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Abstract: Recently, more and more works have focused and used extensive resources on 
atherosclerosis research, which is one of the major causes of death globally. Alongside 
traditional risk factors, such as hyperlipidemia, smoking, hypertension, obesity, and diabetes, 
mechanical forces, including shear stress, pressure and stretches exerted on endothelial 
cells by flow, is proved to be crucial in atherosclerosis development. Studies have recognized 
the mechanosensitive Piezo1 channel as a special sensor and transducer of various mechan-
ical forces into biochemical signals, and recent studies report its role in atherosclerosis 
through different mechanical forces in pressure, stretching and turbulent shear stress. 
Based on our expertise in this field and considering the recent advancement of atherosclero-
sis research, we will be focusing on the function of Piezo1 and its involvement in various 
cellular mechanisms and consequent involvement in the development of atherosclerosis in 
this review. Also, we will discuss various functions of Piezo1 involvement in atherosclerosis 
and come up with new mechanistic insight for future research. Based on the recent findings, 
we suggest Piezo1 as a valid candidate for novel therapeutic innovations, in which deep 
exploration and translating its findings into the clinic will be a new therapeutic strategy for 
cardiovascular diseases, particularly atherosclerosis. 
Keywords: atherogenesis, Piezo1 channel, endothelial cell, inflammation, shear stress, 
mechanotransduction

Introduction
Atherosclerosis (AS) is a major global killer, and is the basis of cardiovascular 
diseases (CVDs) comprising myocardial infarction (MI), ischemic heart disease 
(IHD) and stroke. AS is a multifactorial inflammatory disorder,1–4 and is the root of 
cardiovascular disease.5 AS remains a leading cause of death globally, claiming 
millions of lives every year, as estimated in the 2015 global burden of disease study 
(17.9 million) about 30% of whole death globally.6 There is an increased in its 
prevalence due to the global rise in obesity and diabetes, with more than half of the 
world population becoming obese, leading to a steep rise in cardiovascular diseases 
(CVDs) burden; it is estimated that the global death from CVDs may go beyond 
23.6 million by the year 2030. At the onset of AS, endothelial cell (EC) defense is 
triggered by a number of factors, including mechanical forces such as shear stress 
and stretching, which leads to EC adaptive responses thereby developing a distinct 
phenotype to interact with other traditional risk factors,7 and facilitate the initiation 
of AS. The significance of mechanical forces in cardiovascular physiology and 
pathology have been reported for decades. Shear stress mediated by Piezo1 is 
among the significant factors and the initiator of inflammation and vascular 
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endothelial cell (VEC) dysfunction.8 Cells detect and lib-
erate mechanical forces using various biochemical and 
molecular mechanisms. In the cardiovascular system, fric-
tional force and pressure are generated in the vessels, 
endothelial Piezo1 senses and transduces such forces 
which are the determinant of the physiological competence 
of the system throughout life. Piezo1 serves a crucial 
function in angiogenesis, embryonic development and is 

crucial for endothelial shear stress-senses, blood pressure 
regulation, and physical activities during exercise etc.9 As 
our knowledge of this field increases, various functions of 
Piezo1 are emerging. Piezo1 is a significant player in 
cardiovascular physiology (Figure 1), renal and hemato-
poietic systems.10 Its function is known in embryonic 
vessel development,11 RBC stability in both human and 
mouse,9 control of blood pressure, physical activities, 

Graphical Abstract

Figure 1 Cardiovascular and non-cardiovascular functions of Piezo1: The schematic diagram demonstrating a wide range of Piezo1 functions in different areas of physiology 
including cardiovascular and non-cardiovascular roles from the activation of Piezo1 by mechanical force branching from left to right arrows, pointing different organ and cell / 
tissue.
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hypertension-dependent arterial remodeling, urinary 
osmoregulation, epithelial equilibrium and axonal 
development.11 It also serves the function of adjusting 
erythrocyte volume,12–14 and in prostate cancer.15 Piezo1 
global knockout in mice leads to embryonic 
fatality,10,12,16–19 indicating its significance during 
embryogenesis.20 Additionally, severe defects in vessel 
maturation and remodeling, and disability in NO produc-
tion and vessel dilation responding to flow were both 
observed following Piezo1 global deletion or EC-specific 
disruption.21 Also, Piezo1 in partnership with Piezo2 
serves the function of baroreceptor reflex as their dual 
disruption obliterates baroreceptor responses to sodium 
nitroprusside or phenylephrine.22 Piezo1 appears to func-
tion in a wide area of cell biology, as illustrated in 
Figure 1, and its pathologic importance in humans was 
also indicated.11,23–25 The broad concept of Piezo1 func-
tions was also reviewed in recent articles.9,26–28 

Collectively, Piezo1 remains a significant player in 
a broad area of cell physiology, considering its expression 
and functions in diverse tissues, not limited to the cardio-
vascular system (Figure 1). This indicates that defects or 
mutations in this channel may impair various functions in 
ECs and other cell types. Therefore, pharmacological 
manipulation of either activation or inhibition of this chan-
nel may come up with a new trend in clinical practice. 
Different abnormalities or up/downregulation of cellular 
activities were observed in several studies following the 
silencing/blocking, deletion, cell specific or global knock-
out and deficiency of Piezo1.9,28–33 Since the recognition 
of Piezo1 &2 in 2010, they have been regarded as one of 
the most significant classes of mechanosensory proteins. It 
is now feasible to investigate the mechanism of Piezo1 
engagement in physiological and pathophysiological pro-
cesses as a result of recent developments in understanding 
their topology, the identification of the agonists Yoda1, 
Jedi1&2 as well as the antagonist GsMTx4, Ruthenium 
Red. Recently, cardiovascular aspects of Piezo1 channel 
have been reviewed elsewhere, but here we review the 
current understanding of Piezo1 channel and specifically 
focus on its immune/inflammatory mechanisms of athero-
sclerosis involving different mechanotransduction pro-
cesses as summarized in the graphic abstract, which have 
not been reviewed to date. We also raise awareness of the 
realization of its pharmacology and suggested new 
directions for future research toward the development of 
advanced therapeutic strategies for prevention and man-
agement of atherosclerosis.

