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Objective: Dysregulation of gene expression through epigenetic mechanisms may have a vital role in the pathogenesis 
of schizophrenia (SZ). In this study, we investigated the association of altered methylation patterns with SZ symptoms 
and early trauma in patients and healthy controls.
Methods: The present study was conducted to identify methylation changes in CpG sites in peripheral blood associated 
with recent-onset (RO) psychosis using methylome-wide analysis. Lifestyle factors, such as smoking, alcohol, exercise, 
and diet, were controlled.
Results: We identified 2,912 differentially methylated CpG sites in patients with RO psychosis compared to controls. 
Most of the genes associated with the top 20 differentially methylated sites had not been reported in previous methyl-
ation studies and were involved in apoptosis, autophagy, axonal growth, neuroinflammation, protein folding, etc. The 
top 15 significantly enriched Kyoto Encyclopedia of Genes and Genomes pathways included the oxytocin signaling 
pathway, long-term depression pathway, axon guidance, endometrial cancer, long-term potentiation, mitogen-activated 
protein kinase signaling pathway, and glutamatergic pathway, among others. In the patient group, significant associations 
of novel methylated genes with early trauma and psychopathology were observed.
Conclusion: Our results suggest an association of differential DNA methylation with the pathophysiology of psychosis 
and early trauma. Blood DNA methylation signatures show promise as biomarkers of future psychosis.
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INTRODUCTION

Schizophrenia (SZ), which affects 20 million people 
worldwide [1], is one of the most common types of seri-
ous mental illness. To date, attempts to discover genes 
that are directly associated with SZ have been largely un-
successful [2,3]. A recent genome-wide association study 
(GWAS) of SZ revealed 108 loci associated with the dis-

ease [4]. However, the proportion of the variance in li-
ability explained by single nucleotide polymorphisms 
(SNPs) is small; significant genome-wide loci explain only 
3.4% of the variance in liability, and the cumulative effect 
of common loci expressed as a polygenic risk score (PRS) 
was estimated to explain only 7%.

Therefore, both genetic and environmental factors must 
be considered in research on the etiology of SZ. 
Epidemiological studies have suggested that multiple en-
vironmental factors, including prenatal infection/immune 
activation, paternal age, malnutrition, hypoxia-related 
obstetric complications, childhood/adolescent trauma 
and cannabis abuse are associated with an increased risk 
of SZ [5]. The interaction of risk genes with the environ-
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ment can result in aberrant epigenetic mechanisms in SZ. 
After first being proposed by Petronis (2004) [6], the epi-
genetic component of the pathophysiology of SZ has been 
widely recognized in recent years. DNA methylation, one 
of the main epigenetic mechanisms, can be examined by 
utilizing two complementary approaches. The first in-
volves hypothesis-driven analysis of DNA methylation in 
candidate genes. Using this approach, abnormal methyl-
ation of some genes, such as DRD2 [7], DLGAP2 [8], and 
COMT [9], has been implicated in the onset and pro-
gression of SZ. The second approach involves micro-
array-based epigenomic profiling. With this micro-
array-based technique, assessment of DNA methylation 
in about 450,000 or 853,307 CpG sites can be performed. 
However, this represents only a small fraction of all CpG 
sites (∼28 million) [10]. Several methylome-wide associ-
ation studies (MWAS) have been performed using post-
mortem brain tissues [11-14] and the peripheral blood 
cells of patients with SZ [15-20]. These MWAS have re-
vealed differences genome-wide methylation patterns be-
tween SZ patients and controls, but the number of CpGs 
analyzed, and the sample sizes, have been limited. Two 
large-scale methylome studies linked SZ to hypoxia and 
infection [20], and some differentially methylated posi-
tions were located in a top-ranked SZ region based on 
GWAS analyses [18]. Few MWAS have been performed 
in first-episode SZ [19,21-23]. Moreover, with a few ex-
ceptions [18,24,25], most previous studies did not control 
for potential confounders of methylation, such as lifestyle 
[25] and dietary [26-28] factors. 

The present study aimed to identify methylation 
changes in CpG sites associated with recent-onset (RO) 
psychosis using the Infinium Human Methylation 
BeadChip (Illumina, San Diego, CA, USA), which covers 
more than 850 K CpG sites. In the methylation analyses, 
lifestyle factors such as smoking, alcohol, exercise, and 
diet were controlled for. Furthermore, we evaluated the 
association of altered methylation patterns with symp-
toms and early trauma in patients and healthy controls.

