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Abstract: Contemporary biomaterials are expected to provide tailored mechanical, biological and
structural cues to encapsulated or invading cells in regenerative applications. In addition, the
degradative properties of the material also have to be adjustable to the desired application. Oligo- or
polymeric building blocks that can be further cross-linked into hydrogel networks, here addressed as
macromers, appear as the prime option to assemble gels with the necessary degrees of freedom in the
adjustment of the mentioned key parameters. Recent developments in the design of multi-functional
macromers with two or more chemically different types of functionalities are summarized and
discussed in this review illustrating recent trends in the development of advanced hydrogel building
blocks for regenerative applications.

Keywords: functional groups; chemical cross-linking; physical gelation; macromer;
macromonomer; smart hydrogel; N-isopropylacrylamide; copolymer; click chemistry

1. Introduction

Hydrogels have become essential tools in biomedical engineering and regenerative
medicine [1–3]. Properties such as high water content as well as structural and mechanical
similarity to natural extracellular matrix (ECM) have motivated the use of such systems for drug
and gene delivery, cellular and tissue engineering as well as cell encapsulation and cell-based
regenerative therapies [4–6]. A recent trend in biomaterial research is to impart specific properties,
physico-chemical or biological in nature, to the material in order to maximize or tailor the
regenerative potential of the biomaterial to a specific application [7]. Ideally, a smart or biomimetic
material supports cultivation with cells that are relevant for the regeneration process and trigger cell
differentiation towards a desired phenotype as warranted for concepts such as in situ/in vivo tissue
engineering [8]. In order to mediate these specific properties, defined molecular functionalities or
domains have to be incorporated in the hydrogel-forming polymers. With the objective to keep the
hydrogel design flexible, to allow for an efficient degradability and to keep the fabrication/swelling
process convenient, the use of low molecular weight polymeric building blocks is preferred over
conventionally used high molecular weight, sometimes even branched polymers. Such building
blocks also enable the fabrication of cell laden hydrogels by additive manufacturing technologies [9].
Established natural or synthetic hydrogel forming materials are often refined by the introduction
of additional functional groups, for example to render the building blocks smart in the sense
that the materials respond to precisely defined stimuli in a defined manner [7]. The type of
stimuli that hydrogels have been made sensitive for, have become more diverse during the last
decade. Progression from established concepts of temperature- and pH-sensitive materials has led
to materials with stimuli-dependent shape memory effect [10], light dependent degradation [11] or

Int. J. Mol. Sci. 2015, 16, 27677–27706; doi:10.3390/ijms161126056 www.mdpi.com/journal/ijms



Int. J. Mol. Sci. 2015, 16, 27677–27706

other specific degradation behavior [4]. Such functionally refined materials hold promise for different
industrial and biomedical applications [12], especially in controlled drug or gene delivery and for
regenerative therapies.

This review focuses on current trends in the development of such oligomeric or polymeric
building blocks for the design of cytocompatible hydrogels for regenerative applications. More
precisely, we specifically focus on materials that contain at least two chemically different types of
functional groups or properties, while at least one of these functionalities supports polymer network
formation from these building blocks via physical or chemical cross-linking. The oligo- or polymeric
building blocks considered here are addressed as macromers—a term, which is not clearly defined.
The IUPAC Compendium of Chemical Terminology (IUPAC Gold Book) lists macromer as a possible
short form of macromonomer, but at the same time strongly discourages this synonymous use of
the terms. Macromonomers, on one hand, are defined as oligo- or polymeric molecules which each
have one end-group that acts as a monomer molecule [13]. Consequently, each macromonomer
contributes only a single monomer unit to a chain of the product graft polymer upon polymerization.
The term macromer, on the other hand, is often used to describe oligo- or polymeric molecules that
contain one or more reactive functional groups that act as a monomer molecule or that can form
a chemical bond with a complementary chemical group, e.g., from another building block, under
the formation of cross-linked networks. Here, we like to use the term macromer in this broader
sense and provide a structured overview on such materials with oligofunctionality, which means
that the macromer provides at least two different types of functional groups or domains. These
functionalities include physically and chemically cross-linkable structures, functional groups for
other conjugation chemistries as well as molecular structures that render a specific degradability to
the macromer, mediate a specific biological property, such as integrin binding affinity that would
promote cell adhesion, or impart shape memory properties. Analytical labels are not considered as
specific functionalities in the context of this review.

2. Macromers with at Least Two Types of Functional Groups for Cross-Linking

Hydrogel mechanics is a key parameter with respect to regenerative applications as it affects the
adherence of cells to the hydrogel, the migration of cells into the material and the differentiation
pathway that a precursor cell will predominantly follow [14]. In the context of in situ tissue
engineering, hydrogel mechanics is a critical material characteristic that can be used to instruct
invading stem cells and has to be carefully adjusted to the specific application. Hydrogels are formed
from hydrophilic macromolecules, which typically do not form mechanically strong intermolecular
bonds due to a lack of strong disperse interactions. Cross-linking of macro(mono)mers, that can
be formulated as solutions that are easy to process due to low viscosity, is a common strategy to
obtain hydrogel materials with adjustable mechanical stability. One distinguishes between physical
and chemical cross-linking reactions depending on the involved chemical functionalities [15–18].
Upon chemical cross-linking, covalent bonds are formed between at least one type of the hydrogel
forming macromolecules. During physical cross-linking, strong, non-covalent interactions are formed
between the constituent macromolecules. As physical cross-linking does not involve reactive moieties
or chemical conversion of the involved molecules, such reactions have an inherent compatibility
with live cells or sensitive proteins. In chemical cross-linking strategies, macromer reactivity and
associated cytotoxicity have to be carefully balanced.

