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Abstract: Aimed at the problems in which the performance of filters derived from a hypothetical
model will decline or the cost of time of the filters derived from a posterior model will increase when
prior knowledge and second-order statistics of noise are uncertain, a new filter is proposed. In this
paper, a Bayesian robust Kalman filter based on posterior noise statistics (KFPNS) is derived, and
the recursive equations of this filter are very similar to that of the classical algorithm. Note that the
posterior noise distributions are approximated by overdispersed black-box variational inference (O-
BBVI). More precisely, we introduce an overdispersed distribution to push more probability density
to the tails of variational distribution and incorporated the idea of importance sampling into two
strategies of control variates and Rao–Blackwellization in order to reduce the variance of estimators.
As a result, the convergence process will speed up. From the simulations, we can observe that the
proposed filter has good performance for the model with uncertain noise. Moreover, we verify the
proposed algorithm by using a practical multiple-input multiple-output (MIMO) radar system.

Keywords: MIMO radar; Kalman filter; Bayesian robustness; uncertain noise; posterior noise statistics;
proposal distribution; variational inference

1. Introduction

Recently, the design of robust filters has been one of the most popular topics in modern
radar systems and MIMO-based radar system in particular. There are two main reasons
why this has occurred. First, a radar signal of interest can be corrupted naturally from other
interference and noise or by clutter and so on, which results in uncertainty in assumed
statistical models of given received signals. Second, the models of measurement system
can be affected by the setup of transmitters and receivers in practical applications of radar
systems. Unfortunately, it is impossible or prohibitively expensive to design an optimal
filter by obtaining and/or understanding accurate models in the real world, which makes
some nominally optimal filters suffer significant degradations in performance even if small
deviations from the assumed models occur. Therefore, a robust filter can be considered as
a kind of optimal filter under some conditions of uncertainty models. The seminal concept
of robust filters is proposed in the 1970s [1,2], where the minimax approach was discussed
for the Wiener filter, which is a batch-based optimal filter for stationary signals. Currently,
the Bayesian-based robust approach has attracted significant attention in the design of
robust filters due to the use of information with respect to the prior distribution of models
in providing more accurate knowledge on the statistical model.
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It is known to all that classical Kalman filtering [3] involves an optimal filter in terms
of the Gaussian and linear assumptions of dynamic systems. It has been well established
in many fields such as communication, navigation, radar and control. In addition, more
and more Kalman filtering-related technologies are applied to the localization and track-
ing of moving agents [4–6]. However, it also suffers from prominent shortcomings, for
example, the good performance lies in completely grasping the statistical models of noise
and the state of signal. As a result, the problem of designing a robust Kalman filter in
practical applications where the knowledge of noise distribution is missing or imprecise
is a big challenge for both researchers and developers. The authors of [7–12] proposed
methods, which include so-called adaptive Kalman filtering, to estimate signal states and
noise simultaneously, which works well when there is a lot of data used to obtain certain
accurate performances in the entire estimated period. Later on, minimax-based Kalman
filters [13–15] and finite impulse response Kalman filters [16–19] were presented.

Inspired by both the Bayesian innovation process and the Bayesian orthogonality
principle, an intrinsically Bayesian robust Kalman filter (IBRKF) was proposed in [20]. The
authors argued that it should be optimal from the point of view of the cost function and the
prior distribution of uncertain noise. Herein, its recursive equations are very similar to that
of the classical Kalman filter. The IBRKF makes use of concepts of effective noise statistics
and effective Kalman gain by replacing the corresponding variables in the classical Kalman
filter framework in order to improve performance. Therefore, IBRKF can be considered as
a robust Kalman filter in terms of uncertain noise.

The IBR method can achieve optimal performances in terms of the uncertainty of
models by using prior distributions, which does not concern measurements, and may
contain some useful information for improving performances further. Instead, the optimal
Bayesian Kalman filter (OBKF) takes into account the observation sequence and prior
knowledge simultaneously in order to achieve optimal filtering [21]. It designs a factor-
graph-based message passing algorithm, which transforms the global function into a form
of local function multiplication. In this manner, it integrates the effective information of
each local node and lays the foundation for approximating posterior noise distributions.
Moreover, note that the recursive structure of OBKF is also the same as that of the classical
Kalman filter. However, the filtering process of OBKF is quite complicated. It needs to
pass messages from the beginning when calculating posterior parameters at each moment.
When the dimension of the matrix or observation sequence is large, the time cost of OBKF is
catastrophic. In addition, the maximum a posteriori criterion and variational inference are
common methods for estimating the unknown noise covariance matrix [22–26]. In terms of
performance, although these methods outperform classical filtering algorithms, there is still
room for improvement. For example, Refs. [22,23] only solves the problem of the unknown
observation noise covariance matrix while ignoring process noise. Coincidentally, Ref. [24]
used the variational Bayesian method to estimate the system state and observation noise
while simultaneously using the maximum a posteriori method to estimate process noise.
By selecting the inverse Wishart distribution as the conjugate prior for the covariance
matrix of a Gaussian distribution with known mean, Refs. [25,26] jointly estimated the
state vector, prediction error and observation noise covariance matrix under the framework
of variational inference. It is undeniable that these methods increased the complexity
of unknown noise covariance matrix estimation. Therefore, the aim of our study is to
improve the real-time performance of the algorithm as much as possible under the premise
of ensuring performance.

Thanks to the pioneering work of Bode, Shannon, etc., the concept of innovation
process is widely used in the derivation of Kalman recursive equations [27–29]. In this
paper, the recursive equations of KFPNS are derived based on Bayesian theory. Compared
with the recursive equations of a classical Kalman filter, it only needs to calculate the
posterior noise statistics, which are obtained by variational distribution. The variational
distribution is an approximate distribution of the real posterior noise distribution. Firstly,
we joined the observation sequence and the prior distribution of uncertain noise parameters
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based on the Markov hypothesis, and then we used the O-BBVI method to approximate
real posterior noise distributions. Herein, we assume that the state-space model is Gaussian.
The posterior noise statistics are the posterior expectation of the second-order noise statistics
and are also one of the parameters in the process of approximation. In other words, we
extend the IBRKF framework to an a posteriori version based on an observation sequence
and design a new approach to solve the problem of uncertain noise parameters.