METHODS

Participants 
As inclusion criteria, it was required that subjects be 

aged between 19 and 58 years and meet the Diagnostic 
and Statistical Manual of Mental Disorders, Fifth Edition 

[29] criteria for SZ spectrum disorders (SZ, schizophreni-
form disorder, psychotic disorder not otherwise specified 
[NOS]), brief psychotic disorder, or delusional disorder. 
RO was defined as duration of illness ≤ 2 years. The ex-
clusion criteria were an intelligence quotient ＜ 70, his-
tory of head trauma, serious neurological disorder 
(epilepsy, stroke, Parkinson’s disease, and/or dementia), 
and significant medical illness. Participants were re-
cruited from the Korean Early Psychosis Cohort Study 
(KEPS), a nationwide, multicenter, prospective and natu-
ralistic observational study. Age- and sex-matched healthy 
individuals were recruited for the control group via 
advertisements. All participants provided written in-
formed consent in accordance with a protocol approved 
by the Ethics Committee of Jeonbuk National University 
Hospital (approval no. CUH 2014-11-002). 

Clinical Assessment
The severity of symptoms was evaluated within a week 

of blood sampling using the Positive and Negative 
Syndrome Scale (PANSS) [30,31]. Childhood trauma was 
evaluated with the Early Trauma Inventory Self 
Report-Short Form (ETISR-SF) [32]. Data on factors related 
to lifestyle were obtained using the Fagerstrom Test for 
Nicotine Dependence (FTND) [33], Alcohol Use 
Disorders Identification Test (AUDIT) [34], Dietary Habits 
Questionnaire (DHQ) [35], and Physical Activity Rating 
(PA-R) [36]. For simplicity, we used only the fourth item of 
the FTND (0, non-smoker; 1, ≤ 10 cigarettes/day; 2, 11−
20 cigarettes/day; 3, 21−30 cigarettes/day; and 4, ≥ 31 
cigarettes/day) and the mean of items 1 and 2 of the 
AUDIT ([sum of the scores on items 1 and 2] / 2). The 
DHQ is a 20-item self-administered questionnaire con-
sisting of three subcategories: there are 5 items on diet 
regularity, 6 on balanced diet, and 9 on unhealthy diet 
and eating habits. This scale was developed based on di-
etary guidance published by the Korean Ministry for 
Health, Welfare and Family Affairs (2010) [37]. Each 
item is scored on a three-point scale (1, 3, and 5 points) 
according to the frequency of the dietary habit. Higher 
scores indicate better dietary habits in the respective 
categories. The PA-R is a questionnaire for rating physical 
activity, with scores ranging from 0 (avoids walking or ex-
ercise) to 7 (runs more than 10 miles per week or spends 
more than 3 hours per week in comparable physical activ-
ity). 
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Table 1. Demographic and clinical characteristics of participantsa

Variable Patients (n = 61) Control (n = 47) p value

Age 31.820 ± 12.075 30.872 ± 8.882 0.598a

Sex 1.205b

Female 38 (62.2) 34 (72.3)
Male 23 (37.7) 13 (27.7)

Education 13.934 ± 2.658 15.745 ± 0.988 ＜0.001c

DI (mo)   18.62 ± 41.637
AUDIT   0.984 ± 0.152   0.181 ± 0.152 0.369a

CPZ dose (mg/d) (n = 23) 324.68 ± 220.2
DHQ (n = 54) 60.222 ± 1.715 56.638 ± 1.904 0.164a

FTND (n = 59)   0.373 ± 0.087   0.149 ± 0.061 0.037a

PAR (n = 60)   1.775 ± 0.218   1.660 ± 0.241 0.724a

PANSS
Positive 19.328 ± 5.732 
Negative 13.164 ± 6.336 
General 34.295 ± 8.405 
Total 66.787 ± 15.641 

