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Introduction
The novel coronavirus (2019-nCov for short) outbroke at the end of 2019, and has been 
causing varying degrees of disease symptoms in people of different ages, such as gastro-
intestinal symptoms in children while other ages experienced pneumonia, stroke, and 

Abstract 

Background:  Target drugs play an important role in the clinical treatment of virus 
diseases. Virus-encoded proteins are widely used as targets for target drugs. However, 
they cannot cope with the drug resistance caused by a mutated virus and ignore 
the importance of host proteins for virus replication. Some methods use interactions 
between viruses and their host proteins to predict potential virus–target host proteins, 
which are less susceptible to mutated viruses. However, these methods only consider 
the network topology between the virus and the host proteins, ignoring the influences 
of protein complexes. Therefore, we introduce protein complexes that are less suscep-
tible to drug resistance of mutated viruses, which helps recognize the unknown virus–
target host proteins and reduce the cost of disease treatment.

Results:  Since protein complexes contain virus–target host proteins, it is reasonable 
to predict virus–target human proteins from the perspective of the protein com-
plexes. We propose a coverage clustering-core-subsidiary protein complex recogni-
tion method named CCA-SE that integrates the known virus–target host proteins, 
the human protein–protein interaction network, and the known human protein 
complexes. The proposed method aims to obtain the potential unknown virus–target 
human host proteins. We list part of the targets after proving our results effectively in 
enrichment experiments.

Conclusions:  Our proposed CCA-SE method consists of two parts: one is CCA, which 
is to recognize protein complexes, and the other is SE, which is to select seed nodes 
as the core of protein complexes by using seed expansion. The experimental results 
validate that CCA-SE achieves efficient recognition of the virus–target host proteins.
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blood clots [1]. 2019-nCov belongs to the β coronavirus, which is a single-stranded RNA 
virus. In addition to the discovery of 2019-nCov in coronavirus, six human coronavi-
ruses have been found and studied in depth. There are four types of β coronavirus group. 
In 2002, there were 8000 cases of severe acute respiratory syndrome coronavirus (SARS-
CoV) worldwide, and the mortality rate was about 10%. The Middle East respiratory 
syndrome coronavirus (MERS-CoV) produced in 2012 had a higher fatality rate of 36% 
[2, 3]. The other two beta-viruses (HCov-HKU1 and HCov-OC43) are related to res-
piratory diseases, but with low incidence. There are two kinds of α coronavirus groups 
[4], such as HCoV-229E in 2000, but the pathogenicity and mild symptoms. The HCov-
NL63 virus, found in the Netherlands in 2004, had little damage to humans and can be 
ignored. 2019-nCov can be transmitted by face-to-face communication or direct contact 
of faces [5]. For patients infected with 2019-nCov, there are few drugs available to treat 
the virus, such as Lopinavir, Remdesivir, and symptom-based treatment [6].

Proteins with similar functions tend to form protein complexes and work together, 
as do virus proteins. Therefore, it is very important to recognize protein complexes in 
predicting virus–target host proteins. Detecting complexes from Protein–Protein Inter-
action (PPI) has become an important research field in proteomics. Many graph cluster-
ing algorithms use it to find community structures in networks, and recognize protein 
complexes. Nepusz et  al. [7] proposed ClusterONE, which for detecting potentially 
overlapping protein complexes from PPI data. Liu et al. developed CMC [8] to discover 
complexes from a weighted PPI network. Min Wu et al. presented COACH [9] which 
detected protein complexes in two stages. COACH first detects protein-complex cores 
as the “hearts” of protein complexes and then includes attachments into these cores to 
form biologically meaningful structures.