Our KFPNS is universal. Any model in which the noise second-order statistics can be
assumed to be a certain probability distribution is suitable for this framework. However,
note that under the assumption of Gaussian noise, the proposed method can obtain better
estimation accuracy, while non-Gaussian noise will produce larger errors. Moreover, the
run time of KFPNS is a difficult problem when the dimension of observation sequence is
large, because the time cost in computing the posterior noise statistics mainly depends on
the number of samples and the length of observation sequence. Fortunately, if the results of
multiple calculations of the posterior noise statistics change little, we can consider skipping
this step.

2. Materials and Methods

Let us first introduce some notations to be used in this paper. Lowercase bold letters
represent vectors and uppercase bold letters represent matrices, respectively. We use xk
to represent the value of x at time k. E[·] is used to denote the expectation of the random
vector. AT stands for a transpose operator. N (x;µ, Σ) represents a multivariate Gaussian
distribution with mean µ and covariance matrix Σ.

2.1. Kalman Filter

The authors of [3] proposed a discrete time-domain filtering scheme in the linear
state-space model, which is optimal for all linear system models. The state-space model
usually consists of the following equations.

xk+1 = Φkxk + Γkuk, (1)

yk = Hkxk + vk. (2)

Among them, xk and yk are the n× 1 dimensional state vector and the m× 1 dimen-
sional observation vector, respectively. Both uk and vk are zero-mean random vectors,
called process noise and observation noise, and their sizes are s× 1 and m× 1, respectively.
Φk is the state transition matrix of n× n. Γk represents the process noise transition matrix
of n× s. Hk is an m× n matrix called the observation transition matrix. The statistics of the
above vector are as follows:

E
[
ukuT

l
]
= Qδkl ,E

[
vkvT

l
]
= Rδkl ∀k, l = 0, 1, . . .

E
[
vkxT

l
]
= 0m×n,E

[
ukvT

l
]
= 0s×m ∀k, l = 0, 1, . . .

E
[
ukyT

l
]
= 0s×m, 0 ≤ l ≤ k,

(3)

where 0m×n is a zero-valued matrix of size m× n. The purpose of Kalman filtering is to
obtain the least square estimate x̂k of the state xk from observation yl(l ≤ k− 1).

2.2. Introduction to Bayesian Robust Filters

In engineering, the Bayesian criterion and minimax criterion (instead of the Bayesian
method when there is no prior knowledge) are usually used to design robust filters [30–32].
The meaning of a Bayesian criterion is as follows: The average cost is the least. In the
context of state estimation, the average cost is generally reflected by the mean-square error
(MSE); in other words, we have the following.

C(xk, ψ(yk)) = E
[
(xk − ψ(yk))

T(xk − ψ(yk))
]
. (4)
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According to the Bayesian criterion, we minimize the cost function to find an optimal filter:

ψ̂(yk) = arg min
ψ∈Ψ

C(xk, ψ(yk)), (5)

where Ψ is the possible class of filters. The filter that satisfies the above formula is the
minimum mean square error filter.

When we cannot obtain all the knowledge of the model, we assume that the model
is controlled by an unknown parameter θ = [θ1, . . . , θl ], θ ∈ Θ, where Θ is the set of
all possible parameters, called the uncertain class. Fortunately, these parameters can be
obtained by solving the corresponding posterior distribution; thus, the Bayesian robust
filter can be expressed as follows:

ψΘ(yk) = arg min
ψ∈Ψ

Eθ [Cθ(xk, ψ(yk)) |Yk], (6)

where the expectation is taken relative to the posterior distribution p(θ|Yk), and Cθ(·) is
the cost function relative to the unknown parameter θ. Dehghannasiri proposed that the
average cost of the filter relative to the uncertain class is equal to the error of applying the
filter to the effective information [20]. Therefore, the process of designing a robust filter
for an uncertain model can be transformed into designing a Bayesian robust filter using
posterior effective information.

2.3. Bayesian Robust Kalman Filter Based on Posterior Noise Statistics
2.3.1. KFPNS Framework

Now assume that the second-order statistical knowledge of process noise and obser-
vation noise is unknown and that it is determined by the unknown parameters α1 and α2.
Here, the covariance matrices of these two noises are as follows.

E
[
uα1

k
(
uα1

l
)T
]
= Qα1 δkl , (7)

E
[
vα2

k
(
vα2

l
)T
]
= Rα2 δkl . (8)

If α1 and α2 are statistically independent, then p(α) = p(α1)p(α2) stands for the prior
distribution. The state-space model can be parameterized as follows.

xα1
k+1 = Φkxα1

k + Γkuα1
k , (9)

yα
k = Hkxα1

k + vα2
k . (10)

Although the IBRKF is optimal in the sense of prior, there is still a certain deviation
between the prior expectation of noise and the actual noise, which makes it impossible to
achieve real optimal filtering. Therefore, this paper focuses on the influence of posterior
noise distribution on the cost function. With Yk = {y0, . . . , yk} as the observation sequence
and analysis based on (6), the linear filtering function that satisfies the definition of a
Bayesian robust filter is as follows:

x̂αk = ∑
l≤k−1

ΩΘ
k,ly

α
l , (11)

such that the following is the case:

ΩΘ
k,l = arg min

Ωk,l∈=
Eα

E
(xα1

k − ∑
l≤k−1

Ωk,ly
α
l

)T (
xα1

k − ∑
l≤k−1

Ωk,ly
α
l

)] ∣∣∣∣∣Yk−1

, (12)

where = is the vector space of all n×m matrix-valued functions, and Ωk,l ∈ = is a mapping
Ωk,l : N×N→ Rn×m such that ∑∞

k=1 ∑∞
l=1 ‖Ωk,l‖2 < ∞, ‖·‖2 being the L2 norm.
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The derivation of KFPNS recursive equations depends on the following theorem,
definition and lemma. Our equations are only a posterior version relative to [20], and the
proof of related theories are similar to that in [20].