Physical gelation mechanisms are manifold. Typically, the gelation mechanism involves a
thermodynamic alteration of the polymer solution that leads to an increase in polymer-polymer
interactions at the expense of polymer-solvent (water) interactions. Such a gel formation
can be triggered by even slight environmental changes and/or external stimuli, including
light irradiation or a distinct change in solution pH, salt concentration and most prominently
temperature [19,20]. Polymeric materials with these properties are generally addressed as
stimuli-responsive macromolecules. Thermo-responsive materials are of particular interest when the
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transition temperature of the formulation can be adjusted to just below body temperature, which
would make the formulation injectable in the sense that the formulation represents a viscous sol
at room temperature and turns into an elastic gel when heated to 37 ˝C. Typically, this phase
transition is caused by a coil-globe transition of the thermo-responsive macromolecule and occurs at a
characteristic temperature, the critical solution temperature. Polymers that exhibit a phase separation
on heating possess a lower critical solution temperature (LCST) while gelation upon cooling would
be characterized by an upper critical solution temperature (UCST) [21]. Thermally induced phase
transition occurs in solutions of macromolecules that have a balanced distribution of hydrophilic and
hydrophobic structures in the molecule [22]. In aqueous solution, the molecules interact with water
via their hydrophilic structures, which generates a certain order in the solution due to repulsion
between solvent molecules and hydrophobic domains of the molecules. This entropic component
becomes increasingly critical with increasing temperature until, above a critical solution temperature,
partial desolvation of the macromers leads to gel formation [23].

Other physical cross-linking strategies involve hydrophobic interactions, hydrogen bonding,
ionic interactions and fairly special mechanisms such as guest-host inclusion complexation and
stereo-complexation [24,25].

Chemical gelation occurs when reactive moieties in macromers form covalent bonds in a
chemical reaction between neighboring macromer molecules. Such chemical cross-links affect the
swelling degree of the molecules and result in confined swelling ratios [26]. Although chemical
gelation leads to networks with high mechanical stability and durability, such formulations might
be associated with toxic effects of initiator, cross-linker or unwanted by-products [27]. There are
two general classes of reactive moieties that can be used for chemical cross-linking of macromers:
(1) functional groups that act as monomers in a polymerization reaction or (2) chemical moieties that
take part in a conjugation reaction with a distinct complementary functional group. Examples of
functional groups that are polymerized upon macromer cross-linking or cross-polymerization, to be
more precise, include pendant acrylate, methacrylate, cinnamate, maleate or fumarate groups [28]
(Figure 1). With regard to functional group toxicity and biocompatibility of degradation products,
vinyl ester, vinyl carbonate and vinyl carbamate moieties have recently been established as potential
alternatives [29]. Cross-polymerization of functional groups of class (1) is typically initiated in
a radical mechanism either by UV light irradiation in the presence of a photoinitiator or by a
temperature increase in combination with a thermoinitiator. The same radical cross-polymerization
mechanism is applied when fumarate or maleate groups are incorporated in the repeating units of
macromer chains [30–32]. Examples of pendant functionalities that can take part in conjugation
reactions for chemical macromer cross-linking are summarized in Figure 2. Such conjugation
reactions include azide-alkyne Huisgen cycloadditions, Diels-Alder cycloaddition, Thiol-ene and
Michael addition chemistries [33], and amide formation [24,34] (Figure 2).
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2.1. Macromers with Dual (Physical and Chemical) Gelation Properties

This review focuses on hydrogel-forming macromers with more than one type of chemical
functionality per molecule. The most common combination that has been established thus far is the
combination of functional groups for chemical and physical gelation within a macromer molecule.
Formulations of such macromers undergo a so called tandem or dual gelation upon hydrogel
formation during which covalent and non-covalent associations are established [35]. Hydrogels
showing only physical or chemical cross-links are considered less advantageous [36]. Physically
gelled hydrogels express gentle flow under minor stress while chemically gelled macromers result
in higher degrees of swelling, which is considered disadvantageous for applications in confined
volumes [36]. Tandem gelation mechanisms allow for better control and adjustment of key
characteristics such as mechanical strength, swelling and flow properties.

In the design of chemically and physically gellable macromers one can consider different
combinations of the above-described variants of both gelation mechanisms. Thermally induced
gel formation of thermo-responsive macromers is the most commonly followed physical gelation
strategy to date. Chemical structures that show thermo-responsive behavior include (1) homo- and
copolymers of N-isopropyl acrylamide (NiPAAm); (2) block copolymers which contain hydrophilic
poly(ethylene glycol) (PEG) blocks in combination with hydrophobic blocks of poly(propylene
glycol) (PPG), biodegradable polylactide (PLA) or poly(propylene fumarate) (PPF), for example;
and (3) poly(organo phosphazenes) (POP) [37–40].
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2.1.1. NiPAAm-Based Dual-Gelling Macromers

A variety of NiPAAm-based macromers has been described. Dual gelation strategies
have been realized through the integration of different chemically cross-linkable moieties.
NiPAAm-containing macromers are synthesized by polymerization of the acrylamide monomer
NiPAAm. The underlying polymerization mechanism, living or free radical, allows for a fairly
straight-forward integration of other (meth)acrylate, (meth)acrylamide or even vinyl comonomers
with additional functional groups [41]. The Vernon group has synthesized NiPAAm-based
macromers with N-acryloxysuccinimide as comonomer, which introduced reactive esters to the
macromer, that could be further modified with cysteamine to obtain a thiol-group containing
poly(NiPAAm-co-cysteamine)-based macromer [42]. Such pendant thiol groups can be utilized for
bioconjugation reactions or chemical cross-linking reactions, e.g., in a Michael addition-type reaction
with acrylate [36], acrylamide [43] or vinyl sulfone groups [44], or in a photo-initiated thiol-ene
“click” reaction [18,45] (Figure 2). Accordingly, NiPAAm-based copolymers with pendant acrylate
and vinylsulfone groups were synthesized as reaction partners for the formulation of dual gelling
hydrogels [36]. Michael addition reactions generally occur between nucleophiles (amines, thiols) and
olefinic double bonds at a fast reaction rate with high efficiency at physiological pH and temperature,
which is of great interest for injectable formulations and direct cell encapsulation [46]. Macromers
with vinyl groups, as compared to more polar acrylate groups, have shown a faster reaction with
thiol groups [36,42]. The term thiol-ene reaction summarizes a wider array of reactions between a
thiol and an unsaturated carbon-carbon bond [47,48]. A Michael addition reaction that involves thiol
groups is considered a specific sub-type of a thiol-ene reaction [49]. While the Michael addition of
a thiol to a polarized C=C double bond is a base/nucleophile-initiated thiol-ene reaction, there are
also radical-mediated hydrothiolation reaction of a C=C bond that can be performed on less reactive
double bonds. Later in this review, we will present examples of photo-initiated thiol-ene reactions
involving cysteine thiol groups and norbornene-modified macromers [45].