According to the World Health Organization, over 17 million people die of infectious 
diseases every year. It is necessary to identify interactions between viruses and human 
proteins in virus disease treatment. Ho-Joon Lee [10] presented an approach to pre-
dict virus–host PPI by multi-label machine learning classifiers of random forests and 
XGBoost using amino acid composition profiles of virus and human proteins, which 
predict that histone H2A components are targeted by multiple 2019-nCov proteins. Jack 
Lanchantin [11] proposed DeepVHPPI, combining a self-attention-based transformer 
architecture and a transfer learning training strategy to predict interactions between 
human proteins and virus proteins that have novel sequence patterns, achieving great 
results in predicting virus–human protein interactions for H1N1 and Ebola. Babak 
Khorsand [12] adopted ensemble learning methods to predicting PPI between human 
proteins and Alphainfluenzavirus proteins, he extracted several features from physico-
chemical properties of amino acids, combined with different centralities of human PPI.

Studying PPI between the new virus and its known host proteins can accurately pre-
dict the virus. Fatma-Elzahraa Eid [13] proposed DeNovo, a sequence-based negative 
sampling and machine learning framework, he learns from the PPI of different viruses 
and predicts a new virus using shared host proteins. Experiments show that this method 
can better predict the PPI of human virus infection. Dyer et al. [14] proposed a method 
to predict the physical interaction between human proteins and HIV proteins based on 
a variety of features, such as protein domains, sequence information, and the proper-
ties of human proteins in human PPI networks. Zahiri predicted the HIV1–human PPI 
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network [15]. Ray predicted HCV–human PPI network [16]. Chen revealed the west 
Nile virus–human PPI network [17].

However, most existing methods often ignore the inherent biological structure of the 
complexes, and many only consider the structure as dense subgraphs. Few of them con-
sider the modularity of PPI, let alone search for potential virus–target proteins from 
protein complexes, such as Babak Khorsand [18]. Here we adopt CCA to recognize pro-
tein complexes, showing the feasibility of seed selection, and then we used CCA-SE to 
predict potential virus–target human proteins. At first, a network representation learn-
ing technique called node2vec is utilized to learn a dense vector for each vertex to rep-
resent the topological information. Secondly, based on edge clustering coefficient (ECC) 
and degree, we introduce a new seed selection strategy, and the core structure of protein 
complexes is detected based on SE. Then according to network topology, we design a 
fitness function to identify protein complexes with various densities and modularity. At 
last, we apply CCA-SE to predict the 2019-nCov-target proteins, which play a funda-
mental role in detecting virus drug targets.

Result
Principle of the CCA‑SE method

We developed the CCA-SE method based on the principle of coverage clustering-core-
subsidiary structure, which contained two parts, CCA was used to recognizing protein 
complexes, and SE was applied to select seed nodes. Especially, We demonstrated a new 
selection strategy for seed nodes. We clustered seed nodes to obtain the nuclear struc-
ture of protein complexes. Then, based on the density and modularity, we expanded the 
core structure and formed protein complexes. Next, integrate downloaded complexes 
data with our results. At last, we calculated the similarity between unknown human 
proteins and known virus–target proteins in the same protein complexes. We defined 
a scoring function, which was helpful in getting potential virus–target human proteins. 
Figure 1 shows the algorithm.

Construction of virus–host PPI network

We constructed a virus–target human PPI network based on the human protein 
interaction database HIPPIE and the human protein dataset of 2019-nCov infection. 
Researchers often regard direct neighbor proteins as potential host proteins in some 
typical virus–host proteins research [19]. Therefore, G = (V, E) represents human PPI. V 
includes not only host proteins attached by the 2019-nCov directly but also direct neigh-
bors of those host proteins. E shows human PPI. After removing noisy data, we got 2308 
human proteins. We reported details in “Methods” section.

Node2Vec [20] not only makes similar nodes closer in the vector space but also retains 
network structure, captures the diversity connection between nodes. We embedded 
Node2Vec into the PPI network to extract hidden information and used a low-dimen-
sional vector to represent each node.