Theorem 1. (Bayesian Orthogonality Principle) If the weight function ΩΘ
k,l of a linear filter

satisfies (12), then the x̂αk obtained in (11) is called the optimal Bayesian least-squares estimation if
and only if the following is the case.

Eα

[
E
[(

xα1
k − x̂αk

)
(yα

l )
T
] ∣∣∣Yk−1

]
= 0n×m ∀l ≤ k− 1. (13)

Definition 1. (Bayesian innovation process) According to the state-space model described in (9)
and (10), if x̂αk is the least-square estimate of xα1

k , then the stochastic process of the following:

z̃αk = yα
k −Hkx̂αk (14)

is a zero-mean process and ∀l, l′ ≤ k− 1; the following is obtained.

Eα

[
E
[
z̃αl (z̃

α
l′ )

T
] ∣∣∣Yk−1

]
= Eα

[
HlP

x,α
k HT

l + Rα2
∣∣∣Yk−1

]
δll′ . (15)

Lemma 1. (Bayesian information equivalence) The Bayesian least-squares estimation obtained
based on z̃αk is equivalent to the Bayesian least-squares estimation calculated based on yα

k ; in other
words, we have the following.

Eα

[
E
[(

xα1
k − x̂αk

)
(z̃αk )

T
] ∣∣∣Yk−1

]
= 0n×m. (16)

Then, (11) can be rewritten as follows.

x̂αk = ∑
l≤k−1

ΩΘ
k,l z̃

α
l . (17)

By substituting it into (16), after moving the terms on the left and right sides of the
equation, we obtain the following.

ΩΘ
k,l = Eα

[
E
[
xα1

k (z̃αl )
T
]∣∣∣Yk−1

]
Eα
−1
[

HlP
x,α
l HT

l + Rα2
∣∣∣Yk−1

]
. (18)

In this case, the linear function of Bayesian robust filter based on posterior noise
statistics is as follows.

x̂αk = ∑
l≤k−1

Eα

[
E
[
xα1

k (z̃αl )
T
] ∣∣∣Yk−1

]
Eα
−1
[

HlP
x,α
l HT

l + Rα2
∣∣∣Yk−1

]
z̃αl . (19)

Thus, the state update equation is as follows:

x̂αk+1 = Φkx̂αk + ΦkKΘ
k z̃αk , (20)

where the following is the case.

KΘ′
k = Eα

[
Px,α

k

∣∣Yk−1
]
HT

k Eα
−1
[

HkPx,α
k HT

k + Rα2
∣∣∣Yk−1

]
. (21)

Next, let x̃αk = xα1
k − x̂αk denote the estimation error at time k. After some mathematical

operations, x̃αk+1 can be expanded into the following.

x̃αk+1 = Φk

(
I−KΘ′

k Hk

)
x̃αk + Γkuα1

k −ΦkKΘ′
k vα2

k . (22)



Sensors 2021, 21, 7673 6 of 21

We can find the update equation of the estimation error covariance matrix from this
equation, which is described as follows.

Eα

[
Px,α

k+1

∣∣∣Yk

]
= Φk

(
I−KΘ′

k Hk

)
Eα

[
Px,α

k

∣∣Yk
]
ΦT

k + ΓkEα[Qα1 |Yk]Γ
T
k . (23)

This completes the construction of KFPNS. Note that in (21) and (23), the observation
sequences corresponding to the estimation error covariance matrix are different, which
are Eα

[
Px,α

k

∣∣Yk−1
]

and Eα

[
Px,α

k

∣∣Yk
]
, respectively, while the one generated by the last

iteration of the recursive equation should be Eα

[
Px,α

k

∣∣Yk−1
]
. For this problem, we can

iterate from the beginning; that is, first calculate KΘ′
0 with Eα

[
Px,α

0

∣∣Y−1
]

and Eα[Rα2 |Yk],
then use KΘ′

0 and Eα[Qα1 |Yk] to compute Eα

[
Px,α

1

∣∣Yk
]

and repeat the process until we
obtain Eα

[
Px,α

k

∣∣Yk
]
. However, this strategy requires reiteration from the origin after

updating posterior noise statistics, which makes the algorithm heavily loaded. In order to
improve the efficiency of the algorithm, we assume that Eα

[
Px,α

k

∣∣Yk−1
]
≈ Eα

[
Px,α

k

∣∣Yk
]
.

Table 1 reports the difference between these two recursive equations. KFPNS replaces
Kk, Px

k , Q and R in the classical Kalman filter with KΘ′
k , Eα

[
Px,α

k

∣∣Yk−1
]
, Eα[Qα1 |Yk] and

Eα[Rα2 |Yk], but their recursive structures are the same. Figure 1 is the overall framework
of KFPNS. The key is that KFPNS updates the state based on posterior noise statistics.
Therefore, KFPNS is an improved version of the classical Kalman filter concerning posterior
noise distribution.

Table 1. Comparison of the recursive equations for the classical algorithm and KFPNS.

Classical Kalman Filter KFPNS

z̃k = yk −Hkx̂k z̃αk = yα
k −Hkx̂αk

Kk = Px
kHT

k
(
HkPx

kHT
k + R

)−1 KΘ′
k = Eα

[
Px,α

k

∣∣Yk−1
]
HT

k Eα
−1[HkPx,α

k HT
k + Rα2

∣∣Yk−1
]

x̂k+1 = Φkx̂k + ΦkKkz̃k x̂αk+1 = Φkx̂αk + ΦkKΘ
k z̃αk

Px
k+1 = Φk(I−KkHk)Px

kΦT
k + ΓkQΓT

k
Eα

[
Px,α

k+1

∣∣∣Yk

]
= Φk

(
I−KΘ′

k Hk

)
Eα

[
Px,α

k

∣∣Yk
]
ΦT

k
+ΓkEα[Qα1 |Yk]Γ

T
k
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2.3.2. The Calculation Method of Posterior Noise Statistics

We need to additionally calculate Eα[Qα1 |Yk] and Eα[Rα2 |Yk] by replacing the fixed
preset values, and the core process of obtaining these two conditional expectations lies in
the posterior distribution p(α|Yk), which is unknown. Therefore, the goal is to solve the
probability density function of the unknown parameter α under the condition of given
observation sequence Yk. Although p(α|Yk) ∝ f (Yk|α)p(α), it is difficult to directly
acquire a closed-form solution by relying on the prior distribution. However, a known
simple distribution can be used to approximate a complex distribution, and by limiting
the type of approximate distribution, a locally optimal approximate posterior distribution
can be achieved. Unless otherwise specified, the distributions presented in this paper
are Gaussian.