Structure of Piezo1 Channel
Human mechanically activated (MA) channel molecular 
identity was mysterious for a long time until the revolu-
tionary discovery of Piezo1 & 2, which may increase our 
understanding of cellular signaling and mechanotransduc-
tion. Piezo1 proteins are collectively arranged to form 
a three blade-like propeller inserted within the lipid bilayer 
which makes the central ion pore that senses mechanical 
forces.9,34–36 Its extracellular propeller domain serves as 
a detector of flow related-shear and other mechanical 
stress.16,37 In respect to structural components, Piezo1 
can be categorized as follows.

Exceptional 38-TM Topography
With advancement of Piezo1 research, high-resolution 
structures of mice Piezo1 (mPiezo1) were shortly dis-
closed, showing that each subdomain has a special 38- 
TM topography. The inner helixes (IH) and outer helix 
(OH) of the center of the pore module are the 2 TM 
subdomains (TM37 and TM38) nearest to the protein’s 
core. The remaining 36 TM regions (TM1-36) are orga-
nized into a blade resembling a curved structure with 9 
repeating folds comprising four TM regions each, known 
as transmembrane helical units (THUs).38–40

Exceptionally Curving Blades
Each subdomain’s 9 peripheral THUs produce bladelike 
architectures, each twisted clockwise. As seen from a line 
parallel to the plasma membranous planes, next to the 
TM25–TM36 and periphery of the TM13-24 these are 
based at a 100° and a 140° angle, respectively. The 
L-shaped helical structures produced by TM13, TM17, 
TM21, TM25, and TM29 are another essential feature of 
the blades. Both structural characteristics tend to be suita-
ble for inducing regional membrane curvature as well as 
mechano-sensing. Surprisingly, the peripheral TM13-24 
tends to be located inside a strongly bent membrane 
plane, implying that the Piezo1 channel has the ability to 
bend the membrane in which it sits. Previous research 
suggested that cell membrane deflection and tension may 
control Piezo1.26,27,38,39,41

Central Cap
Using topographical predicting simulation, a study by 
Kamajaya’s team,42 discovered that Piezo1 residues 2210 
to 2457 produced an extracellular loop next to the last TM 
region from the C-terminus, known as C-terminal 
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extracellular domain (CED). The central cap was not 
expressed when residues 2218 to 2453 were removed 
from the Piezo1 protein, implying that this area trimerized 
to produce the central cap. The central cap comprises the 
CED in the shape of trimeric complexes that encapsulated 
the extracellular-vestibule (EV) with apertures, disclosed 
by another study.27,38,39,43

The Ion Conducting Pore
Piezo proteins compose a trimeric ion conducting channel 
comprising residues 2189 to 2547, that composes the last 
two TMs. An EV in the cap region, a transmembrane- 
vestibule (MV) within the membrane, and the intracellu-
lar-vestibule (IV) beneath the membrane make up the 
continuous central channel. The MVs are located on top 
of and beneath the membrane, and both the EV and IV 
have an opening that binds them. DEEED (2393–2397), 
a patch of negative charge residues located in the opening 
of the extracellular “cap” structure made up of the CED, 
is necessary for effective ion conducting and determining 
the preference for cations than anions. Furthermore, diva-
lent calcium ion selectivity, unitary conductance, and 
aperture blocking can be caused by two essential acidic 
residues, E2495 and E2496, situated at the CTD- 
constituting IV.26,39,40,44

The Intracellular Beam
Piezo1 possess 3 beam-like structures from intracellular 
aspect, each measuring 90 nm in length and arranged at 
a 30° angle to the membranous plane. The beam composi-
tion is made up of residues H1300-S1362. The long intra-
cellular THU7-8 loop has about 390 residues, which could 
supply the beam with a structural foundation for force 
transmitting. The 3 longer intracellular beams serve as 
a functional barrier between the distal THUs and the 
central ion conducting orifice, as well as supporting the 
entire TM framework. The mutated protein was missing 
after residues 1280 to 1360 were removed, indicating the 
beam’s structural significance.26,27,39

The Anchor
The OH-IH pair is connected into the C-terminal domains 
(CTD) planes by a hairpin structure called the anchor, 
which pushes the OH-CED-IH-composing area of 1 sub-
domain to the adjacent subdomain in a dextral aspect. 
Three helices (α1, α2, and α3) make up the anchor. The 
inverted V-shaped structure formed by helices α1 and α2 
was discovered to keep the ion-conducting pore’s stability. 