We extracted the hidden layer weight of PPI and demonstrated each protein node with 
a 128-dimensional vector [21]. In Fig. 2, nodes included not only the proteins attached 
by virus but also those known interacted with virus–host proteins directly.
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Selection of seed nodes

In a real protein network, many protein complexes are overlapped and share multi-
ple nodes, so that the core nodes and the overlapped nodes cannot be distinguished 
simply by degree [22]. Therefore we use two topological properties, ECC and nodes 
degree, which can evaluate the importance of nodes. The score of each protein is 
obtained by the sum of degree and ECC. According to an existing work [9], if the 
score of a protein node is greater than the average score, we consider it as a seed 
protein that would achieve the best results. The scoring function for each protein u is 
defined in Eq. (1). We proved Eq. (1) feasibility in Table 1.

where sumEEC(u) indicates summation of ECC and degree(u) indicates degree of node u. 
Equation (1) considers network topological structure and reduces the overlapped nodes 

(1)score(u) =
sumEEC(u)

deg ree(u)

Fig. 1  Process of CCA-SE
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that include the sum of ECC by dividing each node degree. Meanwhile, it avoids over-
lapped nodes mistaken as seed nodes and improves seed selection accuracy.

We formed Table 1 based on our results. “Score” means the standard score when we 
choose seed nodes. “Seed” means the number of seeds. We use 0.1698 as the seed selec-
tion standard also is the average score. As we can see from Table 1, whether the score 
is higher than average or lower, their precision, recall, and F-score are not good as the 
average score’s effect.

We can use Gene Ontology (GO) database to predict and analyze gene function. 
Usually, a gene or gene product is annotated by one or more GO terms. We can 

Fig. 2  An illumination of virus–host PPI Network

Table 1  Effects in different scores

Score Seed Precision Recall F-score

0.1398 1035 0.9317 0.6399 0.7587

0.1498 982 0.9350 0.6352 0.7565

0.1598 939 0.9390 0.6381 0.7598

0.1698 868 0.9414 0.6406 0.7624

0.1798 821 0.9383 0.6334 0.7563

0.1898 781 0.9272 0.6119 0.7373

0.1998 726 0.9399 0.6078 0.7382
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calculate the similarity between genes to analyze and predict gene function. The tra-
ditional coverage clustering algorithms (CCA) [23] are less time-consuming, han-
dle large amounts of data, and have no overlapping region among obtained clusters. 
However, these methods would generate much false positive data without a reasona-
ble clustering radius. Therefore, we use GO function similarity to obtain a reasonable 
radius and improve clustering accuracy. The clustering radius is computed as follows.

We denote rx, the distance of all unlearned seed nodes to the clustering center based 
on the Euclidean distance. We redefine the distance as shown in Eq. (2). The clustering 
radius of each final cluster is obtained by Eq. (3). D indicates the seed nodes that have 
not learned yet.

It shows that in PPI networks, high-density subgraphs incline to form protein com-
plexes [24]. Also, in a subgraph, if the internal weight is much greater than the exter-
nal weight, it is more likely to form protein complexes. Therefore, density [25] and 
modularity [26] are two important factors, determining whether the subgraph could 
form protein complexes or not. We demonstrate a new method to evaluate protein 
complexes.

degreein(cu ) is the sum of internal edges of the complexes, degreeout(cu ) is the sum num-
ber of other edges connected with the complexes, E Cu is the number of all edges in the 
complexes, and V Cu is the number of all nodes in the complexes. Moreover, we use a 
parameter t to balance the weight of subgraph modularity and subgraph density, as 
shown in Eq. (4).

Obtaining potential virus–host proteins

We obtain a set of protein complexes cores. To form complete protein complexes, 
we add subsidiary structures to each core with the following steps and name them 
SE: (i) The first-order neighbor nodes of each protein complexes core are obtained 
from the network diagram as candidate proteins of the complexes. (ii) Calculating the 
sum of functional similarity between the core and their neighbor nodes based on edge 
weight. (iii) ranking nodes according to the functional similarity score, completing 

(2)dx =
rx

1+ GOsimilarity

(3)radius = x∈D dx

x∈D 1

(4)score(cu) = t ∗ density(cu)+ (1− t) ∗ modularity(cu)

(5)density(cu) =
2 ∗ |Ecu |

|Vcu |(Vcu − 1)

(6)modularity(cu) =
deg reein(cu)− deg reeout(cu)

deg reein(cu)+ deg reeout(cu)
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protein complexes by adding affiliated nodes. The local score of the protein complexes 
calculates when a new node adds. (iv) Repeating (iii) until no more nodes can improve 
the local score, then terminating the expansion of the protein complexes core.