Consider a simple variational distribution, which belongs to the following exponen-
tial family:

q(α; e) = g(α) exp
{

eTt(α)− A(e)
}

, (24)

where g(α) is the base measure, e is the natural parameter, t(α) is the sufficient statistics
and A(e) is the log-normalizer. Based on the considerations of this paper, we believe that e
represents the expectations, t(α) can completely characterize all quantities of a probability
distribution and t(α) = α. Take a simple multivariate Gaussian distribution N (α; e, Λ) as
an example (Λ represents the identity matrix) and transform it into an exponential family
form of the following:

p(α; e, Λ) = 1
(2π)d/2|Λ|1/2 exp

{
− 1

2 (α− e)TΛ−1(α− e)
}

= (2π)−d/2|Λ|1/2 exp
{

eTα− 1
2α

TΛα− 1
2 eTΛe

}
= (2π)−d/2|Λ|1/2 exp

{
− 1

2 ΛαTα
}

exp
{

eTα− 1
2 ΛeTe

}
,

(25)

thus, the following is obtained.

g(α) = (2π)−d/2|Λ|1/2 exp
{
− 1

2 ΛαTα
}

,
t(α) = α,

A(e) = 1
2 ΛeTe.

(26)

In addition, the exponential family distribution also has the following property.

∇e A(e) = Eq(α;e)[t(α)]. (27)

By using this property, the mutual transformation between expectation calculation
and derivation calculation can be completed in variational inference. Therefore, most
applications of variational inference use exponential family functions. More importantly,
based on this simple property, we use the strategy of control variates to reduce the variance
of the Monte Carlo gradient. At the same time, in this paper, we hope to use q(α; e) to
approximate p(α|yk), and the special form of exponential family distributions renders the
approximation process traceable. More precisely, we consider α as a Gaussian distribution,
which belongs to the exponential family, and its natural parameter e represents expectations.
Therefore, the process of finding the optimal natural parameters that makes q(α; e) the
closest to p(α|yk) involves calculating posterior noise statistics.

Now, suppose q(α; e) can be decomposed into the following.

q(α; e) = q(α1; e1)q(α2; e2). (28)

Based on the idea of variational inference, we try to minimize Kullback–Leibler diver-
gence DKL[q(α; e)‖p(α|Yk)] so that q(α; e) approaches p(α|Yk). This idea still cannot be
realized directly, because DKL contains an unknown distribution p(α|Yk). Fortunately, af-
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ter some logarithmic operations, minimizing DKL is equivalent to maximizing the evidence
lower bound objective (ELBO).

L = Eq(α;e)

[
log

p(α,Yk)

q(α; e)

]
. (29)

The principle is shown in Figure 2. Then, ELBO takes the derivative with respect to
parameter e:

∇eL = Eq(α;e)[ f (α)], (30)

where the following is the case.

f (α) = ∇e log q(α; e)(log p(α,Yk)− log q(α; e)). (31)
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As a result, computing ∇eL becomes a process of looking for an expectation, which
can be estimated by the Monte Carlo approach. Then, the gradient descent method
is used to make the parameters converge, which makes q(α; e) approximate the real
posterior distribution.

The aforementioned black-box variational inference (BBVI) only relies on samples
from q(α; e) to calculate the Monte Carlo gradient. However, the samples of the variational
distribution q(α; e) are concentrated near the peak point, and there are fewer samples in the
tail. This causes the Monte Carlo gradient to often have high variance, which means that
the estimated gradient may be very different from the true value, resulting in optimization
times that are too long.

In view of this defect, O-BBVI adds a good proposal distribution that matches the
variational problem [33]. r(α; e,τ) is an overdispersed version of q(α; e). Its tail is heavier,
which increases the probability that the value of the tail is sampled. In addition, O-BBVI
also uses two strategies, control variates and Rao–Blackwellization in order to reduce the
variance of the Monte Carlo gradient of the original BBVI. Finally, O-BBVI constructed a
new Monte Carlo gradient equation, and based on the unconventional usage of impor-
tance sampling, it samples from r(α; e,τ) and q(α; e), respectively, in order to estimate
the gradient.

Let us begin with this overdispersed distribution:

r(α; e,τ) = g(α,τ) exp
{

eTt(α)− A(e)
τ

}
, (32)

where τ = [τ1, τ2] is the dispersion coefficient of the overdispersed distribution. For a
fixed τ, r(α; e,τ) and q(α; e) belong to the same exponential family. Moreover,r(α; e,τ)
allocates higher mass to the tails of q(α; e), which is why we introduced it.
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O-BBVI believes that for each component of the gradient, the proposal distribution
that minimizes the variance of the estimator is not q(α; e) but the following.

qop
n (α) ∝ q(α; e)| fn(α)|, (33)

That is, the optimal proposal distribution pushes the probability density to the tail
of q(α; e);hence, we have reason to believe that r(α; e,τ) is closer to the optimal proposal
distribution than the variational distribution q(α; e) due to the fact that, in sampling, it
provides more opportunities for α, which exists in the tail of variational distribution but
has higher posterior probability. Thus, (30) can be rewritten as follows:

∇̂eL =
1
M ∑

m
f
(
α(m)