ETISR-SF (n = 58)
Emotional   1.810 ± 1.791   0.489 ± 1.081 0.000a

General   1.810 ± 1.791   0.745 ± 1.073 0.000a

Physical   2.069 ± 1.664   1.149 ± 1.367 0.003a

Sexual   0.397 ± 1.025   0.277 ± 0.615 0.834a

Total   6.138 ± 4.803   2.660 ± 2.656 0.000a

Values are presented as mean ± standard deviation or number (%). 
FTND, Fagerstrom Test for Nicotine Dependence; AUDIT, Alcohol Use Disorders Identification Test; DHQ, Diet History Questionnaire; PAR, 
Physical Activity Ratio; CPZ, chlorpromazine; DI, duration of illness; ETISR-SF, Early Trauma Inventory Self Report-Short Form; PANSS, Positive and 
Negative Syndrome Scale.
aMann–Whitney U test; bchi-square test; cValues are presented as mean ± standard deviation.

DNA Methylation Assay
DNA methylation refers to a biochemical process in 

which a methyl group is bound to the cytosine of a CpG 
dinucleotide. In turn, this alters the levels of gene tran-
scription, without altering the underlying DNA sequence. 
Genomic DNA was extracted from peripheral blood mon-
onuclear cell samples using a QIAamp DNA Mini Kit 
(QIAGEN, Hilden, Germany) according to the manu-
facturer’s instructions. All prepared samples were bisulfite 
converted according to the EZ DNA Methylation Kit pro-
tocols (Zymo Research, Orange, CA, USA). Bisulfite-con-
verted DNA was assessed using the Infinium MethylationEPIC 
BeadChip (Illumina), to determine the methylation levels 
of 853,307 CpG sites. After staining, the BeadChips were 
scanned, and images were extracted using GenomeStudio 
software (Illumina). The raw intensity data files (idat files) 
were preprocessed. First, we excluded 486 probes with 
detection levels of a p value ≥ 0.01 in 25% of the sample, 
because they were considered unreliable. Then, we re-
moved 19,377 CpG probes located on the sex chromosome. 
During this process, 59 probes identified as SNPs were 

removed. The data were background-corrected and ad-
justed for dye bias using the methylumi and lumi R 
packages. To reduce bias in the Infinium I and II assays, 
the corrected signal value was normalized. The beta-mix-
ture quantile method was used to decompose the density 
profiles of the Infinium I and II assays into three methyl-
ation states: unmethylated (close to 0), partially methy-
lated (close to 0.5), and fully methylated (close to 1). 
Quantile normalization was then performed to fit each 
β-distribution of the Infinium II profile to the correspond-
ing β-distribution of the Infinium I profile, leaving 
846,055 CpGs for subsequent analysis (Supplementary 
Fig. 1; available online). Raw data were extracted as beta 
values ranging between 0 and 1 (β value = methylated in-
tensity / [methylated intensity + unmethylated intensity]). 
All data analyses, and the visualization of differentially 
methylated CpGs, were conducted using R software 
(version 3.3.3; www.r-project.org).

Identification of Differentially Methylated CpG Sites 
To identify 2,912 differentially methylated CpG sites 
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Fig. 1. Percentage of the 2,912 CpG sites according to their location and contents in the genes. Of the 2,912 CpGs, 1,509 sites (51.82%) were 
hypomethylated and 1,403 sites (48.18%) were hypermethylated. Of the hypomethylated CpGs, (A) 951 (63.02%) 308 (20.41%) and 11 sites 
(0.73%) were located in the promoter regions, gene bodies and 3'-UTR; (B) 970 (64.23%), 193（12.79%）and 49 sites (3.25%) were located in the 
CpG islands (CGIs)，CGI shores and CGI shelves. Of the hypermethylated CpGs, (C) 505 (35.99%), 644 (45.90%) and 51 sites (3.64%) were located 
in the promoter regions, gene bodies and in 3'-UTR; and (D) 526 (37.49%), 375 (26.73%）and 148 sites (10.55%) were located in the CGIs, CGI 
shores and CGI shelves. 

associated with RO psychosis, we performed linear re-
gression adjusted for confounding factors: β = α0 + α1 
age + α2 sex + α3 education + α4 alcohol + α5 smoking 
+ α6 exercise + α7 diet + ε. To adjust for multiple testing, 
a false discovery rate (FDR) cutoff p value of ＜ 0.001 was 
used. Correlations between the methylation values of 
2,912 selected CpG sites and total and subscale scores on 
the PANSS and ETISR-SF were calculated. p values ＜ 

0.05 were considered significant.

