tanaka, 2020) used the multivariate method to extract repeated
components between the trials and subjects. This method can
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FIGURE 9 | Performance comparison of the Train (one) and Train (two). (A) Accuracy. (B) ITR value. Train (one) means that data of one of the three experiments were
used for training, and data of the other two experiments were used for testing; there were six cases in total. Train (two) means that data of two of the three
experiments were used for training, and data of the remaining experiment were used for testing; there were three cases in total. The asterisks indicate a difference
between Train (one) and Train (two) in the paired t-test (*p < 0.05, **p < 0.01, and ***p < 0.001).

maximize not only the trial repeatability of a single subject
but also the similarity between a group of subjects. Wang
et al., 2021 proposed a new inter- and intra-subject maximum
correlation (IISMC) method to enhance the robustness of SSVEP
recognition using the similarity between and within subjects.
Yuan et al. (2015) and Wong et al. (2020c) transferred common
information between the subjects, and a good classification
performance was achieved when the number of training
trials was reduced.

In this study, the scope of interest is limited to the within-
subject variability, and the data obtained by different electrodes
in different periods from the same subject are used to implement
a zero-training BCI. For the purpose of a plug-and-play BCI
system, the cross-subject variability should be considered, and the
gap between subjects in the domain shift should be bridged. Since
the data transfer across the subjects is challenging, in the future
work, more methodological approaches could be used to improve
the practical application of the SSVEP–BCI by mitigating the
variability across electrodes, sessions, and subjects.

For the cross-subject transfer, online adaptation is a
promising method to reduce new subjects’ training time
and to avoid calibration (Spüler et al., 2012; Waytowich
et al., 2016; Wong et al., 2021a). Our future work is to
develop the domain adaptation of the ALPHA method to
the adaptive online method of new subjects. By iteratively
updating the training model of multiple subjects, a higher
performance could be achieved for new subjects. However,
it is crucial to use appropriate strategies to update and
iterate the model so as to approximate a new subject’s
model with the adaptive process. An unsupervised online
adaptive method could ensure the development of a high-
performance online BCI system. Therefore, in the future, the
ALPHA’s feature extraction methods could be applied to the
code-modulated-VEP (c-VEP)-based BCI system since both

c-VEP and the SSVEP have common feature information
(Thielen et al., 2021).

CONCLUSION

To make an SSVEP–BCI spelling system more convenient
for real-life applications, this study leverages within-subject
information in the same task by transferring it across days
and electrodes. By analyzing different transfer directions, the
feasibility of the within-subject transfer is verified, and the stable
performance of transfer learning across days is demonstrated.
The experimental results show that in the cross-day wet-to-
wet transfer, the ALPHA performance is comparable to that of
the wet-TRCA. However, in the cross-day wet-to-dry transfer,
the ALPHA performance is significantly better than that of
the dry-TRCA, and a high-speed zero-training SSVEP–BCI can
be achieved with less training burden. The proposed transfer
learning-based scheme could facilitate the long-term usage of the
SSVEP–BCI and could also promote the implementation of the
dry electrode-based SSVEP–BCI in real-world applications.
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