Another example of chemical functionalities that have been introduced into NiPAAm-based
macromers for chemical cross-linking are ketone and aldehyde groups, that might need
to be protected in the corresponding monomers upon macromer chain polymerization [50].
The electrophilic groups were cross-linked with a hydrazide-functionalized NiPAAm-based
macromer [51]. The gelation time, degradation kinetics and hydrogel mechanics could be
independently controlled by tuning the ratio of aldehyde to ketone functional groups as well as the
total number of ketone groups in the electrophilic macromers. The ketone-functionalized macromers
exhibited improved cytocompatibility relative to macromers with pendant aldehyde groups.

Hacker et al. [52] synthesized a series of amphiphilic NiPAAm-based macromers with dual
gelation properties (Figure 3a). The macromers consisted of NiPAAm and a low content of
lipophilic pentaerythritol diacrylate monostearate (PEDAS) for hydrophobic interactions within
macromers and with proteins and cells. The LCST of the macromers was adjusted with hydrophilic
acrylamide and 2-hydroxyethyl acrylate as further comonomers. The latter provided pendant
hydroxyl groups that could be modified by (meth)acrylation, which yields chemically cross-linkable,
thermogelling, and potentially biodegradable macromers. Cytotoxicity investigations revealed that
hydrogel formation and cross-linking within a time frame of up to 6 h would allow for viable cell
encapsulation [53]. Mesenchymal stem cells were encapsulated in the hydrogels and remained viable
over a period of three weeks in vitro [54]. Osteogenic differentiation markers were detected when the
cells were cultured with osteogenic supplements and plain gels mineralized under these conditions.
Calcium-ion sensitive macromers were developed utilizing the same general amphiphilic design
through the incorporation of vinylphosphonic acid as comonomer [55] (Figure 3b). Recently, we
further extended this macromer platform by the incorporation of maleic anhydride as comonomer,
which yielded thermo-sensitive macromers with reactive anhydride groups along the oligomer
chain [56] (Figure 3c). The anhydride groups showed high reactivity against amines as illustrated
in cross-linking reactions with polymeric di- and trivalent amines. Upon chemical cross-linking, an
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amide bond is formed between the anhydride and a primary amine. In addition, a carboxylate group
is generated which increases the hydrophilicity of the macromer. Anhydrides that are not involved
in an amide formation reaction quickly hydrolyze in physiological environments and macromer
reactivity but also potential toxicity of these moieties is lost. Water-soluble macromers showed
thermally induced phase transitions and the transition temperature could be modulated by solution
pH and calcium ion concentration. The maleic anhydride-containing macromers were effective
cross-linkers in the fabrication of gelatin hydrogels and gelatin microparticles [57]. Macromer
composition and concentration as well as gelatin-to-macromer-ratio were identified as parameters for
the adjustment of hydrogel properties. Hydrogels with good cytocompatibility and elastic moduli
between 1 and 10 kPa could be fabricated. With regard to the fabrication of cross-linked gelatin
microparticles, the macromers yielded cross-linking degrees matching those of glutaraldehyde with
less unwanted structural modification and the opportunity for additional chemical modifications.
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Figure 3. Amphiphilic pentaerythritol diacrylate monostearate (PEDAS)- and NiPAAm-based
macromers with a list of key properties imparted by the constituent comonomers abbreviated
by the underlined character in the macromer name. Dotted lines illustrate the polymeric
backbone of the macromer. (a) Thermogelling macromer that was rendered chemically gellable
after methacrylation of H [52]; (b) Calcium-binding macromer with vinylphosphonic acid as
comonomer [55]; (c) Multifunctional maleic anhydride-containing macromer [56].

The Mikos group has also progressed the concept of NiPAAm-based hydrogel forming
macromers with at least two functionalities. First, macromers were synthesized by copolymerization
of NiPAAm with glycidyl methacrylate that showed dual gelation properties in mixtures
with polyamidoamine-based diamines, which served as reaction partners during the chemical
cross-linking reaction of the macromer epoxy groups with amines of the polyamidoamines [58]. Initial
thermogellation occurred within a few seconds and subsequent chemical gelation was completed in
less than 3 h and classified as rapid and facile. The water-soluble and degradable polyamidoamine
diamine components of the hydrogels offer high design flexibility and hydrophilicity, degree of
hydrogel swelling or syneresis, degradation time scale, and degree of cross-linking can be tuned [59].
Upon degradation of this hydrogel formulation, the polymeric NiPAAm containing fragments have
limited solubility in physiological media because the macromer structure has not been significantly
altered and does not interact with water under these conditions—a characteristic that was initially
intended to achieve physical gelation and is responsible for postformation hydrogel syneresis. The
solubility of the degradation products can be effectively increased through the incorporation of
charged groups that form after the gelation process has been completed and the specific phase
transition properties are not required any more. In a further improved hydrogel system, the formation
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of charged hydrophilic moieties was realized by the integration of hydrolyzable lactone rings via
dimethyl-γ-butyrolactone acrylate as comonomer [60] (Figure 4a). In order to adjust the LCST of the
macromers, hydrophilic acrylamide was incorporated as fourth comonomer. The hydrogels allowed
for the encapsulation of viable mesenchymal stem cells (MSCs) and were evaluated for cell delivery
to a cranial defect [61].