Functional Enrichment Analysis and Power 
Calculation

To identify functions associated with the methyl-
ation-altered genes (2,535 genes corresponding to 2,912 
CpG sites), we performed Gene Ontology (GO) analysis 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analysis using the Database for Annotation, 
Visualization, and Integrated Discovery (DAVID; http:// 
david.abcc.ncifcrf.gov/). We performed KEGG enrich-
ment analysis to identify the biological processes, path-
ways, and networks shared by these genes. GO terms and 
KEGG pathways that contained 10 genes and had an  
Expression Analysis Systematic Explorer score ＜ 0.05 

were considered significant. The top 15 GO terms and 
KEGG pathways were selected.

The study was powered to detect mean differences in 
DNA methylation between cases and controls at a p value 
＜ 3.44E-06, following a previously described method 
[36]. The power thresholds (ranging between 0 and 1) of 
the probes, based on the numbers of cases and controls, 
are shown in Supplementary Fig. 2 (available online). Our 
study was adequately powered to detect a 0.05% mean 
difference at ∼40.6% of all sites.

RESULTS

Distribution of Differentially Methylated CpG Sites 
Demographic and clinical characteristics of the partic-

ipants (61 RO psychosis patients and 47 controls) are de-
scribed in Table 1. Diagnoses included SZ (29.51%), 
schizophreniform disorder (31.15%), other specified SZ 
spectrum and psychotic disorders (22.95%), brief psy-
chotic disorder (9.84%), and delusional disorder (6.56%). 
We identified 2,912 differentially methylated CpG sites 
associated with RO psychosis (FDR ＜ 0.001) after con-
trolling for age, sex, education level, alcohol use, smoking 
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Table 2. Top 20 differentially methylated CpG sites associated with recent onset psychosis

Probe Chromosome Position
Illumina gene 

annotation
Genes within 50 kb of 

associated CpG
∆β FC p value FDR

cg23712970 14 23540735 ACIN1 PSMB5; PSMB11; CDH24; 
C14orf119; LMLN2; CEBPE

−0.0387 −1.1941 9.98E-20 8.45E-14

cg18128437 3 167453397 PDCD10; 
SERPINI1

PDCD10; SERPINI1 −0.0324 −1.2067 1.03E-16 2.91E-11

cg19259030 15 76553926 ETFA;TYRO3P C15orf27 0.0202 1.0436 7.07E-17 2.91E-11
cg05874478 14 24615768 RNF31;PSME2 PCK2; NRL; DCAF11; FITM1; 

EMC9; AK307150; PSME1; IRF9; 
REC8; IPO4; TM9SF1

0.0357 1.0862 6.85E-16 1.45E-10

cg14094693 13 49345282 NA PSME2P2 0.0310 1.0540 3.22E-15 5.44E-10
cg23496597 20 57463725 GNAS GNAS-AS1 −0.0301 −1.0615 1.61E-14 2.27E-09
cg26313233 2 114415511 NA RPL23AP7; RABL2A; SLC35F5 0.0202 1.0418 4.44E-14 5.37E-09
cg26933384 19 41188655 NUMBL ADCK4; ITPKC 0.0487 1.0627 6.28E-14 6.64E-09
cg25335190 6 27791899 HIST1H4J HIST1H2BL; HIST1H3H; 

HIST1H2AJ; HIST1H2BM; 
HIST1H4K; HIST1H2AK; 
HIST1H2BN; HIST1H2AL; 
HIST1H1B; HIST1H3I; 
HIST1H4L; HIST1H4PS1; 
HIST1H2AI; HIST1H2BPS2;

−0.0456 −1.4136 9.95E-14 8.42E-09

cg26850290 16 31072493 ZNF668 STX4; BC039500; ZNF646; 
PRSS53; VKORC1; BCKDK

−0.0214 −1.0293 9.36E-14 8.42E-09

cg02688348 11 57103429 SSRP1 TNKS1BP1; P2RX3; PRG3 −0.0222 −1.2388 1.29E-13 9.17E-09
cg24132580 4 165118938 MARCH1; 