) q
(
α(m); e

)
r
(
α(m); e, τ

) , (34)

where α(m) represents the m− th sample in the sample set of r(α; e,τ).
To solve the problem of importance sampling failure caused by high-dimensional

hidden variables, we use the correlation theory of mean-field, i.e., keep the rest of the
components unchanged when solving the n− th component. That is to say, (34) can be
expressed as follows:

∇̂enL = Er(αn ;en ,τn)

[
w(αn)Eq(α−n ;e−n)[ fn(α)]

]
, (35)

where w(αn) = q(αn; en)/r(αn; en, τn), and α−n means variables other than αn. e−n is the
same. Inspired by the foregoing discussion, we take a simple sample α0

−n from q(α−n; e−n)
to estimate Eq(α−n ;e−n)[·] and extract M samples from r(αn; en, τn) to estimate Er(αn ;en ,τn)[·].
At the same time, a score function is defined as follows.

hn

(
α
(m)
n

)
= ∇en log q

(
α
(m)
n ; en

)
. (36)

It is used to calculate the following.

fn

(
α(m)

)
= hn

(
α
(m)
n

)
log

pn

(
yk, α

(m)
n ,α(0)

−n

)
q
(

α
(m)
n ; en

) . (37)

This formula is the embodiment of Rao–Blackwellization. Note that in order to reduce
the complexity of the algorithm, we utilize yk instead of Yk in Equation (37). Moreover, pn is
acquired by the Markov assumption. Herein, we assume that xk is a Gaussian distribution
with x̂αk as the mean and Px,α

k as the covariance. Given the state xk, the corresponding
observation yk obeys the Gaussian distribution N (yk; Hkxk, Rα2). Thus, the likelihood
function of the unknown parameter α can be approximated as follows.

f (yk|α) = N (yk; Hkxk, Rα2). (38)

Consequently, we obtain the following.

pn

(
yk, αn,α(0)

−n

)
= f (yk|α)pn(αn)p−n

(
α
(0)
−n

)
. (39)

Finally, the gradient of ELBO relative to each component en is as follows:

∇̂enL =
1
M ∑

m

[
f w
n

(
α
(m)
n

)
− bnhw

n

(
α
(m)
n

)]
(40)
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where the following is the case.

f w
n

(
α(m)

)
= w

(
α
(m)
n

)
fn

(
α(m)

)
, (41)

hw
n

(
α
(m)
n

)
= w

(
α
(m)
n

)
hn

(
α
(m)
n

)
, (42)

bn =
Cov( f w

n , hw
n )

var(hw
n )

. (43)

Note that bn marks the application of the strategy of control variates.
Next, we use the AdaGrad algorithm to make e converge to the optimal value:

e(t) = e(t−1) + λt ◦ ∇̂eL, (44)

where λt is the learning rate, and its setting is similar to that in [34]. ′◦′ stands for the
Hadamard product. Note that the expectations contained in natural parameter e are the
posterior noise statistics Eα[Qα1 |yk] and Eα[Rα2 |yk] of the k-th sampling period and not
the Eα[Qα1 |Yk] and Eα[Rα2 |Yk] we require. Here, they are only needed for computing the
average value from 0 to the k-th sampling period.

Furthermore, we want to automatically adjust the dispersion coefficient τn during the
iteration. We first calculate the derivative of (35) with respect to τn.

−
∂V
[
∇̂enL

]
∂τn

=
1
M

Er(αn ;en ,τn)

[
Eq(α−n ;e−n)[ fn(α)]

2w2(αn)
∂ log r(αn; en, τn)

∂τn

]
. (45)

Since fn(α) and w(αn) are calculated in the above process, this process will not
consume much time. Next, the Monte Carlo estimation method is used to calculate the
solution of the equation and then the gradient descent method is used to make t converge:

τ
(t)
n = τ

(t−1)
n − sn

∂V
[
∇̂enL

]
∂τn

, (46)

where sn is the step size, which needs to be set in advance. Note that if en represents a
vector, only the derivative part needs to be adjusted to the sum of the derivatives of all
components of en, and Equation (46) can still be used.

Finally, if the posterior noise statistics converge to a certain value or changes little after
multiple iterations, the subsequent state estimation can skip the step of finding the posterior
noise parameters in order to save the algorithm overhead. The steps for implementation of
the proposed KFPNS framework are summarized in Algorithms 1 and 2.

Algorithm 1: KFPNS.

1: input: Yk, p(α), Φk, Γk, Hk, mean− field variational family q(α; e)
2: output: x̂α

k
3: Initialize e,τ
4: x̂α

0 ← E[x0]
5: Eα

[
Px,α

0

∣∣Y−1
]
← initialization

6: Eα[Qα1 |Y−1],Eα[Rα2 |Y−1]← Empirical value
7: k← 0
8: for k = 1, 2, . . . do
9: z̃αk ← yα

k −Hkx̂αk
10: KΘ′

k ← Eα

[
Px,α

k

∣∣Yk−1
]
HT

k Eα
−1[HkPx,α

k HT
k + Rα2

∣∣Yk−1
]

11: Eα[Qα1 |Yk],Eα[Rα2 |Yk]← O− BBVI(yk, p(α))
12: Eα

[
Px,α

k+1

∣∣∣Yk

]
← Φk

(
I−KΘ′

k Hk

)
Eα

[
Px,α

k

∣∣Yk
]
ΦT

k + ΓkEα[Qα1 |Yk]Γ
T
k

13: x̂αk+1 ← Φkx̂αk + ΦkKΘ
k z̃αk

return x̂αk+1
14: end for
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Algorithm 2: O-BBVI.