Another dual-gelling macromer was synthesized from NiPAAm, acrylamide and
monoacryloxyethyl phosphate [62] (Figure 4b). The macromers were then rendered chemically
gellable by functionalization of pendant phosphate groups with glycidyl methacrylate via degradable
phosphate ester bonds. The macromers could be tuned to undergo phase transition between room
temperature and physiologic temperature. Chemical cross-linking stabilized the gels and mitigated
syneresis at physiological temperature. The resulting gels were shown to degrade into soluble
fragments and exhibited good cytocompatibility. The phosphate ester bonds in the hydrogels were
sensitive to alkaline phosphatase, which provides an on-demand enzymatic degradation mechanism
as this enzyme is secreted in osteogenically differentiating cells. These properties motivated an
application in bone tissue engineering, and MSCs were encapsulated with high viability and
differentiated towards the osteogenic lineage during in vitro cultivation over 28 days [63]. Cell-laden
hydrogels were shown to undergo significant mineralization in vitro and could be placed into cranial
defects in rats, where they underwent significant degradation and improved bone bridging of
the defect.

Several conjugation strategies have been implemented in macromers to achieve effective
chemical cross-linking and common conjugation chemistries have been exemplified above (Figure 2).
Activated esters, especially succinimide esters, are common reactive derivatives of carboxylates
with the ability to form amides with primary amine groups of another molecule under
physiological conditions without further activation. This strategy has been employed to form
cross-linked injectable hydrogels with thermosensitivity composed of type I collagen, which
comprises primary amine groups, and a NiPAAm-containing macromer comprising reactive
succinimide esters: poly(NiPAAm-co-polylactide-hydroxyethyl methacrylate(HEMAPLA)-co-acrylic
acid(AAc)-co-N-acryloxysuccinimide (NAS)) [64]. The comonomer HEMAPLA introduced
biodegradability by increasing backbone solubility upon PLA hydrolysis. AAc served to manipulate
polymer hydrophilicity and NAS provided the activated esters for conjugation of bioactive molecules,
such as type I collagen in this specific case.
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degradable functionalities (D) [60]; (b) Phosphate-containing degradable macromer [62].
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With the rise of effective conjugation reactions, so called “click” reactions, between small
molecules that react in a selective, fast and efficient manner several attempts have been made to
utilize these chemistries for the chemical cross-linking of hydrogel-forming macromers. One example
of these chemistries is the Diels-Alder (DA) cycloaddition reaction between electron-rich dienes and
electron-poor dienophiles (Figure 2). This reaction mechanism is characterized by a high selectivity,
the absence of a catalyst and side products and compatibility with aqueous environments [27].
A typical DA reaction is reversible, for example through the application of heat energy. The
Diels-Alder mechanism with inverse electron demand (IEDDA), in contrast, is an irreversible
cycloaddition between an electron-rich dienophile and an electron-poor diene, e.g., tetrazines, that
was found to be a valuable tool for effective bioorthogonal conjugations [65–67]. Macromers that
combined thermogelling properties and functional groups for cross-linking by a DA mechanism
are poly(N,N-dimethylacrylamide-co-furfuryl methacrylate) and poly(NiPAAm-co-furfuryl
methacrylate) [68,69]. The furfuryl groups act as dienes and react with maleimide groups (dienophile)
of the bifunctional PEG-based cross-linkers N-[4-(formyl polyethylene glycol ester) bismaleimide
or N-maleoyl-l-leucine polyethylene glycol ester bismaleimide. Gelation rate of these formulations
could be tuned and cross-linking was thermally reversible. NiPAAm-containing macromers with
functionalities for azide-alkyne Huisgen cycloaddition reactions have also been described [70].
Both alkyne- and azide-modified macromers have been synthesized by post-polymerization
derivatization of poly(NiPAAm-co-HEMA). Thermoresponsive hydrogels could be cross-linked
from solution of both macromers in the presence of catalytic amounts of Cu(I). Cellulose- and
β-cyclodextrin-containing thermosensitive hydrogels were prepared from either azide-modified
cellulose and alkyne-modified poly(NiPAAm-co-HEMA) [71] or alkyne-modified β-cyclodextrin and
azide-modified poly(NiPAAm-co-HEMA) [72].

Another recently used chemoselective reaction used for the cross-linking of thermoresponsive
macromers is native chemical ligation (NCL) [73,74]. This chemistry involves the reaction between
an N-terminal cysteine moiety and a thioester group through a reversible transthioesterification
and terminates with an irreversible amide formation [75]. The reaction has advantages
as it operates without catalyst at mild conditions and yields hydrogel that can be further
functionalized [76]. However, it releases ethyl thioglycolate, a thiol byproduct, which has
recently been shown to be cytotoxic. As an alternative, oxo-ester mediated native chemical
ligation (OMNCL) has been presented that avoids toxic byproduct production and showed
high chemoselectivity and cytocompatibility [77]. Recently, Boere et al. [74] reported on the
synthesis of multifunctional macromer and hydrogel utilizing the OMNCL technique. An ABA
macromer was synthesized in which the A block was synthesized by free radical polymerization
and comprised of NiPAAm (to provide thermosensitivity), dimethyl-γ-butyrolactone acrylate
(DBA, to provide controllable degradation) and N-(2-hydroxypropyl)-methacrylamide-cysteine
(HPMA-Cys, to provide thiol groups for chemoselective ligation) and the B block was a hydrophilic
PEG-di-4,41-azobis(4-cyanopentanoic acid) ester macroinitiator (Figure 5a). The hydrogel was
formed upon cross-linking the macromer with functionalized PEG molecule, e.g., 8-arm PEG-NHS
ester (Figure 5b).
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(b) Mechanism of oxo-ester mediated native chemical ligation between thiol group (orange) of the
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transition of the thermo-responsive macromolecule and occurs at a characteristic temperature, the 
critical solution temperature. Polymers that exhibit a phase separation on heating possess a lower 
critical solution temperature (LCST) while gelation upon cooling would be characterized by an upper 
critical solution temperature (UCST) [21]. Thermally induced phase transition occurs in solutions of 
macromolecules that have a balanced distribution of hydrophilic and hydrophobic structures in the 
molecule [22]. In aqueous solution, the molecules interact with water via their hydrophilic structures, 
which generates a certain order in the solution due to repulsion between solvent molecules and 
hydrophobic domains of the molecules. This entropic component becomes increasingly critical with 
increasing temperature until, above a critical solution temperature, partial desolvation of the 
macromers leads to gel formation [23]. 