Protein complexes are molecular polymers that participate in the same functional 
region at the same time and space and have direct or indirect effects [27]. Studies have 
shown that the network is modular, and proteins in the same complexes are more likely 
to undertake the same life activity or in the same pathway [28]. At the same time, the 
more host proteins contained by the complexes indicate that the complexes are more 
likely to participate in life activities such as virus replication [29].

We obtained 255 protein complexes on the human PPI network dataset. Considering 
incomplete data, we downloaded all human complexes data from the CORUM database, 
including 1948 protein complexes. Then we integrated them with our results, choosing 
protein complexes data with nodes than three and known host proteins while deleting 
the redundant data. Therefore we got 455 human complexes, with complexes that con-
tain more than two known proteins having sixty. The more known host proteins con-
tained in the complexes, the more likely it participate in viral survival and reproduction. 
Since the proteins phenotypes in the same protein complexes are similar, the remaining 
proteins may also become the proteins required for virus replication.

Table 2 lists some protein complexes, in which Complex_size represents the size of the 
module, Host_protein is the host protein of the virus, and Complexes is the collection of 
all proteins.

Based on Table  2, we can speculate that the unknown human proteins in the same 
complexes are closely related to the known virus–host proteins. The table also shows 
that not only other proteins in the module are related to the virus, but also the module 

Table 2  Partial protein complex data

ID Complex_size Host_protein Complex

1 4 P67870; P19784; P09429; P19784; P67870; P68400;

2 5 Q15370; P62877; Q15369; 
Q13617;

P40337; Q15370; P62877; Q15369; Q13617;

Q15369; Q13617; Q15369; Q13617;

3 5 Q15370; Q15369; Q15369; Q15370; Q93034;

Q9UBF6; Q9Y576;

4 7 Q92769; O00422; O75446; Q09028; Q13547;

Q16576; Q92769; Q96ST3;

5 3 P13861; P13861; P24588; Q08209;

6 5 Q9UHD2; P18124; P08238; Q04206; Q9UHD2;

Q00653;

7 3 Q86VM9; Q86VM9; Q9BXB5; Q15287;

8 5 P11940; O75534; P11940; O75534; Q16549; Q14103;

O60506;

9 16 O43633; Q70EL1; Q9BY43; O95630; Q9UN37; Q70EL1;

Q96FZ7; Q96CF2; Q9NZZ3; Q9H444;

Q70EL1; Q9HD42; O43633; O75351;

Q9UN37; Q7LBR1; Q9H444; Q9BY43;

10 9 O60885; Q7L2J0; O94992; O60563; O60583; O60563;

P06400; O94992; O60885; P50750; Q7L2J0;
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itself is related to the virus, which jointly completes some biological functions and pro-
motes the reproduction of the virus. Therefore, these remaining proteins are potential 
virus–target proteins we need.

The above descriptions show that each of the complexes contains virus–target host 
proteins and is more or less associated with the virus. Then we use the protein com-
plexes and Node2Vec to calculate the similarity between the rest of the unknown pro-
teins and known host proteins, then score them as potential target proteins. The score 
computes as follows.

wc indicates the proportion of known host proteins in the complexes to which poten-
tial target protein C belongs. n c indicates the number of known proteins in the com-
plexes. Let N indicates the total number of proteins in the complexes. w c in Eq. (8) can 
be obtained as follows.

The second term in Eq. (7) indicates the sum of the similarities between target protein C 
and the known proteins in its complexes. The formula is as follows.