ANP32C
MARCH1;ANP32C 0.0298 1.0815 1.30E-13 9.17E-09

cg25447461 17 27920715 ANKRD13B TAOK1; ABHD15; GIT1; CORO6; 
ABHD15-AS1; SSH2; TP53I13; 
ANKRD13B

−0.0180 −1.1321 1.56E-13 1.02E-08

cg15028047 2 242607778 ATG4B THAP4; ING5; DTYMK 0.0184 1.0268 2.16E-13 1.15E-08
cg24376286 2 198245629 NA SF3B1a 0.0253 1.0552 1.92E-13 1.15E-08
cg25863503 6 27799295 HIST1H4K HIST1H2BL; HIST1H3H; 

HIST1H2AJ; HIST1H2BM; 
HIST1H4J; HIST1H2AK; 
HIST1H2BN; HIST1H2AL; 
HIST1H1B; HIST1H3I; HIST1H4L

−0.0344 −1.2981 2.17E-13 1.15E-08

cg05303981 9 21995305 CDKN2A; 
CDKN2B-AS1

CDKN2A-DT; MTAP; 
CDKN2B-AS1; CDKN2B

−0.0132 −1.1116 2.34E-13 1.16E-08

cg12394426 11 64009745 FKBP2 STIP1;FERMT3; TRPT1; VEGFB; 
DNAJC4; PLCB3; BAD; GPR137; 
KCNK4; NUDT22; DNAJC4; 
KCNK4-TEX40; PPP1R14B; 
PPP1R14B-AS1

−0.0264 −1.2046 3.34E-13 1.57E-08

cg24450631 3 185542709 IGF2BP2 IGF2BP2 0.0298 1.0617 8.16E-13 3.14E-08
cg02030802 17 2409437 METTL16 METTL16 0.0171 1.0205 9.68E-13 3.56E-08

Positive fold change indicates hypermethylation in patients compared to controls.
FC, fold change; FDR, false discovery rate; NA, not available; ∆β, group mean β of patients–group mean β of controls.
aGWAS candidate genes. 

status, exercise, and diet. Of the 2,912 CpGs, 1,509 sites 
(51.82%) were hypomethylated, and 1,403 (48.18%) 
were hypermethylated. Of the 1,509 hypomethylated 
CpGs, 951 (63.02%), 308 (20.41%), and 11 (0.73%) sites 
were located in the promoter regions, gene bodies, and 
3'-UTRs, respectively (Fig. 1A). When classified accord-

ing to the CpG contents in the genes, 970 (64.28%), 193 
(12.79%), and 49 sites (3.25%) were located in the CpG 
islands (CGIs), CGI shores, and CGI shelves, respectively 
(Fig. 1B). Of the 1,403 hypermethylated CpGs, 505 
(35.99%), 644 (45.90%), and 51 (3.64%) sites were lo-
cated in the promoter regions, gene bodies, and 3'-UTRs, 
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Table 3. Top 15 KEGG pathways 

Pathway ID Description Gene count p value FDR

hsa04921 Oxytocin signaling pathway 31 8.84E-04 1.16E+00
hsa04730 Long-term depression 16 1.82E-03 2.39E+00
hsa04360 Axon guidance 26 2.89E-03 3.76E+00
hsa05213 Endometrial cancer 13 9.96E-03 1.24E+01
hsa04720 Long-term potentiation 15 1.20E-02 1.48E+01
hsa04010 MAPK signaling pathway 41 1.25E-02 1.53E+01
hsa04724 Glutamatergic synapse 22 1.29E-02 1.58E+01
hsa04520 Adherens junction 15 2.23E-02 2.58E+01
hsa04144 Endocytosis 38 2.43E-02 2.78E+01
hsa04120 Ubiquitin mediated proteolysis 24 2.72E-02 3.06E+01
hsa04510 Focal adhesion 33 2.98E-02 3.30E+01
hsa04270 Vascular smooth muscle contraction 21 3.18E-02 3.48E+01
hsa04370 VEGF signaling pathway 13 3.34E-02 3.62E+01
hsa01100 Metabolic pathways 155 3.34E-02 3.62E+01
hsa04725 Cholinergic synapse 20 3.53E-02 3.78E+01

KEGG, Kyoto Encyclopedia of Genes and Genomes; FDR, false discovery rate.