Other physical cross-linking strategies involve hydrophobic interactions, hydrogen bonding, 
ionic interactions and fairly special mechanisms such as guest-host inclusion complexation and 
stereo-complexation [24,25]. 

Chemical gelation occurs when reactive moieties in macromers form covalent bonds in a 
chemical reaction between neighboring macromer molecules. Such chemical cross-links affect the 
swelling degree of the molecules and result in confined swelling ratios [26]. Although chemical 
gelation leads to networks with high mechanical stability and durability, such formulations might  
be associated with toxic effects of initiator, cross-linker or unwanted by-products [27]. There are  
two general classes of reactive moieties that can be used for chemical cross-linking of macromers:  
(1) functional groups that act as monomers in a polymerization reaction or (2) chemical moieties that 
take part in a conjugation reaction with a distinct complementary functional group. Examples of 
functional groups that are polymerized upon macromer cross-linking or cross-polymerization, to be 
more precise, include pendant acrylate, methacrylate, cinnamate, maleate or fumarate groups [28] 
(Figure 1). With regard to functional group toxicity and biocompatibility of degradation products, 
vinyl ester, vinyl carbonate and vinyl carbamate moieties have recently been established as potential 
alternatives [29]. Cross-polymerization of functional groups of class (1) is typically initiated in a 
radical mechanism either by UV light irradiation in the presence of a photoinitiator or by a 
temperature increase in combination with a thermoinitiator. The same radical cross-polymerization 
mechanism is applied when fumarate or maleate groups are incorporated in the repeating units of 
macromer chains [30–32]. Examples of pendant functionalities that can take part in conjugation 
reactions for chemical macromer cross-linking are summarized in Figure 2. Such conjugation 
reactions include azide-alkyne Huisgen cycloadditions, Diels-Alder cycloaddition, Thiol-ene and 
Michael addition chemistries [33], and amide formation [24,34] (Figure 2). 

 
Figure 1. Selected functional groups used for chemical cross-linking of macromers by cross-
polymerization. The symbol  represents an oligomer segment that contains a functional group. 

2.1. Macromers with Dual (Physical and Chemical) Gelation Properties 

This review focuses on hydrogel-forming macromers with more than one type of chemical 
functionality per molecule. The most common combination that has been established thus far is the 
combination of functional groups for chemical and physical gelation within a macromer molecule. 
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2.1.2. Copolymer-Based Dual-Gelling Macromers

Amphiphilic block copolymers can be designed to form aqueous solutions that show
lower critical phase separation below body temperature and can thus be used as injectable
hydrogel formulations. Poloxamers, a group of non-degradable triblock copolymers of PEG and
poly(propylene glycol) (PPG), are common pharmaceutical excipients and an example of such
materials. Dual-gelling poloxamer-based macromers, which yield hydrogels with improved stability
and residence time for drug delivery and tissue engineering applications, have been synthesized
by end functionalization of the block copolymer with cross-polymerizable acrylate or methacrylate
moieties [78,79]. Conversion of the hydroxyl endgroups to methacryloyl-depsipeptides resulted in
materials with a controllable degradation rate dependent on the building blocks of the depsipeptide
units [80]. Similar macromers have been used for tissue printing applications, and MSCs showed
improved viability and osteogenic differentiation as compared to unphotopolymerized control
hydrogels [81].

Another chemical cross-linking chemistry was used in a silane end-capped poloxamer
macromer [82]. The macromer retained the thermo-gelling characteristics of the original poloxamer.
Over time, the ethoxysilane groups hydrolyzed and the resulting silanol moieties chemically
cross-linked in a condensation reaction. The hydrogels exhibited gradually increasing mechanical
stability and compressive moduli.

An early example of dual-gelling macromers employed poloxamer-type macromers and Michael
addition conjugation chemistry [83,84]. Specifically, the terminal hydroxyl groups of four-armed
poloxamer-type block polyethers (Tetronic, BASF Corporation, Florham Park, NJ, USA) were
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converted to thioacetic esters via a vinyl ether intermediate. The pendent thioacetic ester groups
produced thiols after basic treatment and served as donor in the conjugation reaction. An
acrylate-bearing Tetronic was synthesized as acceptor for the addition. The network properties of
the resulting hydrogels were determined by molecular weight and degree of functionalization of the
Tetronic precursor and were stable for a few weeks. The use of a different Michael acceptor, such as a
Tetronic tetravinyl sulfone, was considered to yield more stable hydrogels.

As poloxamer-type polyether molecules are not degradable, several degradable analogs have
been synthesized by exchange of the PPG block(s) with degradable hydrophobic polyester blocks,
such as polylactide or poly(propylene fumarate) (PPF). The latter contains reactive double bonds
along its backbone, which can be consumed in a cross-polymerization reaction [30]. Consequently,
copolymers of PPF and PEG blocks, especially in the PEG-PPF-PEG composition, exhibit dual
gelation properties [85–87]. A method for the fabrication of macroporous hydrogels has been
described that made use of the excipients necessary to induce thermal cross-polymerization of
the macromers. Cross-polymerization was initiated by a pair of redox initiators, ammonium
persulfate and L-ascorbic acid. Through the addition of sodium bicarbonate, which reacted with
the acidic component L-ascorbic acid under the formation of carbon dioxide, pores were formed
and locked in the chemically cross-linked hydrogel matrix. When the copolymeric macromer were
cross-co-polymerized with acryloyl-PEG-RGD, which contained the cell adhesive RGD amino acid
sequence, a biomimetic hydrogel material was formed [88]. MSCs cultured on these materials were
attracted to the internal pore surfaces and differentiated phenotypically to osteoblastic cells when
cultured in osteogenic media.

Poloxamine-based materials are slightly different in chemistry but similar concepts have
been realized to yield dual gelling macromers. Poloxamines are a family of 4-arm PPG-PEG
block copolymers with an ethylene diamine core with thermo-responsive gelation properties.
Following end group acrylation, the macromers can technically be cross-polymerized or cross-linked
with oligovalent thiols, such as dithiothreitol, following a Michael addition mechanism [35].
Poloxamine-based hydrogels showed significantly reduced swelling and increased tensile and tissue
bonding properties as compared to a PEG-based control hydrogel. This ability to maintain stable
volume during equilibration may reduce the risk of compression of surrounding tissue when used as
a tissue sealant.