The longer α3 helical unit interacts with the polar residue- 
rich α2–3 turning in the anchor and the glutamate-rich 
portion of the CTD through a lysine-rich anchor-OH linker 
which runs parallel onto the membranous plane. A few 
mutations in Piezo1 have been identified to account for 
serious disorders at regions such as KKKK (2182-K2185), 
T2143, T2142 (T2127 in human Piezo1), R2514, E2523, 
and E2522, which are situated at α3 in the anchor. 
SERCA2, a Piezo-interactor protein, also inhibits Piezo1 
by interacting with the anchor-OH linker. These results 
affirm the anchor portion’s structural and functional 
significance.26,38,40

Piezo1 Functions
The Role of Piezo1 in Helical Flow
The circulatory system generates a variety of flow patterns 
within the vascular beds, including laminar, disturbed or 
turbulent, and oscillatory or helical flow, depending on the 
nature of vessel.8 Piezo1 channel was recently recognized 
as a specialized mechanosensor that senses blood flow and 
integrates the signal into a genealogical program for vas-
cular formation and maturation.45–47 Due to the effects of 
flow pattern on vascular health, helical flow patterns have 
received considerable attention in modern days. The heli-
cal pattern of flow is symbolized by increased velocity48 

with a high shear stress that is known to be sensed by 
Piezo1,9,27 and is now considered as a physiologic type of 
flow.48,49 It is now thought to be an atheroprotective 
flow,50 considering that it could minimize blood cell 
adherence to the vessel wall, prohibit LDL buildup, and 
improve perfusion and oxygen delivery. Furthermore, 
hemodynamic efficacy of a vascular device is enhanced 
by helical flow,48,51 as summarized in Table 1. Piezo1 may 
sense helical flow and act as a key regulator of vascular 
health through various mechanisms, as it senses and trans-
duces different flow patterns into biochemical signals. 
Therefore, through Piezo1 mechanotransductions, the 
roles of helical flow might minimize the burdens on vas-
culature as well as protecting it from atherosclerotic 
pathologies, intimal hyperplasia and thromboembolism, 
through the suppression of proinflammatory signaling 
resulting from low and turbulent shear stress.52 

Altogether, these data demonstrate the physiological 
importance of Piezo1 mediated helical flow, 
its mechanisms in cardiovascular biology signaling and 
its therapeutic potentials for targeting atherosclerosis and 
other CVDs.
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Piezo1 in VSMCs Shear Stress-Induced 
Plaque Formation
Piezo1 is the specialized sensor and transducer of mechanical 
forces including shear stress. It enables EC,9,53 and vascular 
smooth muscle cells (VSMCs),20 to detect and respond to 
changes in their environment. Turbulent shear senses via 
Piezo1,8 increases EC protein and gene expressions of 
VSMC mitogens including platelet-derived growth factors 
(PDGF), ET-1, and vascular endothelial growth factor 
(VEGF). EC expression of VSMCs migration inhibitor (plas-
minogen activator inhibitor (PAI)-1) and effective suppres-
sors of cellular growth and migration, such as NO and TGFβ, 
are all downregulated by turbulent shear. The EC downregu-
lation of these growth inhibitors by disturbed shear 
encourages VSMCs to migrate into the intima via an inter-
rupted internal elastic lamina (IEL). VSMCs develop syn-
thetic phenotype in the intima, replicate and generate 
collagen, including other (ECM) proteins. With time, 
VSMCs54 together with fibroblast that is known to be regu-
lated by Piezo1,55 form the fibrous cap along with lipid core, 
building up what is known as atherosclerosis plaque.

Piezo1 Channel as Shear Sensors
Shear sensing is vital in cardiovascular physiology, and shear 
stress is among the factors guiding the developing vessel 
during embryogenesis.17 Piezo1 is a specialized and authentic 
shear stress sensor, as proved by much evidence. ECs detect 
shear stress and convey the signaling inside the cells, which 
induces cell responses to changes in its surroundings; 

abnormality in these responses could result in various disor-
ders, including CVDs.56 In response to shear stress, Piezo1 
activates cascades of downstream mechanisms, which alter the 
cell behavior based on the type of stimuli.17,57 It senses phy-
siological shear to enhance angiogenesis and vessel 
maturation.34 Earlier discoveries about Piezo1 unveiled its 
importance for shear stress detection.18 With Piezo1, EC 
oriented and aligned in the flow direction, while in its absence, 
EC failed to do so.12,34 Collectively, these qualify Piezo1 as an 
authentic shear stress sensor; and tuning Piezo1 through phar-
macological approaches may change the story of clinical 
practice. Shear stress triggers EC Piezo1, which causes Ca2+ 

inflow and phosphorylating of AKT and eNOS, resulting in 
enhanced NO generation and VSMC-dependent vessel dilata-
tion. Comparatively, VSMC Piezo1 is triggered by stretch and 
is active in vascular remodeling mechanisms under pathologi-
cal conditions, resulting in a reduction in vessel diameter. Both 
Piezo1-dependent processes successfully sustain basal BP 
control.58 In human embryonic kidney cells, transfecting 
Piezo1 caused prompt shear stress–evoked Ca2+ influx or ion 
current, shear stress quickly stimulates endogenous Piezo1 in 
membrane patches extracted from native endothelium, and 
Piezo1 knockout disrupts embryonic vascular maturation, 
which is thought to be caused by shear stress.9

Piezo1 Correlation with 
Inflammation and Atherosclerosis
Increasing evidence has reported Piezo1 involvement in var-
ious mechanisms of cell biology, including health and disease. 

Table 1 Summarizing the Suggested Clinical Significance of Helical Flow

Condition(s) Clinical Significance Model References

Endovascular Stent Restenosis Improvement of hemodynamic efficacy of 
stent

Straight endovascular stent [52]

Decrease turbulent flow zone and OS index 
in stent

End-to-Side Anastomosis Restenosis Abolish the formation of intimal hyperplasia S-type arterial bypass graft [130]
Termination of reduced shear stress zone

Arterial Bypass Grafting & Arteriovenous Shunts 

Occlusion

Reduction of thrombosis and IH Swirl Graft [131]
Amplification of shear stress Helical grafts
Reduction of oscillatory shear index

Small Caliber Arterial Prostheses Occlusions Decreases thrombi development Small diameter arterial 
prosthesis

[132]

Repression of platelet adhesion Glass tube

Superior Vena Cava Obstruction & Vena Cava Filters 

Blocking

Clearance of block and obstructions Spiral vein graft [133,134]