respectively (Fig. 1C). In addition, 526 (37.49%), 375 
(26.73%), and 148 sites (10.55%) were located in the 
CGIs, CGI shores, and CGI shelves, respectively (Fig. 1D). 
The top 20 differentially methylated sites with the lowest 
FDR values are presented in Table 2. Corresponding gene 
information of top 20 sites are provided in the online 
Supplementary Table 1. Ten sites from the ACIN1, 
PDCD10, SERPINI1, GNAS, HIST1H4J, ZNF668, SSRP1, 
ANKRD13B, HIST1H4K, CDKN2A, CDKN2B-AS1, and 
FKBP2 genes, and ten from the ETFA, TYRO3P, RNF31, PSME2, 
NUMBL, MARCH1, ANP32C, Autophagy-related 4B cys-
teine peptidase (ATG4B), IGF2BP2, and METTL16 genes, 
showed that patients were more likely to have a hypo- or 
hypermethylated status than controls. The full names of 
these genes, and the top 100 differentially methylated 
sites, are provided in the online Supplementary Table 2.

Functional Enrichment Analysis
The top 15 significantly enriched KEGG pathways in-

cluded the oxytocin signaling pathway, long-term depres-
sion pathway, axon guidance, endometrial cancer, 
long-term potentiation, MAPK signaling pathway, and 
glutamatergic pathway, among others (Table 3). In total, 
341 genes were annotated with 15 KEGG pathways. The 
top 15 significantly enriched GO terms are provided in 
the online Supplementary Table 3. 

Relationship between the Beta Values of the Selected 
CpG Sites and Clinical Indicators 

Significant correlations are shown in Figure 2. In the pa-
tient group, positive correlations were found between the 
beta value of cg13562874 and the ETISR-SF total score, 
while negative correlations were identified between the 
beta values of cg13810931 and cg18128437 and the 
PANSS total score. In the control group, the ETISR-SF total 
score exhibited negative correlations with the beta values 
of cg23207361 and cg23408615, and a positive correla-
tion with the beta value of cg25548986. 

DISCUSSION

Epigenetics provides insight into the molecular link be-
tween the genetic and environmental factors that contrib-
ute to the complex etiology of diseases. The goal of the 
present MWAS was to identify methylation biomarkers in 
the peripheral blood of patients with RO psychosis. We 
found associations of several novel methylated genes with 
psychosis and early trauma. The results provide new in-
sight into the epigenetic causes and treatment of psy-
chotic disorders. 

Analysis of the distribution of differentially methylated 
CpG sites within genes demonstrated that hypomethylation 
was more common in the promoter region, and hyper-
methylation in the gene body. Although the role of DNA 
methylation in gene bodies remains unclear, gene body 
DNA methylation in highly expressed genes is often seen 
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Fig. 2. Correlation between the beta-values of selected CpG sites and clinical indicators. In patient group, (A) positive correlation between the 
beta-value of cg13562874 near ZSWIM8 gene (p = 0.00097) and total score of the ETISR-SF; and negative correlations (B) between the beta-values 
of cg13810931 near PITPNM1 gene (p = 0.00053) and (C) cg18128437 near PDCD10 and SERPINI1 genes (p = 0.00074) and total score of the 
PANSS. In control group, negative correlations (D) between the beta-value of cg23207361 near BAT2 gene (p = 0.0053) and (E) cg23408615 near 
intergenic region (p = 0.0044), and total score of the ETISR-SF and (F) positive correlation between the beta-value of cg25548986 near ONECUT1 
gene (p = 0.00019) and ETISR-SF total score.
ETISR-SF, Early Trauma Inventory Self Report-Short Form; PANSS, Positive and Negative Syndrome Scale.

in human cells [39]. CGIs in gene bodies reportedly act as 
alternative promoters [40,41], and tissue- or cell type-spe-
cific CGI methylation is prevalent in gene bodies [41,42]. 
Similarly, in this study, hypomethylation was more com-
mon in CGIs, while hypermethylation was more abun-
dant outside CGIs. This indicates that psychosis-asso-
ciated CpG sites often do not reside in CGIs. 
Accumulating evidence suggests that phenotypically rele-
vant variation in DNA methylation often occurs outside 
CGIs [43]. 