Pi indicates each known virus–target protein in the complexes of candidate protein C, 
in which the complexes in the Equation select the complexes corresponding to the maxi-
mum value in Eq. (8).

Methods
Statistical model

We define the functional similarity between the two interacting proteins a and b as 
GOsimilarity , and as follows.

Based on the definition of protein functional similarity, the adjacency matrix A ij of graph 
G can express as follows.

eij equals GOsimilarity.

Dataset

Based on the latest study of the interaction map of 2019-nCov virus–host protein [30], 
we obtained 332 high reliability 2019-nCov human PPI data. We mapped the proteins 
with the Uniprot ID through the Uniprot database and got 256 key host factors in our 
experiments. To reduce the impact of data redundancy on results, we used the human 
PPI data in HIPPIE, which integrates interactive data of multiple databases, including 

(7)scorec = wc ∗ simc(complex)

(8)wc =
nc

N

(9)simc(complex) =

n
∑

i=1

sim(c,Pi)

(10)GOsimilarity(a, b) = |GOsum(a) ∩ GOsum(b)|

(11)Aij =

{

eij(i,j∈E)

0, otherwise
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MINT, HPRD, and BioGrid. The HIPPIE is the most commonly used PPI database. 
Therefore, we download 65,536 PPI data from the HIPPIE database, involving 11,564 
human proteins.

Weighting protein networks by GO annotations

GO is an internationally standardized gene function classification system. It consists of a 
predefined set of GO terms, which can limit and describe the function of gene products. 
GO terms provide the logical structure and correlation of biological processes and clas-
sify biological process (BP), molecular function (MF), and cellular component (CC). GO 
annotations [31] are responsible for describing GO terms function. We use G = (V, E) to 
represent the proteins network, V is the set of proteins, and E represents the set of pro-
tein–protein interactions. The specific steps are as follows: (i) We assume that protein a 
contains N GO annotation sets on BP.

M GO annotation sets on MF.

K GO annotation sets on CC.

(ii) According to the tree structure of GO, we can calculate all parental annotation sets 
of protein a under different categories, then add to the original annotation set of GO(a), 
and remove the redundant data. The function annotation of protein a obtains as follows.

Cross‑validation method

We adopt Cross-Validation to adjust the parameters reasonably under the condition of 
moderate source datasets and apply them to practical problems. Furthermore, we use 
the K-fold Cross-Validation method to evaluate the experimental results.

Firstly, we divide the identified host protein complexes into a training set and valida-
tion set according to the ratio of 8:2. To know how many validation data are in top k, we 
conduct ten groups of control experiments to verify the results and use the ratio as the 
final target proteins classification standard. We consider deleting the candidate protein 
with zero scores in the final ranking process to reduce the data redundancy. Moreover, 
k ranges from 0 to 100 with a step of 10, The Cross-Validation shows that the prediction 
results can be divided into four categories, as shown in Table 3.

In this section, the true-positive rate (TPR) and false-positive rate (FPR) values are 
obtained according to the four results in Table 3, as shown in Eqs. (16) and (17), TPR 
indicates the prediction coverage of our method.

(12)GOBP(a) =
{

go1, go2, . . . , gon
}

(13)GOMF (a) =
{

go1, go2, . . . , gom
}

(14)GOCC(a) =
{

go1, go2, . . . , gok
}

(15)GOsum(a) =
GOBPsum(a)+ GOMFsum(a)+ GOCCsum(a)

3
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N represents candidate proteins that are not in the validation data. P represents candi-
date proteins that are in the validation data. TP means the recognized correctly by CCA-
SE. FP means the recognized quantity wrongly.

Considering the unbalanced data distribution between known and unknown pro-
teins, we use the values of receiver operating characteristic (ROC) and area under 
the receiver operating characteristic curve (AUC) as evaluation indexes, then plot 
the ROC curves under different thresholds of TPR and FPR. The abscissa repre-
sented the FPR while the ordinate represented the TPR.