Vena cava filters
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Nearly all cells, tissues and organs are exposed to various 
degrees of mechanical forces, and Piezo1 is the principal 
mechano-sensor in various cells and tissues, thus linking 
Piezo1 to multiple mechanisms of inflammation and various 
disease pathogenesis particularly atherosclerosis. Mechanical 
forces, including shear stress, are the primary stimuli for cell 
physiology, since they supply signaling for cellular homeos-
tasis. Piezo1 is known to mediate wide varieties of such forces, 
therefore dysregulation of Piezo1 signal may alter homeostasis 
and result in disease processes such as atherosclerosis. ECs 
respond to these stimuli such as laminar or turbulent shear 
mediated by Piezo1, and this triggers pro- or anti- 
inflammatory signals leading to inflammation and athero-
sclerosis depending on the flow pattern. Piezo1’s significance 
in cardiovascular physiology and pathology is becoming more 
widely recognized, hence the next section will discuss in detail 
the Piezo1 mechanisms in inflammation and atherosclerosis. 
Furthermore, evidence shows that unidirectional and turbulent 
flow senses by Piezo1, causes distinct signaling in ECs, lead-
ing to an anti- or pro-atherogenic phenotype.8 Each of the 
unidirectional and turbulent flow triggers initiate signal thor-
oughfare involving Piezo1.8,59 The trigger of NF-κB upregu-
lates proinflammatory as well as pro-atherogenic genes,60,61 

leading to growth of AS, while KLF triggering sustains vessel 
architecture (Figures 2 and 3). Furthermore, various in vivo 
and ex vivo studies on pre-flowed ECs culture, demonstrate 

that unidirectional and turbulent flow-induced athero- 
protective and atherogenic signals both require Piezo1.

Piezo1 Mediated Mechanisms in the 
Initiation and Progression of Inflammation 
and Atherosclerosis
The majority of prior studies on atherosclerosis pointed to 
elevated LDL levels as the primary culprit.62 Only recent 
works recognized that hypercholesterolemia and athero-
sclerosis development are linked via inflammatory pro-
cesses. Therefore, immunological response and 
inflammation have been regarded as key contributors in 
the initiation and amplification of atherosclerosis.63,64 

Mechanosensitive Piezo1 channel was recently reported 
to play a crucial role in immune cells and inflammatory 
processes.65–68 Over time, research has shed more light on 
inflammatory responses in atherosclerosis, providing 
strong evidence that inflammation is a major factor in all 
stages of atherogenesis.69 Furthermore, inflammatory sig-
naling increases thrombosis, which is responsible for 
ischemic heart disease and the majority of myocardial 
infarctions and cerebrovascular diseases.

Stages of Atheroma Formation
(A) Initially EC undergo inflammatory triggers in response to 
noxious stimuli,70 including atherogenic shear from flow 

Figure 2 Piezo1 flow induced anti-atherogenic signaling mechanism: schematic diagram, demonstrating laminar flow (anti-atherogenic flow) activates Piezo1 channel, leading 
to Ca2+ influx and then triggers the generation of eNOS that leads to the expression of KLF2 & KLF4 through MAPK and results in the deactivation of adhesion molecules 
and AP-1 (red inhibition arrow) as well as downregulations of growth factors VEGF/PDGF, proinflammatory chemokines and cytokines, cell proliferation and migration 
followed by anti-atherogenic gene expression and athero-protection.
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mediated by Piezo1,71 as discussed in Piezo1 Mediated Shear- 
Induced Inflammation and Atherosclerosis; (B) monocytes 
recruitment to atheroma region discussed in 5.3; (C) cytokines 
and chemoattractive molecules engaged in promoting the 
recruiting of additional immune/inflammatory cells to the 
intima discussed in 5.5; (D) later monocyte differentiates 
into macrophages and engulfs lipoprotein particles to trans-
form into lipid engorged foam cells; (E) then foam 
cells release proinflammatory molecules, and growth factors 
including reactive leading to the proliferation, migration, dis-
cussed in 5.5, and phenotypic switching or transdifferentiation 
of VSMCs into SMC derived macrophages in the intima.72,73 

(F) Apoptosis of macrophages leading to the development of 
“necrotic” core of the mature plaque; (G) macrophages and 
SMC augment the process,74 through secretion of matrix 
metalloproteinases (MMPs) particularly MMP-9,75 which 
leads to the degradation of extracellular matrix, resulting in 
the plaque’s fibrous cap thinning; (H) plaque rupture due to 
weakness of the fibrous cap leading to thrombogenic coagula-
tion and finally thrombosis and obstruction of vessel lumen,76 

which limits the tissue perfusion and results in ischemic heart 
disease.69,70 Piezo1 signaling is known to play crucial roles in 
other immune/inflammatory mechanisms of atherosclerosis as 
discussed in 5.4.

Piezo1 Mediated Shear-Induced 
Inflammation and Atherosclerosis
Beside the established risk factors of atherosclerosis, it is 
convincing that turbulent shear mediated by Piezo1 is crucial 
for EC activation, leading to initiating of inflammation and 
atherosclerosis.8,77,78 Disturbed flow sensed via Piezo1 pro-
duces turbulent shear, which is a considerable risk for ather-
osclerosis, as studies reported its effect on EC.78,79 Turbulent 
shear80 triggers pro-inflammatory EC phenotype; disorders 
such as AS appeared to originate from such EC phenotypes.8 