2.1.3. Poly(organophosphazene) (POP)-Based Dual-Gelling Macromers

Poly(organophosphazenes) (POP) are the third group of thermo-responsive materials that can be
adjusted to form physical hydrogels at physiological temperature that is discussed here. Functional
groups that have been incorporated in POP-based macromers, which are generally biodegradable,
include thiol groups for cross-linking with divinyl components under physiological conditions [89].
The system was developed further towards a self-cross-linkable formulation, which consisted of
a blend of thiolated and acrylated POP-based macromers. The polymer blend was soluble in
physiological media at low temperature and transformed into a hydrogel with adjustable mechanical
properties at body temperature without the use of monomeric cross-linkers, catalysts, oxidants, pH
adjustment, initiators, UV light, heat production, or organic solvent [90].

The chemical integration of citronellol esterified amino acid units to a POP macromer introduced
two additional functionalities [91]. First, the bioerosion rates could be controlled by the steric
hindrance of the amino acid side chain. Second, the double bond in the citronellol structure also
allowed for macromer polymer cross-linking by UV radiation (Figure 1), which aids in adjusting the
mechanical properties. In addition, citronellol is an anti-inflammatory molecule. It remains to be
elucidated if this property has a biological effect when the molecule is attached to the macromer or
released after degradation.
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3. Oligo-Functional Macromers with at Least One Type of Functionality not Involved
in Cross-Linking

3.1. Thermogelling Macromers with at Least One Type of Functionality not Involved in Cross-Linking

NiPAAm-based macromers comprising other than chemically cross-linkable moieties have also
been developed. Examples include thermo-responsive polyNiPAAm-block-poly(acrylic acid) grafted
with O-phosphoryl ethanolamine-block-polyNiPAAm triblock copolymers that were synthesized by
atom-transfer radical polymerization and subsequent modification [92]. Free standing hydrogels
were formed from these macromers at 37 ˝C even at a concentration as low as 2% in PBS. Due to the
pendant phosphate groups the gels induced in situ mineralization and hydroxyapatite formation in
simulated body fluid. The material also exhibited low cytotoxicity. Materials with pendant phosphate
groups have been discussed to aid in the formation of native tissue by mimicking the native role of
phosphate groups in the body and by attachment of other bioactive molecules [93].

With the objective to develop a NiPAAm-based injectable hydrogel with tunable gelation,
mechanical and biodegradation properties, poly(NiPAAm-co-(HEMAPLA)-co-oligo(ethylene glycol)
monomethyl ether methacrylate-co-NAS) macromers were synthesized and conjugated with elastin
via the reactive succinimide esters [94]. Adjustment of the composition of the macromer controlled
degradation rate, hydrogel mechanics and gelation properties of the injectable formulations. The
materials were cytocompatible and supported the growth of encapsulated dermal fibroblasts.

Injectable, thermoresponsive hydrogels composed of macromers containing NiPPAm, AAc
and HEMA-oligomer (with biodegradable oligolactide, oligohydroxybutyrate, or oligo(trimethylene
carbonate)) have been used to deliver stem cells into ischemic limb for enhanced myogenic
differentiation and muscle regeneration [95]. As an interesting feature of the macromer, the
initial hydrogel modulus could be independently varied by adjusting the molecular weight of the
biodegradable oligomeric segments. MSCs were encapsulated in gels with elastic expansion moduli
of 11, 20, and 40 kPa. On gels with a modulus of 20 kPa, significant myogenic differentiation was
achieved after 2 weeks.

The Ameer group developed poly(NiPAAm-co-PEG citrate) macromers that formed thermogels
with intrinsic antioxidant properties [96]. Due to the citrate groups, the hydrogels can scavenge free
radicals, chelate metal ions, and inhibit lipid peroxidation. The gels have also been shown to slowly
release the chemokine SDF-1α and supported the viability and proliferation of vascular cells.

NiPAAm-based macromers containing pendant RGD motifs have been developed for cell
encapsulation [97,98]. Poly(NiPAAm-co-PEG) was synthesized from NIPAAm and succinyl PEG
acrylate by free radical polymerization in benzene. The product was isolated and purified by
dialysis against distilled water. The RGD grafting was performed from poly(NiPAAm-co-PEG)
after activation with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimid (EDC), dialysis and addition
of GRGDS. Poly(NiPAAm-co-PEG-graft-GRGDS) was isolated after another dialysis step and
subsequent lyophilization.

A dual physically gelling macromer was developed based on polyNiPAAm [99]. PolyNiPAAm
end-functionalized with azobenzene groups (functionalities: thermo-responsive and ligand for
intrusion complexes with cyclodextrin) was cross-linked with disulfide-connected cyclodextrin
dimers to yield triple stimulus-responsive hydrogels. The sol-gel phase transition of the obtained
gels was responsive to temperature, light, and reductive media.

3.2. Chemically Cross-Linkable Macromers with at Least One Type of Functionality not Involved
in Cross-Linking

Most of the macromers discussed in this section are based on poly(ethylene glycol) (PEG).
PEG-based hydrogels have progressed research on fully synthetic artificial extracellular matrices and
biomimetic material design and therefore are highly popular in biomedical engineering [100,101].
In many popular approaches the macromers used to build up the hydrogels are oligovalent but each
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macromer typically contains only one type of chemical functionality, such as in 4- or 6-armed PEG
macromers terminated with either maleimide, vinylsulfone or acrylate groups, all building blocks
that can be cross-linked by Michael addition reactions [2,102]. Other effective click conjugation
reactions, such as Diels-Alder or azide-alkyne cycloaddition reactions have also been established
for cross-linking of PEG-based hydrogels [45,103–105]. According to the scope of this review, such
macromers will not be discussed here because they do not contain at least two chemically different
functional groups per molecule. However, some examples can be found in which researchers build
up multi-functional PEG-based macromers for the design of PEG-based hydrogels. In addition, these
hydrogels often comprise peptide-components in order to mediate enzymatic degradability and/or
specific interactions with cells. These peptides often contain additional chemical functionalities,
which qualifies them as multifunctional macromers in the sense of this review (cp. Section 4).
Thus, these two types of macromers are discussed here in representation of the large variety of
multi-functional PEG-based hydrogel materials developed thus far.