(16)TPR =
TP

P

(17)FPR =
FP

N

Table 3  Classification table of predict results

Type of host protein Result (whether host protein) Type of 
evaluation

Host protein Positive TP

Host protein Negative FN

Not host protein Positive FP

Not host protein Negative TN

Fig. 3  The influence of parameter k 
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Experiments
Selection of parameter k

We analyze the influence of parameter k, then select the best k value. Let the value of k 
vary from 0 to 100. The ROC curve shows in Fig. 3. The prediction results divide into 
two categories, the first k% data considered as the predicted potential target proteins, 
and the second (100-k)% data not considered as the predicted potential target proteins. 
It can be seen from Fig.  3 that when k is 40, CCA-SE successfully predicts 22 known 
host proteins. According to the above host PPI network, 80% of the proteins are non-
structural protein interactions encoded by the 2019-nCov. In addition, this experi-
mental result also shows that the predicted protein scores are high when the value of k 
increases, indicating that the use of Eq. (7) helps to improve the sorting performance of 
candidate proteins. We plot the AUC curve to show the advantages and disadvantages 
of each group of algorithms. As shown in Fig. 4, the AUC curve is relatively stable in the 
ten groups of control experiments, which is basically around 0.81, indicating that the 
algorithm still shows good performance even when the amount of data is less than the 
actual biological network data.

In summary, in the subsequent prediction of potential virus–target proteins, we set 
the value of k as 40 to achieve the best experimental results.

Comparative experiment of data integration

To make a horizontal comparison and evaluate the applicability of the integrated data 
[32], we compare the results of adding complexes data based on CCA-SE with only con-
taining public human protein complexes data set. We also use TPR and FPR as evalua-
tion indicators. The following table shows that the TPR containing public human protein 

Fig. 4  Comparison of AUC values in multiple control experiments
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complexes is only 68.67%, which indicates that the integrated protein complexes data 
can improve accuracy and make the biological data more comprehensive. It also shows 
that the complexes recognized by CCA-SE are more biological (Table 4).

Performing GO enrichment analysis on prediction results

After we obtain biological data, to read the genetic information, differential genetic anal-
ysis is a necessary experiment between different samples. Therefore we need to annotate 
these genes because the number of these genes are maybe large and difficult to compare. 
A common method divides these genes or proteins into several categories, one category 
is equivalent to a GO term. This process is called enrichment analysis. Commonly used 
enrichment analysis methods include GO analysis and KEGG analysis.

We integrate known virus–target host proteins with their directly interacted human pro-
teins and apply CCA-SE to the whole network. Our predicted results are listed in “Addi-
tional file  1” and named “new targets”. In our results, eight proteins have been proved 
among the top ten, which are Q13617, Q15370, P62877, Q15369, P09884, Q14181, P35658, 
and P78406. It reported that 87% of them combined with a virus of non-structural proteins. 
At the same time, these non-structural proteins are cleaved by 3CLPro, and this protease is 
one of the organic substances necessary for the reproduction of 2019-nCov. On the other 
hand, researchers have not recognized similar restriction sites in the human body. It is a 
medical value that we target 3CLPro as a drug target. Based on the above analysis, CCA-SE 
can recognize virus–target host proteins. Table 5 is part of the potential target proteins.