Numerous studies suggested Piezo1 associates with different 
inflammatory pathways and signaling mechanisms in the 
development of AS (Figure 3). Piezo1 was recently found 
to be expressed and function in inflammatory cells including 
monocytes, macrophages65 and T-cells.81 Studies reported 
that activation of monocytes and macrophage by Piezo1 
triggers proinflammatory signals leading to expression of 
various cytokines and chemokines,65–67 a crucial event dur-
ing atherogenesis. Cytokines such as TNF-α, IL-1, 2, 3, 6, 10, 
12, 15, 18, CXCL8, IFN-γ, M-CSF, TGF-β1, 2, and 3 are 
critical components of inflammation and play a significant 
role in AS pathogenesis. The most interesting fact is that in 
the lack of Piezo1, inflammatory cytokines and chemokines, 
as well as the transcriptional factor, hypoxia-inducible factor 

Figure 3 Piezo1 flow induced proatherogenic signaling mechanism: schematic diagram demonstrating disturbed/oscillatory (pro-atherogenic flow) activation of the Piezo1 
channel, leading to Ca2+ influx followed by the activation of JNK, NF-KB, p50 and p65, ERK2 pathway. And the atherogenic gene expression, growth factors VEGF/PDGF, 
proinflammatory chemokines, cytokines. And cellular adhesion molecules, which result in the activation of immune cells, inflammatory cell recruitment, and ECs and SMCs 
proliferation and migration, leading to endothelial inflammation, increased permeability, cell damage, plaque formation, and atherosclerosis development.
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1 (HIF-1), were not expressed by macrophages and mono-
cytes subjected to pressure cycles. Additionally, PECAM-1, 
VCAM-1 and ICAM-181 are also found in disturbed flow 
regions of ECs, and reduced shear upregulates the 
P-selectin82 and monocyte chemotactic protein-1 (MCP-1) 
mRNA expression in correlation with an increased number 
of monocytes bounded to EC. Interestingly, following the 
loss of Piezo1, the rise in Vcam-1 expression and the number 
of CD68-positive cells was markedly decreased, and turbu-
lent flow-evoked inflammation signals were also blocked. 
Comparatively, subjecting human umbilical artery endothe-
lial cells (HUA ECs) to turbulent flow leads to NF-κB 
triggering, as evidenced by p65 phosphorylating at serine 
536. Furthermore, in athero-susceptible sites, there were 
less integrin activities, inflammatory signals and athero-
sclerosis, following the selective depletion of endothelial 
Piezo1 or Gq/G11 in mouse. Both in vivo and ex vivo EC 
Piezo1 and Gq/G11 mediate inflammatory EC signal in 
response to turbulent flow, leading to EC dysfunction and 
AS, also equal signaling pathway detects laminar flow and 
triggers eNOS.21,81,83 Hence, turbulent and laminar flow tend 
to stimulate Piezo1- and Gq/G11-mediating signals, which 
mediates both athero-protective and proatherogenic signals, 
described in the figure legends8,84–86 (Figures 2 and 3). In 
AS, inflammation involves several mechanisms and cross- 
talk between various pathways, therefore targeting inflam-
mation through Piezo1 approach could be wise. Altogether, 
these findings support the idea that Piezo1 might not just 
mediate unidirectional flow-evoked anti-atherogenic signals 
but is also necessary for turbulent flow-mediated endothelial 
inflammation and atherogenesis.

Piezo1 Mediated Immune/ Inflammatory 
Response in Atherosclerosis
Mechanical stress exerted on EC in the form of disturbed 
flow is among the primary activators of the endothelial 
immune defense system. Activation of EC is always fol-
lowed by the recruitment of immune cells such as monocytes, 
which later differentiate into macrophages and transform to 
lipid-engorged foam cells, the hallmark of AS. Numerous 
studies reported the dominance of immune cells on the site of 
an earlier plaque. Triggered T cells, including macrophages, 
have been revealed to reside on early and part of matured AS 
plaques, and their transcription components speed up the 
plaque advancement, indicating the significant function 
served by innate and adaptive immunity in AS 
cytopathology.64,87,88 Turbulent flow is thought to activate 

the endothelial immune system that initiates the process of 
AS. Traditionally ECs oppose adherence of inflammatory 
cells, but EC exposure to turbulent shear mediated by 
Piezo1 activates the endothelial expressions of adhesive 
molecules that promote the attaching of immune cells 
(Figure 3). Studies reported the significant role of mechanical 
force on immune cell functioning, and Piezo1 appears to be 
crucial in T-cell activation and recruitment.89,90 Additionally, 
findings by Solis et al. revealed the physiologic function of 
Piezo1, including mechano-sensing in immunity.65 Adaptive 
immunity has a significant effect on atherogenesis, with pro- 
and anti-atherogenic impacts exerted by T cells sub-classes.91 

As reported by Solis, Piezo1 detects oscillatory pressure in 
myeloid cells, and triggers pro-inflammatory responses. 
Mechanical activation of macrophages, including mono-
cytes, stimulates expressions of pro-inflammatory and 
chemo-attractive mediators, which all rely on Piezo1.65 

Intriguingly, in lack of Piezo1, macrophages, including 
monocytes subjected to cyclical pressure, could not express 
inflammatory cytokines and chemokines.67 Altogether these 
findings demonstrated that Piezo1 is crucial for immune 
response during atherogenesis (Figure 3).