1: function O-BBVI (yk, p(α))
2: f (yk|α)← N (yk; Hkxk, Rα2 )
3: While the algorithm has not converged do
4: Draw α(0) ∼ q(α; e)
5: for n = 1 to 2 do
6: Draw M samples α

(m)
n ∼ r(αn; en, τn)

7: pn

(
yk, αn,α(0)

−n

)
← f (yk|α)pn(αn)p−n

(
α
(0)
−n

)
8: for m = 1 to M do
9: w

(
α
(m)
n

)
= q

(
α
(m)
n ; en

)
/r
(

α
(m)
n ; en, τn

)
10: hn

(
α
(m)
n

)
← ∇en log q

(
α
(m)
n ; en

)
11: fn

(
α(m)

)
← hn

(
α
(m)
n

)
log
(

pn

(
yk, α

(m)
n ,α(0)

−n

)
/q
(

α
(m)
n ; en

))
12: f w

n

(
α(m)

)
← w

(
α
(m)
n

)
fn

(
α(m)

)
13: hw

n

(
α
(m)
n

)
← w

(
α
(m)
n

)
hn

(
α
(m)
n

)
14: end for
15: bn ← Cov( f w

n , hw
n )/Var(hw

n )

16: ∇̂enL ← ∑
m

[
f w
n

(
α
(m)
n

)
− bnhw

n

(
α
(m)
n

)]
/M

17: end for
18: for n = 1 to 2 do
19: −∂V

[
∇̂enL

]
/∂τn ← Eq.45

20: τn ← Eq.46
21: end for
22: set up λt

23: e(t)k ← e(t−1)
k + λt ◦ ∇̂eL

24:
_
e ← mean[e0, · · · , ek]

25: Eα[Qα1 |Yk]←
_
e 1, Eα[Rα2 |Yk]←

_
e 2

return Eα[Qα1 |Yk], Eα[Rα2 |Yk]

3. Results

In this section, we analyze the performance of the proposed algorithm and other
Kalman filtering methods. The first Kalman filtering method to participate in the compari-
son is the IBR approach. The second one is the model-specific Kalman filtering approach,
which is a classical Kalman filter designed with respect to real noise parameters. The third
is the minimax method, which performs best in the worst case when the noise parameters
are uncertain. We set the parameters of the minimax method to αmax1 = 4, αmax2 = 4. The
last one is OBKF, which designs a message passing algorithm based on factor graphs to
calculate the likelihood function formulaically and then employs the Metropolis Hastings
MCMC method to find posterior effective noise statistics.

3.1. Simulation

For the tracking scenario in a two-dimensional space, we assume that the state of
the target is xk =

[
px pyvxvy

]T , and the subscripts x, y represent the x and y dimensions,
respectively. Assuming that the target’s motion model is a constant velocity model and
that there is only a weak random disturbance, the radar obtains the measurements of the
target at every t seconds. We construct the state-space model of the measured target based
on (9) and (10), where the matrices’ representations are as follows.

Φk =


1 0 t 0
0 1 0 t
0 0 1 0
0 0 0 1

, Hk =

[
1 0 0 0
0 1 0 0

]
, Γk =


t2/2 0

0 t2/2
t 0
0 t

.
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The covariance matrices of the process and observation noise are expressed as follows.

Qα1 =

[
α1 0
0 α1

]
, Rα2 =

[
α2 0
0 α2

]
.

Let t = 1 and the target’s motion state is initialized to E[x0] = [1035− 5]T and
Eα

[
Px,α

0

∣∣Y−1
]
= diag([1000 1000 100 100 ]), where diag(a) represents a diagonal matrix

with elements in vector a as diagonal elements.
In the first simulation, it is assumed that both α1 and α2 are unknown parameters

that are uniformly distributed in the interval [1, 4] and [0.5, 4], respectively. In order
to analyze the average performance of five Kalman filtering methods, we generate a
large amount of data based on the model described above and calculate the average
MSE. The results are shown in Figure 3. This set of data is generated depending on the
prior distribution of noise, namely, we randomly generated 200 pairs [α1, α2], and each
combination corresponds to 10 different observation sequences. Among the five filters,
the average MSE of the model-specific Kalman filter is the smallest because it uses real
noise parameters. Instead, the minimax approach only considers the worst case and
cannot effectively solve the problem of unknown noise second-order statistics. Figure 3
also suggests that the average MSEs of OBKF and IBRKF are almost the same at the
initial stage of filtering, and both greatly outperform KFPNS since the performance of
KFPNS depends on the length of the observation sequence used to adjust filter parameters
and the prior distribution of noise. If the number of sampling period k is small, the
filter parameters may be adjusted incorrectly after each iteration, resulting in large state
estimation errors for certain subsequent sampling periods. However, in the long run, the
increase in analyzable data will return the uncertain parameters close to the true value.
At this time, the performance of the KFPNS is even similar to that of OBKF. Both KFPNS
and OBKF need to use a certain amount of observed data to estimate unknown noise
parameters in order to achieve better estimation results, which causes them to converge
more slowly than other algorithms, especially for KFPNS. The good news is that as the
number of observations continues to increase, their performance is closer to the model-
specific Kalman filter.
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We set up two pairs of specific noise parameters for the second set of simulations. In
order to discuss the average performance of various filters, we provide 200 observation
sequences for each specific combination in order to weaken the interference of abnormal
results. Then, we calculated the average MSE of 200 sets of observations in order to visually
compare the performance of various filters. The first column of Figure 4 is a performance
analysis based on the specific model α1 = 3, α2 = 1.5. The true value of the specific noise
pair in the second column is α1 = 3.5, α2 = 3.5. The variation of average MSE of each filter
in Figure 4a is roughly consistent with the previous simulation. Figure 4c,e, respectively,
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show the variation of the average posterior mean E[α1|Yk] and E[α2|Yk] under the first
specific model. Similarly, (d) and (f) correspond to the second specific noise combination.
The vertical columnar line represents the variance, and the size of variance is represented
by the length of the line. The figures in the second and third rows show that with the
increase in observation data, E[α1|Yk] and E[α2|Yk], moves closer to the true value from the
preset empirical values of 2.2 and 2 and finally stabilizes near the true value. At the same
time, the variance of the average posterior also means changes from small to large and then
to small and eventually stabilizes. This indicates that the posterior distribution of noise
estimated by KFPNS is more and more in line with the true distribution, and its value is
concentrated around the true value. We also observe that in Figure 4b, the minimax method
outperforms IBRKF and even outperforms OBKF in the beginning. Note that under the
condition of prior knowledge, the average performance of IBRKF exceeds the minimax
Kalman filter. However, IBRKF performs worse with respect to some specific models; for
example, when the parameters of the minimax method are closer to the true values than
the prior mean of IBRKF. Fortunately, both the OBKF and KFPNS use their approaches
to approximate true posterior noise distribution, and as we observe more data, posterior
second-order statistics will tend towards the true model. This allows them to break the
limitations of most noise models and to deal with models that IBRKF is unable to handle.