To verify the accuracy of the CCA-SE in predicting candidate virus–target proteins, we 
only conduct gene enrichment analysis for the top 50 potential target proteins. Table 6 lists 
the enrichment analysis results of proteins that are high scores. These GO terms meet the 
p value of less than 0.05. The analysis results in Table 6 showed that most predicted GO 
annotations of target proteins are related to biological processes such as protein binding, 
enzyme binding, transcription factor binding, transcription factor activity, protein kinase 
binding, apoptosis, and proliferation. For example, GO:0005515, which belongs to MF. 
Previous studies have found that the spike protein RBD encoded by 2019-nCov contains 
six amino acids, including L455, F486, Q493, S494, N501, and Y505. Meantime, RBD can 
integrate with the ACE2 protein of human lung epithelial cells, so we can infer that the 
host protein corresponding to this functional annotation has a huge correlation with these 
residues. Another example, GO:0016032, which plays an important role in virus affection, 
relates to the viral genome replication and the assembly of progeny virus particles. More-
over, Babak Khorsand [18] listed the most central nodes in human interactions of 2019-
nCov in his paper, which are Q86VP6, Q92905, Q13573, and P01106. Our results included 
Q92905, Q13573, and P01106, and we both performed experiments in the same datasets. 
The prediction of 2019-nCov-target potential host proteins shows a significant enrichment 
effect. Demonstrating the accuracy of our prediction based on a molecular network.

Table 4  Experimental comparison of whether the complex is integrated or not

Comparision algorithm Number of recognition TPR (%) FPR (%)

Unintegrated data 17 68.67 38.08

Integrated data 22 72 40.31
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Table 5  Some of the potential virus–target host proteins

Uniprot ID Protein name MF CC BP

O15264 Mitogen-activated protein GO:0005515; GO:0005829; GO:0071347;

Kinase 13 (MAPK13) GO:0005524; GO:0005737; GO:0018105

GO:0004674; GO:0005634; GO:0070301;

GO:0004707; GO:0007049;

GO:0050729;

GO:1903936;

GO:0006970;

GO:0051403;

Q92598 Heat shock protein family H GO:0005515; GO:0005654; GO:1900034;

(Hsp110) member 1 (HSPH1) GO:0005524; GO:0005829; GO:0051135;

GO:0000774; GO:0005737; GO:0045345;

GO:0043014; GO:0005634; GO:0051085;

GO:0070062; GO:0006986;

GO:0032991; GO:0050790;

GO:0071682; GO:0006898;

GO:0005874;

GO:0005576;

Q13177 p21 (RAC1) activated kinase GO:0005515; GO:0005829; GO:0071407;

2(PAK2) GO:0042802; GO:0005737; GO:0050770;

GO:0019901; GO:0005634; GO:0051497;

GO:0005524; GO:0098978; GO:0018105;

GO:0045296; GO:0005911; GO:0031295;

GO:0004674; GO:0014069; GO:0040008;

GO:0030296; GO:0048471; GO:0043066;

GO:0031267; GO:0005886; GO:0006469;

GO:0004672; GO:0150105;

GO:0034333;

GO:0006468;

GO:0046777;

GO:0050852;

GO:0031098;

Q15311 ralA binding protein GO:0005515; GO:0005829; GO:0043547;

1(RALBP1) GO:0042910; GO:0016020; GO:0007264;

GO:0005096; GO:1990961;

GO:0042626; GO:0051056;

GO:0022857; GO:0043087;

GO:0006935;

GO:0006897;

GO:0055085;

P78545 E74 like ETS transcription GO:0005515; GO:0005654; GO:0045892;

Factor 3(ELF3) GO:0000978; GO:0005829; GO:0045944;

GO:0001228; GO:0005634; GO:0006366;

GO:1990837; GO:0005794; GO:0045747;

GO:0003700; GO:0006357;

GO:0000981; GO:0030855;

GO:0060056;

GO:0006954;

GO:0001824;

GO:0030198;

GO:0030154;



Page 14 of 18Xia et al. BMC Bioinformatics          (2022) 23:256 

KEGG pathway analysis of prediction results

Kyoto Encyclopedia of Genes and Genomes (KEGG) is a database with functional infor-
mation about each gene. The core of the KEGG database is KEGG PATHWAY and 
KEGG ORTHOLOGY. In KEGG PATHWAY, biological metabolic pathways are divided 
into six categories, namely Cellular Processes, Environmental Information Processing, 
Genetic Information Processing, Human Diseases, Metabolism, and Organismal Sys-
tems. Once we get the differential gene information, in order to learn their functions 
more clearly, gene enrichment analysis may be used to discover biological pathways that 
play a key role in biological processes, so that we can better understand the molecular 
mechanisms of biological processes. KEGG pathway analysis [33] selects pathway data-
bases and human-related pathways to analyze the predicted proteins.