3.2.1. Chemically Cross-Linkable Macromers with More Than One Functionality for Cross-Linking
and/or Bioconjugation

Microribbons of PEG-based hydrogels have recently been introduced as interesting building
blocks for the construction of 3-dimensional cell niches with independently tunable biochemical,
mechanical, and topographical properties [102]. These PEG-based materials were build up
from 8-armed PEG macromers and two different macromers were presented that contained
different combinations of two types of chemically different functional groups in a macromer,
namely PEG-(N-hydroxysuccinimide(NHS))4-(methacrylate(MA))4 and PEG-(NHS)4-(maleimide)4.
While the latter was introduced to immobilize biochemical cues, such as RGD-peptides, via a
thiol-maleimide addition reaction, PEG-(NHS)4-(MA)4 was used to adjust the stiffness of the
microribbons. These macromers were synthesized from commercially available tripentaerythritol
functionalized by eight poly(ethylene glycol) succinimidyl succinamide groups (PEG-(NHS)8).

The Elisseeff group is known for their work with PEG-based hydrogels in the context of stem
cell-based regenerative applications [106]. They have presented a set of PEG-based macromers
that can be derivatized and equipped with additional functional moieties via α-cyclodextrin (α-CD)
nanobeads that have been threaded onto linear acrylate end-functionalized PEG molecule [107]. The
cross-linking density of PEG predominantly controlled the stiffness of photo-cross-linked α-CD-PEG
hydrogels independent of α-CD. Alpha-CD could be substituted with cell adhesion peptides before
threading and hydrogel formation. The concentration of cell integrin-binding peptide conjugated to
α-CD could be varied independent of the cross-linking density. Other chemical modification of α-CD
were also described (i.e., hydrophobic, hydrophilic or charged groups) for the engineering of specific
microenvironments. The spatially dynamic presentation of biochemical cues with this system is a
unique feature.

3.2.2. Chemically Cross-Linkable Macromers with Cell Adhesive Motifs

Third-generation biomaterials are materials that are biocompatible, resorbable and
bioactive [108,109]. Target values of these parameters for the design of such materials greatly
depend on the biological system, tissue or type of cells the materials should interact with in the
desired application. Especially the property “bioactivity” is defined by many physico-chemical
parameters of the material; these include bulk mechanical properties, the extent of protein absorption
to the material, and the ability of the material to directly interact with adhesion-mediating proteins
on the surface of cells. This motivated research towards the development of injectable hydrogels that
readily integrate with specific tissues or specifically interact with invading or encapsulated cells. Cell
adhesion promoting peptide sequences, especially those containing the tripeptide sequence RGD,
play a crucial role in such strategies [110,111]. In early strategies, material surfaces have been coated
with cell adhesive proteins from ECM such as collagen, fibronectin or laminin. Such protein coatings
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were associated with many disadvantages mainly host infection risk, immunological reactions, little
specificity, and inadequate stability owing to higher proteolytic degradation. Many of these problems
can be resolved by substituting the protein molecules for short immobilized motifs. Such motifs have
shown many advantages over large protein molecules including stability to sterilization conditions,
dense packing on surfaces because of their small size, high specificity, less enzymatic degradation
and good stability. The RGD motif is present on many ECM proteins, e.g., fibronectin, collagen
and laminin, bone sialoprotein, plasma membrane, and in many bacterial and viral proteins. RGD
peptides facilitate all overlapping phases of cell adhesion i.e., attachment, spreading, association of
actin cytoskeleton, and focal adhesion formation [112].

Strong cell adhesion requires a firm attachment of RGD to a substrate. Therefore, motifs
should be covalently bound to polymers through functional groups like amino-, hydroxyl or
carboxylic groups [110]. A common strategy to introduce RGD-type peptides in synthetic
hydrogels, is the use of heterobifunctional linkers, such as acryloyl-PEG-RGD, during a chemical
cross-copolymerization reaction with other hydrogel-building macromers. Such heterobifunctional
molecules technically meet the criteria for macromers that are discussed in this review. However,
due to the high number of similar structures available in the literature and the commercial
availability of some of these linkers, we will discuss only a few selected examples. One example
as already given above, where biomimetic PEG-PPF triblock copolymer-based networks were
described [88]. Another study cross-copolymerized acryloyl-PEG-RGDS and photo-cross-linkable
azidobenzoic acid-modified chitosan. C2C12 myoblasts were mixed with aqueous solutions of
both macromers and the dispersion was cross-polymerized by UV irradiation (4 mW/cm2) [113].
The hydrogel was discussed for the delivery of cells and growth factors to injured myocardium.
When a hetero-bifunctional PEG-based macromer contains photodegradable ortho-nitrobenzyl
(cp. Section 3.3.2), the RGD peptide can be released on demand, which can be beneficial for the
generation of gradients [114].

Chemically cross-linkable RGD-functionalized PEG macromers were synthesized from 4-arm
PEG macromers (PEG-tetra acrylate, PEG-tetra maleimide, PEG-tetra vinylsulfone) that were
reacted with a thiol-containing adhesive peptide GRGDSPC in PBS at pH 7.4 under stoichiometric
control [115]. The mono RGD-functionalized PEG macromers were subsequently cross-linked into a
hydrogel by the addition of a protease-cleavable peptide cross-linker GCRDVPMSÓMRGGDRCG that
contains thiol groups in cysteine (C) side chains [116]. The degradable PEG-protein pentamer-based
hydrogel described earlier [117] contains RGD motifs within one of the genetically engineered protein
pentamers in order to mediate specific interactions with cells.

Further examples for RGD-peptide-containing hydrogels are illustrated in Section 4. In all
examples discussed there a peptide-based macromer is the key building that has at least dual
functionality in the sense of this review.