Several of the 22 genes associated with the top 20 dif-
ferentially methylated CpG sites have been implicated in 
the pathogenesis of SZ. Two genes, apoptotic chromatin 
condensation inducer 1 (ACIN1) and programmed cell 
death 10 (PDCD10), are involved in apoptosis. Our find-
ing that hypomethylation of cg23712970 in ACIN1 and 

PDCD10 may result in increased expression of these 
genes is partially consistent with the recent finding that 
expression levels of the BCL2 and CASP3 apoptosis genes 
were significantly higher in the peripheral blood lympho-
cytes of schizophrenic patients [44]. Analysis of mRNA 
expression in the post-mortem brain tissue of patients with 
SZ also revealed altered mRNA expression in the IFITM2, 
TIAL1, PDCD6, and MCL genes, which are involved in 
programmed cell death [45]. ATG4B is another gene in-
volved in autophagy. Furthermore, the hypomethylation 
of cg15028047 seen in the present study is in line with the 
decreased expression of autophagy-related genes in 
Brodmann area 22 in previously reported in SZ patients 
[46,47]. Importantly, genome-wide profiling of DNA 
methylation in induced pluripotent stem cells demon-
strated that 23 differentially methylated genes between SZ 
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patients and controls were functionally annotated as 
‘Autophagy’ [48]. It should be noted that, as antipsychotic 
drugs are known to induce autophagy [49], our finding 
could be related either to disease processes or uncon-
trolled environmental factors. Hypomethylation of the 
serpin family I member 1 (SERPINI1), ring finger protein 
31 (RNF31), and FKBP prolyl isomerase 2 (FKBP2) genes, 
which appear to enhance axonal growth, prevent neuro-
inflammation, and accelerate protein folding and traffick-
ing, respectively, seems counterintuitive given that in-
creased expression of these genes could be beneficial. A 
possible explanation could be that these methylation 
changes may reflect either compensatory mechanisms in 
response to disease processes or the effects of anti-
psychotic drugs. Hypermethylation of methyltransfer-
ase-like 16 (METTL16) is notable, in that a methionine-in-
duced animal model of SZ [50], and the methylation hy-
pothesis of SZ, provide solid support for a role of epi-
genetics in understanding the pathophysiology of SZ [51]. 
Histones play a central role in transcription regulation, 
DNA repair, DNA replication, and chromosomal stability. 
Our findings regarding the hypomethylation of H4 clus-
tered histone 11 (HIST1H4J) and H4 clustered histone 12 
(HIST1H4K) are novel; most previous studies of SZ have 
considered histone methylation at H3K9 [52,53] and 
global histone H4 acetylation [54]. Hypermethylation of 
the membrane-associated ring-CH-type finger 1 (MARCH1) 
gene, which is involved in regulating vesicular transport 
and endocytosis, merits further investigation given the 
novel hypothesis that altered clathrin-mediated endocy-
tosis (CME) is responsible for the pathophysiology of SZ 
[55]. When we compared our top 100 CpG sites (with 
120 genes) to the 172 differentially methylated positions 
reported by a large-scale methylome study of SZ [18], on-
ly four genes, caspase recruitment domain family member 
14 (CARD14), nuclear factor of activated T cell 1 
(NFATC1), phosphofurin acidic cluster sorting protein 2 
(PACS2), and SKI proto-oncogene (SKI), overlapped. 
Moreover, comparison with the 100 top-ranked SZ-asso-
ciated genes in the study by Dempster et al. [15] revealed 
no overlap. This lack of overlap may be attributable to dif-
ferences in disease stage and confounding factors, such as 
the study subjects, total number of CpG sites examined, 
and sample size. Overall, it should be noted that fold- 
change and △β values for the top 20 CpG sites were low. 
These low values were also reported in previous studies 

[18,24]. This suggests that marked differences in methyl-
ation status between patients and controls may be difficult 
to detect in peripheral blood samples, or by microarrays.