Piezo1 Activation of NLRP3 Inflammasome 
and TLR4 Signaling in Regulation of 
Inflammation and Atherosclerosist
Atherosclerosis is a chronic progressive inflammatory dis-
order that is believed to be linked to the triggering of 
NLRP3 inflammasome and TLRs signaling. According to 
a growing body of data, NLRP3 inflammasome and TLR4 
appears to have a causal role in the onset and advance of 
atherosclerosis.92,93 Given the importance of mechanical 
forces in regulating cellular and tissue growth, as well as 
in disease pathogenesis,94 including atherosclerosis, 
mechanosensitive Piezo1 channel could be considered as 
a crucial player in various mechanisms of CVDs particu-
larly atherosclerosis.28 Piezo1 channel was reported to be 
expressed and function in vascular cells including ECs,95 

VSMCs,20 as well as immune cells (myeloid cells) such as 
monocyte, macrophages,65 B and T cells.68,90 On the other 
hand, NLRP3 and TLRs,96,97 are also expressed by both 
immune cells and endothelium. NLRP3 inflammasomes 
and TLRs are well-known multi-protein complex immuno-
logical sensors that augment inflammation in response to 
a variety of danger-signaling ligands inclusive of pathogen- 
associated molecular patterns (PAMPs) from invading 
microbes (e.g., LPS) or mislocated commensal pathogens, 
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as well as danger-associated molecular patterns (DAMPs) 
or alarmins like endogenous factors,98 inclusive of RNA 
and DNA, HMGB1, amyloid-β, cholesterol crystals, mito-
chondrial damage, or ROS, as well as noxious stimuli like 
disturbed shear mediated by Piezo1, which results in accu-
mulation and triggering of caspase-1. Innate immune 
responses mainly rely on the detection of PAMPs and 
DAMPs via the pattern-recognition receptors (PPR), 
including Toll-like receptors and NLRs, particularly TRL4 
and NLRP3. A recent study shows that application of 
Yoda1 in BV2 cell upregulates the expressions of TLR4, 
moreover, significant elevation of TLR4 and Piezo1 expres-
sions were seen following the application of Yoda1 and 
LPS; this finding suggest that Piezo1 is crucial for TRL4 
signaling.99 NLRP3 activators are thought to cause one or 
more downstream cellular processes or diseases rather than 
directly interacting with NLRP3. The NLRP3 inflamma-
some is triggered by two distinct signals: toll-like receptor 
4 (TLR4) ligands lipopolysaccharide (LPS) binding to its 
receptor, which causes NLRP3 and pro-IL-1 transcriptional 
upregulating via NF-B (1st signaling). TLR4 can also deli-
ver 1st signaling independently of new protein synthesis 
through its adaptors myeloid differentiation factor 88 
(MyD88), interleukin 1 receptor-associated kinase 1 
(IRAK1), and IRAK4. NLRP3 activation requires 
a posttranscriptional alteration; NLRP3 deubiquitination 
mediates by BRCA1/BRCA2-containing complex subunit 
3 (BRCC3) (2nd signaling). The NLRP3 inflammasome is 
assembled and activated by the second signal through 
NLRP3-activating substances (e.g., ATP, ROS, oxidized 
mitochondrial DNA (mtDNA), and other noxious stimuli 
including mechanical stretch and disturbed or oscillatory 
shear mediated by Piezo1, followed by proinflammatory 
caspase-mediated pyroptosis.97,100 Recent findings92,100– 

102 suggested that in ECs, various insults like disturbed 
flow, initiate the NLRP3 inflammasome triggering, and 
Piezo1 is a newly discovered mechanosensitive channel 
that senses and transduces different flow patterns into bio-
chemical signals.103,104 In ECs simulation of turbulent flow 
and oscillating shear extensively intensifies the generation 
of active caspase-1 and IL-1β.105 Furthermore, Sun et al. 
reported that Piezo1 triggering enhances the assembly of 
NLRP3 inflammasome, as indicated by caspase 1 upregu-
lating and generation of IL-1β which was reversed after 
Piezo1 siRNA transfecting. Interestingly, the abrogation of 
Piezo1 dependent NLRP3 inflammasome trigger was 
observed following the Ca2+/NF-κB pathway suppression. 
The author further revealed that mechanical stretching 

enhanced expression of Piezo1 and intracellular Ca2+ accu-
mulation that upregulates NLRP3 through the NF-B path-
way triggering. It also acts as a direct secondary stimulus, 
promoting NLRP3 assembly, caspase-1 triggering, and the 
generation of IL-1β.106 In tissue-resident mice alveolar 
macrophages, Wu et al. found that cyclical stretching 
known to be mediated by Piezo1, triggers the NLRP3 
inflammasome through mitochondrial ROS generation, sug-
gesting that this mechanism might be connected to lung 
inflammation caused by mechanical ventilation. 
Mechanical stress appears to be a risk factor for NLRP3 
inflammasome activation, according to this study.107 

Whereas another study found that application of prolonged 
compressive stress to epidermal tissue increased NLRP3 
and caspase-1 protein expressions while reduced IL-1β 
expression.108 Contrarily, another study revealed that in 
macrophages, cyclical stretching inhibits the NLRP3 
inflammasome.109 This implies that further studies are 
necessary to explain these contradictory findings. The 
mechanosensitive Piezo1 channel appeared as principal 
transducer of mechanical cues into Ca2+ dependent signal-
ing, and Ca2+ signaling was critical in various cellular 
physiology and pathologies. Piezo1 triggering is necessary 
for various Ca2+ dependent pathways. Many downstream 
pathways including that of TLR4, NF-B, mTOR, and 
JNK1,110 which are controlled by intracellular Ca 2+ sig-
nals, have been demonstrated to be the major molecular 
processes involved in immune processes including inflam-
mation and atherosclerosis.