Next, we discuss the performance changes of different robust Kalman filters when
the mass of the prior probability is not uniform. Suppose α1 is uniformly distributed in
the interval [1, 2] and fixed. On the other hand, let a Beta distribution B(αr, βr) in the
interval [0.25, 4] govern α2. The mean and variance of the Beta distribution are αr/αr + βr

and αrβr/(αr + βr)
2(αr + βr + 1), respectively, and αr + βr = 1. On the basis of ensuring

that the mean of this prior distribution remains unchanged, a new prior distribution with
different mass can be obtained by appropriately adjusting its parameters. We consider two
pairs of specific parameters, αr = 0.1, βr = 0.9 and αr = 0.01, βr = 0.09. As a result, the
reduction in parameters causes the variance to become larger, and the prior distribution
will be more relaxed. Figure 5 shows their average MSEs. Even if the Beta distribution is
changed to make the probability of values in prior distribution different, the average MSEs
of the minimax method and IBRKF are almost unchanged. The reason is that for all prior
distributions, the prior mean of the IBR method is always the same, while the minimax
method does not consider prior distribution at all. They cannot effectively cope with
sudden changes in the model. In this case, they are equivalent to the classical Kalman filter.
Compared with the above two robust filtering strategies, although the mass distribution
of the prior has changed, since KFPNS incorporates observations into prior knowledge in
order to estimate posterior noise distribution, its average MSE is related to the tightness
of the prior distribution. In other words, the tighter the prior distribution, the worse the
performance of KFPNS, while the opposite is true when the prior distribution is relaxed.
Importantly, the average MSE of KFPNS can always be closer to that of the model-specific
Kalman filter.

In the final simulation, we analyze the performance of each robust filtering strategy
when the prior knowledge is inaccurate. In practical applications, it is often impossible
to understand the underlying true model, and the mastery of prior knowledge is not
comprehensive. Therefore, it is crucial for a robust filter not to rely too much on the
prior distribution. Our previous simulations are based on the assumption that the prior
distribution of noise is accurate and available. Here, we only consider the case where the
variance of the observation noise is unknown and the range of its prior distribution is
included in the interval of the true distribution. We still have α1 uniformly distributed
over [1, 2], while assuming that α2 is uniformly distributed over [3, 5], which is wrong
relative to the real interval. Similarly, we generated 20 different true values based on the
correct prior interval, and each true value contained 20 different sets of observations. The
evaluation index of the robustness of each filter is still the average MSE. Figure 6a,b are
the average MSEs of various Kalman filters in the entire sampling period when the correct
interval is [2, 6] and [0.5, 7.5]. When k is large, the two robust filters, OBKF and KFPNS
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still perform best in terms of average MSEs. It is worth noting that KFPNS outperforms
OBKF for the first time in Figure 6b, but it is slightly inferior or equivalent to OBKF in the
previous simulation. This is related to the computing method of posterior noise statistics.
When OBKF employs the Metropolis Hastings MCMC method to select sample points, the
prior distribution incorporated is wrong and lacks an adjustment strategy, which makes
the posterior noise statistics unable to converge to the true value. On the contrary, KFPNS
adds a weighting factor in the calculation process, making it not completely dependent on
the inaccurate prior distribution. Therefore, KFPNS performs better when facing models
with larger errors between prior knowledge and the underlying true model. Unfortunately,
the performance of KFPNS may decline when the prior distribution provided is inaccurate,
and the stronger the inaccuracy, the faster the performance decline.
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3.2. Experiment

We also processed the observed data of the real MIMO radar system. We conducted
experiments in two specific scenarios. The experimental conditions are described as follows.
We have delineated two fixed experimental areas, namely the indoor area of 175× 465 cm2

and the outdoor area of 800× 800 cm2. In addition, we also calibrated some points in
the two experimental areas and took these points as the ground truth of the target. Due
to the limited scanning range of the MIMO radar, the position of the radar has a certain
distance from the boundary of the experimental area, but we eliminated the influence of
this distance in the subsequent processing. Table 2 reports the parameters of the radar used.
We first sampled the environment of the two experimental areas without any targets and
filtered out non-target points on this basis. During data acquisition, two people moved at a
constant velocity in these two areas according to two predetermined trajectories. Figure 7
describes our experimental scenarios. Figure 7b also shows the MIMO radar board we used
and the host computer interface during data acquisition. After collecting measurements,
we clustered the target points and took the cluster center as the observed position of the
target. Finally, four different Kalman filtering methods were used to process the data and
to analyze the error.

Table 2. MIMO radar parameters.

Radar Model Radar System The Start Frequency Range Resolution Frame Periodicity Scan Range