Some of the top 15 KEGG pathways have important im-
plications for SZ. Oxytocin plays a central role in birthing, 
mother-infant bonding, and a wide range of related social 
behaviors, and is considered a candidate susceptibility 
gene for SZ. Altered oxytocin receptor (OXTR) methyl-
ation and OXTR polymorphisms have been reported in 
SZ, and in individuals at ultra-high risk for psychosis 
[22,56]. As for the axon guidance pathway, a recent anal-
ysis of European and American GWAS of SZ revealed that 
15 axon guidance pathway related genes were associated 
with the disease [57]. The mitogen-activated protein kin-
ase (MAPK)-associated pathway activates transcription 
factors related to learning, memory, cell proliferation, and 
apoptosis. Hypermethylated genes related to MAPK sig-
naling pathways were reported in SZ-affected mono-
zygotic twins [58]. In the endocytosis pathway, 38 genes 
were enriched, including MARCH1. Interestingly, DNA 
methylation-mediated modulation of endocytosis has 
been proposed as a mechanism underlying synaptic func-
tion [59]. 

Higher trauma scores in our patient group were asso-
ciated with hypermethylation of the zinc finger SWIM- 
type containing 8 (ZSWIM8) gene. The C2H2-type zinc 
finger proteins (C2H2-ZNFs) are known to play significant 
roles in the regulation of neural stem cell activity and sub-
sequent brain development [60,61]. Accumulating evi-
dence suggests a role for C2H2-ZNFs in the development 
of SZ [62-64]. Therefore, this finding suggests that earlier 
trauma may decrease the expression of ZNFs, in turn lead-
ing to aberrant brain development. However, in the con-
trol group, higher trauma scores were associated with hy-
pomethylation of the branched-chain amino acid trans-
aminase (BAT2) gene and the intergenic region, as well as 
hypermethylation of the one cut homeobox 1 (ONECUT1) 
gene. The BAT2 and ONECUT1 genes are involved in glu-
cose metabolism and diabetes mellitus. It is difficult to de-
termine the implications of these findings given that the 
controls were all healthy. Another interesting finding was 
that, in the patient group, higher PANSS scores were cor-
related with hypomethylation of the phosphatidylinositol 
transfer protein membrane associated 1 (PITPNM1), 
PDCD10, and SERPINI1 genes. PITPNM1 plays a role in 
maintaining normal diacylglycerol levels in the Golgi ap-
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paratus, while the PDCD10 and SERPINI1 genes are in-
volved in apoptosis and axonal growth. Hence, these re-
sults suggest that more severe psychopathology may be 
associated with more active changes in gene expression at 
both the cellular and axonal levels. 

Some limitations should be considered when interpret-
ing the findings of this study. First, the small sample size 
and diagnostic heterogeneity among the participants may 
limit the generalizability of the findings. However, it 
should be noted that the present study was adequately 
powered to detect a 0.05% mean difference at ∼40.6% 
of all sites. Second, as some of the patients were on anti-
psychotics (19 were antipsychotic-naïve, 19 were anti-
psychotic-free, and 23 were medicated), potential effects 
of medication on the epigenome cannot be ruled out. 
Considering several reports on the effects of anti-
psychotics on methylation profiling in animals [65] and 
patients with SZ [66], this factor should be controlled for 
in future studies. Third, significant CpG sites were not va-
lidated with independent samples. Fourth, as we did not 
have RNA samples, the effects of methylation changes on 
gene expression were not explored. Fifth, cellular hetero-
geneity of blood samples was not controlled for. Given 
that cellular composition explains much of the observed 
variability in DNA methylation [67], the cellular hetero-
geneity of our samples may have affected the results. 
Sixth, the SNPs were not all removed. As sequence poly-
morphisms may affect the readout of methylation signals 
in Infinium arrays [68], this should be considered in future 
studies. 

As strengths of the present study, the patients were all in 
a relatively early disease stage, and various lifestyle fac-
tors were controlled for. Most importantly, this was the 
first study to investigate the association between early 
trauma and DNA methylation changes in RO psychosis. 
In summary, using a methylome-wide array, we identified 
differentially methylated CpG sites in patients with RO 
psychosis compared to controls. The genes associated 
with the top 20 differentially methylated sites were largely 
novel, had not been reported in previous methylation 
studies, and were involved in apoptosis, autophagy, axo-
nal growth, neuroinflammation, protein folding, etc. In 
the patient group, significant associations of these novel 
methylated genes with early trauma and psychopathology 
were observed. These findings support the notion that al-
tered DNA methylation could be involved in early trauma 

and the pathophysiology of psychosis.

The data set analyzed in this study is available in the 
Gene Expression Omnibus (GEO) repository (GSE 157252, 
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc= 
GSE157252). 
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