In Fig. 5, C1–C6 represents the result processed by KEGG pathway enrichment anal-
ysis. C1 means Annotation Cluster 1, C2 means Annotation Cluster 2, and so on. We 
sort the results in descending order of Enrichment Score, and “other” includes those 
genes that do not belong to any of the clusters. These genes have not shown their func-
tional characteristics in our pathway analysis, we consider them less important factors 
in our potential virus–target experiments. According to Fig.  5, a total of 42 pathways 
(p-value  0.05) are obtained by screening proteins with high scores, mainly including the 
TNF signaling pathway, T cell receptor signaling pathway (TCR) pathway, and MAPK 
pathway related to cell cycle and inflammatory immune regulation, PI3K-Akt signaling 
pathway and HIF-1 signaling pathway related to pulmonary fibrosis regulation, renal cell 
carcinoma pathway related to viral diseases and human immunodeficiency virus 1 infec-
tion pathway. The above pathways demonstrate that although some predicted host pro-
teins do not directly interact with virus-encoded proteins, they are closely related to the 
pathogenesis of the virus.

The existing studies have shown that the MAPK pathway is related to cell growth and 
mutations. TNF is mainly produced by T cells and NK cells, and both are closely related 
to inflammation. They can release signals to interact with specific receptors on the cell 
surface, making them conservative, so that MAPK-JNK, 5-lipoxygenase, and other 
signaling pathways are activated, making cytokines related to inflammation disorders, 
such as abnormal expression of gp130 and IL-1, and promoting human inflammatory 
response [3, 4].

The PI3K-Akt signaling pathway is closely related to the renal cell carcinoma path-
way, as shown in Fig.  6. Tyrosine kinase receptors can activate phosphatidylinositol 
3-kinases (PI3Ks) signaling pathways, which are related to cell proliferation and apop-
tosis. When PI3Ks is activated, it produces a messenger that binds to the signal protein 

Table 6  Results of GO enrichment analysis

GO ID GO terminology p value

GO:0016032 Viral process 1.23e−4

GO:0003677 DNA binding 1.40e−4

GO:0004842 Ubiquitin-protein transferase activity 1.32e−4

GO:0005515 Protein binding 1.33e−4

GO:0031625 Ubiquitin protein ligase binding 1.09e−05
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PDK1 containing the PH domain. Through phosphorylation, the Akt signaling protein 
is activated to form PI3K-Akt. This protein can also phosphorylate and regulate the 
downstream factor mammalian target of rapamycin (mTOR) [34], thereby activating the 
mTORC1 pathway, which participates in the expression of T cytokines in the immune 
system and promotes the enhancement of the immune system.

Conclusion
In this paper, we proposed a protein complexes recognition method CCA-SE. The pro-
tein complexes obtained by CCA-SE were integrated with the human protein complexes 
to obtain a more reliable protein complexes dataset, then we defined a score function 
to get potential target proteins. The scoring function takes into account not only the 
relationship between the protein complexes and the virus-encoded proteins but also 
the protein itself to predict the virus–target human proteins. Moreover, we verified the 
effectiveness of CCA-SE on the biological network under different parameter settings. At 
the same time, the selected target proteins were imported into the DAVID v6.7 database 
(https://​david.​ncifc​rf.​gov/). We conducted GO function enrichment analysis and KEGG 
signal pathway enrichment analysis. The analysis explained the correlation between the 
predicted results obtained by the CCA-SE and the life process of virus infection and 
replication and proved the accuracy from the biological perspective. The experimental 
results showed that CCA-SE can effectively recognize human proteins targeted by the 
2019-nCov and play a fundamental role in detecting virus drug targets.

Fig. 5  Enrichment function analysis of KEGG signaling pathway

https://david.ncifcrf.gov/
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