RDP-77S244-ABM-AIP FMCW 77 GHz 0.045 m 200 ms FOV 120◦
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that the estimated trajectories of the two Kalman filters designed based on posterior in-
formation are significantly smoother than the other methods. The inaccuracy of prior 
knowledge of noise is the main reason for the poor trajectory estimation of CKF and IB-
RKF. Although IBRKF introduces the concept of effective statistics, which weakens this 
effect to a certain extent, when the inaccuracy of prior knowledge is strong, its perfor-
mance is only slightly improved compared with the classical algorithm. As expected, both 
KFPNS and OBKF have the characteristics of computing the posterior value and making 
it approximate the real value through algorithm iteration, which makes them very robust; 
thus, their estimated trajectory is also the closest to the true trajectory. 
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The filters we use are the classical Kalman filter (CKF), IBRKF, OBKF and KFPNS.
The filtering results under different experimental scenarios are shown in Figures 8 and 9.
Note that the blue point represents the estimated position of target A, and the red point
represents the estimated position of target B. When filtering these position data, we do not
fully grasp the underlying real model, which means that the prior knowledge we provided
for these algorithms may not be accurate enough. Nevertheless, it can be observed that the
estimated trajectories of the two Kalman filters designed based on posterior information
are significantly smoother than the other methods. The inaccuracy of prior knowledge of
noise is the main reason for the poor trajectory estimation of CKF and IBRKF. Although
IBRKF introduces the concept of effective statistics, which weakens this effect to a certain
extent, when the inaccuracy of prior knowledge is strong, its performance is only slightly
improved compared with the classical algorithm. As expected, both KFPNS and OBKF
have the characteristics of computing the posterior value and making it approximate the
real value through algorithm iteration, which makes them very robust; thus, their estimated
trajectory is also the closest to the true trajectory.
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In addition, the position error (PE) between the estimated position and the true
position will also be used as an evaluation index for filter performance. In Figure 10,
although the PE of the new filter sometimes exceeds IBRKF and the classical Kalman
filter, overall, most of the PE curve of KFPNS is in a lower position. Moreover, the PE
of the proposed algorithm is more concentrated than compared to these two algorithms.
However, in Figure 10a, it cannot be ignored that KFPNS performs poorly in the early
stages of filtering. The reason for this phenomenon may be that the selection of the initial
value is quite different from the real value, and there are fewer observed data available for
analysis. Fortunately, with the input of more observed data, its estimation error gradually
approaches OBKF.

We also compute the root-mean-square error (RMSE) of the four algorithms, and the
results are shown in Figure 11. In Figure 11a, when the number of sampling period is small,
the RMSE of KFPNS takes the maximum value. After 20 sampling periods, the RMSE of
KFPNS tends to be stable and is significantly different from that of the other two Kalman
filters with poor robustness. Figure 11b also suggests that the gap between KFPNS and
OBKF is further narrowed. The change of RMSE over time proves that both KFPNS and
OBKF have strong robustness. Table 3 reports the mean value of RMSE (MMSE) for various
algorithms, which can be used to intuitively compare the average performance of various
filters in different scenes. In the indoor scene, for target B, the average performance of
KFPNS is 29.62% and 41.56% higher than that of IBRKF and the classical Kalman filter
separately. Despite the average performance of KFPNS decreases by 18.1% compared with
OBKF, they differ by only 0.9434 cm.
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Table 3. The MMSE difference of various Kalman filtering methods.

Algorithm MMSE

Indoor Scene Outdoor Scene

Target A Target B Target A Target B

KFPNS 6.3679 cm 6.1552 cm 15.5520 cm 13.1918 cm
IBRKF 9.0658 cm 8.7459 cm 23.5724 cm 21.7488 cm
CKF 11.0092 cm 10.5480 cm 32.6647 cm 28.4253 cm

OBKF 5.0358 cm 5.2118 cm 14.6269 cm 14.6148 cm

Figure 12 further analyzes the cumulative distribution function (CDF) of the RMSE of
each filtering algorithm in the indoor scene. In Figure 12, 90% of the RMSE of KFPNS is
less than 6.739 cm, which improves by 31% over IBRKF (9.767 cm) and 42.35% over CKF
(11.69 cm) but degrades by 23.11% over OBKF (5.474 cm). In a nutshell, compared with the
IBR robust filtering strategy, KNPNS and OBKF are more suitable for models where the
noise is unknown and the real prior cannot be fully grasped.
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3.3. Time Cost Analysis

Previous experiments have proved that OBKF and KFPNS have considerable robust-
ness. Now we study the difference of their complexity. Since the recursive structure of these
two robust Kalman filters is consistent with the classical algorithm, their computational
burden is mainly concentrated on the calculation of posterior noise statistics. It is worth
mentioning that OBKF uses a factor-graph-based method to convert the problem of finding
the likelihood function into a matrix operation, which increases the complexity of the
algorithm. Moreover, if the posterior noise statistics at the k-th observation need to be
computed, the likelihood function of each MCMC sample must be iterated from i = 0
until i = k− 1. Therefore, its computational complexity depends on the dimension of the
matrix, the number of samples in the posterior distribution and the number of sampling
periods. In contrast, the proposed algorithm rarely involves matrix operations, and there
is no need to compute the likelihood function from the beginning. At the same time, the
variational distribution is fixedly decomposed into two factors. These reasons all reduce
the calculation burden of KFPNS to a considerable extent. Figure 13 shows the average run
times of the OBKF and KFPNS relative to the sampling period. Note that both algorithms
need to generate 10,000 samples to approximate the true posterior noise distribution. In
addition, the running platform of all simulations and experiments in this paper is MATLAB
R2018b with Intel(R) Core(TM) i5-8257U CPU at 1.40 GHz as well as 8-GB RAM. Figure 13
illustrates that under the same number of samples and the same length of observation
sequence, OBKF needs to consume more time. Consequently, KFPNS performs better in
real time and is more suitable for applications in actual projects.
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4. Discussion

In this paper, the IBR framework is extended to a posteriori version by using posterior
effective noise information. More exactly, a Bayesian robust Kalman filter based on posterior
noise statistics is designed by adding the calculation method of posterior noise statistics.
Our simulation results also suggest that when dealing with models with uncertain noise
parameters, the performance of the designed filter is second only to OBKF. Therefore, it
can be concluded that the proposed calculation method of posterior noise statistics can
make the uncertain noise parameters converge near the true value. When used in an actual
MIMO radar system, we found that our algorithm has a good performance in robustness
and real-time situations compared with current methods. However, it is worth noting that
since the run time of the KFPNS is proportional to the length of the observation sequence,
when the tracking period is longer, it will consume more time than compared to the classic
algorithm. Furthermore, our algorithm is run under the assumption of a Gaussian model.
In other words, if the noise is non-Gaussian, the performance of our algorithm will be
greatly reduced. In future investigations, we will propose a more effective and faster
method for estimating posterior noise distribution and make more classes of noise suitable
for this framework.
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