Piezo1 Mechanical Trigger of 
Proliferation, Migration and Apoptosis in 
Atherogenesis
Owing to the pulsative aspect of blood supply, vascular 
cells (VECs & VSMCs) are exposed to hemodynamic 
forces in the form of shear stress, pressure, circumferential/ 
distention or stretches. Mechanosensitive Piezo1 senses 
such forces in various intensities, allowing their translation 
into biological signals within the cell, leading to triggering 
of downstream pathways.9,111,112 Depending on whether the 
cells are subjected to physiologic or sub-physiologic/supra-
physiologic mechanical forces, this trigger can differ. 
Significant physiological mechanical force is crucial in 
maintaining vascular homeostasis.72 While sub-physiologic 
or supraphysiologic forces may induce alterations in gene 
expression that encourage inflammation, cell proliferation, 
migration, apoptosis and vascular remodeling, that are 
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pivotal process in atherosclerosis development.113,114 

Multiple studies demonstrated the effects of Piezo1- 
mediated mechanical signals on vascular and other cells 
(immune/inflammatory cells) involving proliferation, migra-
tion, apoptosis and remodeling during disease 
pathogenesis,65,66,68,90,105 particularly atherosclerosis 
(Figure 4). Pathological inflammation, cell proliferation, 
migration and apoptosis of EC, VSMCs and macrophages 
is the hallmark of atherosclerosis pathogenesis, including 
several CVDs.115 Piezo1 is necessary for sensing and trans-
duction of various mechanical forces including shear stress, 
pressure, and cyclic stretch. VSMCs proliferation was 
reported to be increased by cyclic stretch in vitro.72,73 

Piezo1 is a well-recognized mechanically triggered channel 
that enables Ca2+ influx,47,116 and Ca2+ is a highly recog-
nized modulator of cell proliferation, migration and apop-
tosis, thus, it serves a crucial function in atherogenesis.8,9 

Additionally, ERK and Akt/mTOR pathways are crucial for 
cell survival, differentiation, proliferation, migrating and 
apoptosis,117–119 and intracellular Ca2+ signaling can control 
these pathways.120 Stretching was shown to enhance mice 
and rabbit VSMCs proliferation by activating the extracel-
lular signal-regulated-kinase (ERK) pathway in 
a synergistic manner with oxidized LDL and norepinephr-
ine. Furthermore, 15% stretching of mouse aortic SMCs 
exhibited higher ERK and Akt triggering, as well as an 
increase in insulin-induced cellular proliferation.72 In patho-
logical stretching, however, unregulated proliferation of 

ECs was seen due to upregulating of oncogene c-Myc 
expression in human umbilical vein endothelial cells 
(HUVEC). HUVECs depleted in Piezo1 display decreased 
expression of VEGF, cell proliferation, and migration in 
stationary states, demonstrating the significance of Piezo1 
in this mechanism.12 When ECs were stretched, they 
transdifferentiated into SMCs as elevated expression of 
specific SMC marker genes (SM22, -SMA, caldesmon-1, 
SM MHC, and calponin) was observed, while endothelial 
markers were reduced. The appearance of SMC markers on 
EC means that during mechanical stretching, EC plasticity 
towards the SMC phenotype occurs, which may lead to the 
plaque progression.73 Comparatively, Piezo1 overexpres-
sion or dysregulation can lead to increase in Ca2+ overload. 
The elevated level of intracellular Ca2+ can activate the Akt/ 
mTOR pathways through calmodulin (CaM) or CaM- 
dependent protein kinase II (CaMKII) and, as a result, 
accelerate cellular proliferation and migration, important 
processes in plaque formation and cancer. Piezo1 plays a 
crucial role in cell migration, as MCF-7 cells can migrate 
better when Piezo1 is overexpressed. While application of 
Piezo1 agonist GsMTx-4 impaired the migrating of MCF-7 
breast cancer cells.28 Collectively, these results demonstrate 
that Piezo1 is needed for inflammation cell proliferation, 
migration, apoptosis and, that these are critical stages in the 
development of AS.

Figure 4 Different mechanosignaling mechanisms of atherosclerosis: schematic diagram demonstrating different signaling thoroughfares and stages of atherosclerotic 
development from Piezo1 activation by mechanical force, the arrow branching to inflammatory, cellular proliferation and migration, and immune atherosclerosis 
development.
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Piezo1 Pharmacology
The accumulated reports and preceding experiments col-
lectively demonstrate the mechanosensitive value of 
Piezo1 in both physiology and pathology, particularly 
atherosclerosis. They may be used as diagnostic biomar-
kers, as well as pharmacologic and genetic targets for 
innovative and advanced therapeutic approaches. Despite 
the infancy of Piezo1 research and its pharmacology, the 
rapid discovery of its pharmacologic agents presents an 
outstanding therapeutic opportunity. Recent studies 
reported the recognition of a few molecules including 
Yoda1,121 and Jedi1/2,122 as potent activators of Piezo1, 
and GsMTx-4,123–126 Ruthenium Red (RR)47,127 as its 
non-specific inhibitors, inclusive of Yoda1 analog called 
Dooku1,11 and the most recent molecule Tubeimoside1 
(TBMS1),128 that have reversible antagonizing capacity 
of Yoda1-evoked Piezo1 trigger, as well as the binding 
site including activating mechanisms.112 Altogether, the 
agonistic and antagonistic capability of the molecules on 
Piezo1 demonstrated the medicinal and pathophysiological 
significance of Piezo1 in atherosclerosis and including 
cancer and other disorders. Nevertheless, Piezo1 drug tar-
geting for therapeutic approaches remains challenging and 
a difficult task that requires further investigations.

Future Research
Piezo1 channel is a newly identified ion channel, which 
touches many areas in cell biology. It is expressed in 
different cell types, and its function may differ in different 
species, tissues, and local cellular environments. Despite 
the rapid advancement in Piezo1 research, more roles are 
yet to be explored. Piezo1 will be a novel candidate for 
global researchers to further explore its physiological and 
pathological functions as well as thorough understanding 
of its pharmacology. Additionally, future investigation on 
Piezo1 regulation of accompanying mechanisms related to 
AS will shine a light toward the future prospective and 
promising therapeutic strategies that may help to reduce 
the burden of disease and cost of treatment in various 
conditions, particularly AS in CVDs.

Conclusion
Atherosclerosis is the basis of CVDs, and the critical subject 
in cardiovascular research and the long-term major issue of 
global health care. Great efforts and advancement in biome-
dical as well as clinical research have brought significant 
achievements in the management of CVDs burden, 

particularly AS. Despite these remarkable achievements, 
residual risks yet remain, as many individuals suffer the 
disability of heart functions leading to the increased CVDs 
epidemic. AS is a multifactorial disorder; that makes it 
a complex disease which requires multiple approaches 
beyond lipid-lowering and lifestyle improvement. Besides 
these primary and other risks, considering mechanical forces 
including shear stress in form of disturbed flow should also 
be crucial. Consistent with the accumulating evidence that 
specific plaque location is in the curved and branching 
regions of the arteries where the flow is low and 
disturbed,129 and immune/inflammatory mechanisms invol-
ving Piezo1 signaling play critical role during the process, 
this shows that even newborn babies are counted in this risk, 
due to the branching and curved nature of blood vessels. This 
indicates the importance of turbulent shear, mediated by 
Piezo1 in the development and progression of atherosclero-
sis. There have been several experiments that have elucidated 
the mechanisms of Piezo1 signaling and its regulatory roles 
in the trigger of various inflammatory signals that initiate 
downstream events including activation of NLRP3 inflam-
masome and TLR4. However, we need to be clear that the 
initiation of signaling necessary inflammatory 
mechanisms and their downstream effects in NLRP3 inflam-
masome triggering play critical roles at different stages of 
triggering and the impacts they generate are miscellaneous. 
Piezo1 signaling has various impacts on inflammatory cells 
and their function including the initiation of inflammatory 
mechanisms and downstream triggering of the NLRP3 
inflammasome, TLR4 and related Ca2+ dependent signaling 
which play crucial roles in the initiation and progression of 
atherosclerosis. This paper provides a new perspective where 
not just Piezo1 inflammatory signals and the downstream 
activation of TLR4 and NLRP3 inflammasome but also the 
signaling hubs between them are promising strategies to 
target against atherosclerosis that are worthwhile for future 
research. In this regard the scientific community should come 
up with new strategies using interdisciplinary approaches to 
resolve the challenges of disparity between in vivo physiolo-
gical systems that have heterogeneity in cell behavior across 
vascular beds compared with our current homogenic in vitro 
experimental system. To achieve this, the following argu-
ments should be considered.

Endothelial Model
HUVEC is the most commonly used model in research; 
the disparity of endothelial heterogeneity across vascular 
beds is rarely taken into account, in which endothelium 
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from other origins could give different outcomes to the 
same approach. Indeed for clarity, a single study approach 
should be tested on endothelial models of multiple origin, 
as the cell behavior is spatially different across vascular 
beds.

Individual Mechano-Sensing Protein, Its 
Correlation with Other Proteins and 
Signaling Pathways
Several studies reported Piezo1 as an independent mechano- 
sensor and transducer of itself, independent of other ancil-
lary proteins, while other works reported Piezo1 functions in 
correlation with other mechanosensitive proteins, such as 
TRPV4. This could be due to the cross-talk between differ-
ent proteins in different cellular mechanisms and correlation 
with signaling pathways in a particular cell activity. 
Therefore, new approaches and strategies are required to 
resolve this argument. Further study targeting several 
mechanisms involving various proteins and their correlation 
in regulating multiple cellular signaling pathways are neces-
sary, to elucidate more on particular function of each protein 
individually, and in correlation with others in different 
mechanism of cellular physiology.

Physiological Model of Flow in Different 
Vascular Beds and Rhythmic Changes
With physiological flow in vivo, shear pattern is transi-
ently dynamic due to physiological variations in vascular 
bed, cardiac output or other metabolic needs, compared 
with ex vivo experimental systems that are commonly 
employed, the laminar or oscillatory shear pattern 
applied is always steady with no variation in intensity, 
amplitude or pattern (seen with in vivo) throughout the 
experiment. This creates a considerable gap among ex 
vivo and in vivo systems. Therefore, the shear sensing of 
Piezo1, the downstream impact, endothelial response and 
consequent gene expression may vary between ex vivo 
and in vivo. The transient variations of shear intensity 
and amplitude which commonly happen with in vivo 
should be considered when using in vitro experimental 
systems, since the common experimental systems used 
only apply steady, laminar, oscillatory or low turbulent 
shear which is not enough to precisely symbolize in vivo 
physiological shear experienced by EC. Here arises the 
requirement for advancing the current ex vivo experi-
mental system to precisely meet the conditions similar 
to that of the in vivo physiological flow system.

In summary, Piezo1 is a promising candidate in cardi-
ovascular research, due to the evidence already available 
on its physiological and pathological relevance in various 
angle of cardiovascular, regardless of its novelty. Its broad 
expression makes it likely to serve vital functions in reg-
ulating undiscovered aspects of cardiovascular physiology 
and pathology, and produce multiple functional outcomes 
depending on cell type and mechanisms involved. 
Therefore, innovative strategies through Piezo1 pharmaco-
logical approach will be advantageous for multiple thera-
pies in cardiovascular disease, especially atherosclerosis.

Lastly, an intriguing fact in the Piezo1 pharmacology is 
the recent discovery of its activator (Yoda1), and inhibitor 
Grammostola spatulata mechano-toxin 4 (GsMTx4). It 
shows that with deep understanding of both Piezo1 and 
its pharmacology, their translation into the clinic may 
unlock the door and could be the promising therapeutic 
target for AS burden and other CVDs.
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