3.2.3. Chemically Cross-Linkable Macromers with Other Additional Properties

Motivated by the natural association of bone apatite crystals with citrate-rich molecules, a
citrate-based injectable composite material for orthopedic applications was developed [32]. A
PEGMAC macromer was synthesized by a simple and controlled polycondensation reaction of PEG,
maleic anhydride (MA) and citric acid (C). PEGMAC can be cross-copolymerized, as done with
PEG-diacrylate in this study, via the double bond of maleic anhydride and strongly interact with
hydroxyapatite (HA) via citrate molecule. Cross-linked PEGMAC/HA composite is considered a
promising injectable cell carrier for orthopedic regeneration.

3.3. Macromers with Advanced Degradative Properties

Hydrogels are favorable matrices for drug and cell delivery due to their high water content and
mechanical properties similar to natural tissues [118]. The applicability of a hydrogel material for
such applications, however, is critically dependent on the degradative properties of the material.
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Bioerosion, i.e., loss of hydrogel mass over time in contact with a biological system, of hydrogel
materials, either of natural or synthetic origin, can be the consequence of unspecific aqueous
hydrolysis or enzymatic degradation of chemical bonds in the material and the formation of soluble
fragments at physiological conditions. Different degradation mechanisms are known depending on
the chemical nature of material and cross-links [119,120]. In physically assembled hydrogels, slow
dissolution of the constituent amphiphilic molecules is often the primary degradation mechanism,
even when slowly degradable amphiphilic polyesters were used [121]. In order to increase the
solubility of degradation fragments or complete macromer building blocks, hydrolytic reactions can
be used to increase the hydrophilicity of pendant groups. This strategy can be particularly helpful,
to increase the solubility of thermally gelled macromers at physiological temperature [60]. The third,
generally different, mechanism involves the chemical degradation of bonds along the backbone of
the constituent macromers and/or cross-linkers within the cross-linked material [4]. This mechanism
can include: (1) the unspecific hydrolysis of carboxylic acid ester, carbonate esters, carbamate ester,
or anhydride bonds, among others; (2) the reductive, intracellular degradation of disulfide bonds;
(3) the enzymatic degradation of specific peptide motifs; (4) other stimulus-induced degradation
of specific chemical bonds, such as photodegradation and reversible click reactions. Examples of
dual-functional macromers that contain hydrolytically labile ester groups along the backbone have
already been presented in this review [87,122] and will not further be detailed.

3.3.1. Oligofunctional Macromers Sensitive to Reductive or Enzymatic Degradation

PEG-based macromers have been made biodegradable through the integration of phosphate
ester groups [123]. PEG-di-[ethylphosphatidyl(ethylene glycol) methacrylate] has been synthesized
from anhydrous PEG, ethyl dichlorophosphate and HEMA. The water-soluble macromer was suitable
for in situ injection and cell-encapsulation by light-induced gelation. Human MSCs (hMSCs) were
encapsulated and remained viable. Another phosphate-containing, biodegradable macromer is
poly(6-aminohexyl propylene phosphate) that was photo-cross-linked into elastic hydrogels [124].
Goat MSCs were encapsulated and could be differentiated to deposit mineralized extracellular matrix.

Thermogelling poloxamer-disulfide macromers are an example for dual-functional, reductively
degradable macromers [125]. Hydrogels from disulfide cross-linked poloxamer remained stable in
buffer, while uncross-linked gels disintegrated within several hours. The cross-linked gels eroded
and released an encapsulated model drug in a glutathione concentration-sensitive manner.

Examples for oligo-functional peptides are discussed in Section 4. An enzymatically degradable
PEG-based, chemically cross-linkable macromer has been described by Miller and coworkers [126].
Macromers with the general structure acrylate–PEG–(peptide–PEG)m–acrylate were obtained by
step growth polymerization of PEG-diacrylate and bis-cysteine peptide sequences. Three different
sequences were utilized with different susceptibility to degradation by matrix metalloproteinases
(MMPs). In a similar approach, degradable protein pentamers were incorporated in PEG-based
macromers by Michael addition chemistry [117]. Two artificial pentamers were prepared by
recombinant DNA technology using human gene codes. One pentamer contained functional
RGD and plasmin degradable sites, while the other comprised non-functional RGD and plasmin
non-degradable site with almost 10 point mutations. The pentamers were modified with acrylated
PEG molecules that were conjugated with thiol groups of the pentamers. The macromers contained
an access of acrylate groups that enabled hydrogel formation by photopolymerization. The resulting
gels were cell adhesive, degradable by tissue enzymes, had suitable mechanical strength and showed
cellular movement for almost 9 days.

3.3.2. Photodegradable Oligofunctional Macromers

A chemical moiety that imparts photodegradability to a macromer is
4-(4-(1-hydroxyethyl)-2-methoxy-5-nitrophenoxy)butanoic acid (or: ortho-nitrobenzyl (o-NB))
(Figure 5a). The o-NB moiety contains both a carboxylic acid and a benzylic alcohol, allowing
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for separate functionalization of these two moieties. A library of polymerizable PEG-based
o-NB-containing macromers with different functionalities at the benzylic position (alcohol, amine,
BOC-amine, halide, acrylate, carboxylic acid, activated disulfide, N-hydroxysuccinyl ester, biotin)
have been synthesized for hydrogel formation, cell encapsulation and conjugation of therapeutic
agent, such as cell adhesive peptides, cytokines or growth factors [114,127]. The photodegradable
moieties offer precise external temporal and spatial control over network erosion and/or drug
release. A controlled photorelease of growth factors and cytokines can be used to generate gradients
and guide cell homing, growth and migration and ultimately tissue development. As light energy
is a parameter that can be applied externally with precise control, e.g., by two-photon confocal
excitation, such macromers hold promise for use in highly complex tissues engineering.

A hydrogel system based on two types of dual-functional macromers, namely a maleimide
end-functionalized, photodegradable macromer containing an o-NB ether (functionalities: maleimide
and o-NB) and a four-arm PEG end-functionalized with aryl thiols (functionalities: hydrolytically
labile ester and thiol groups), has been described that combined three different cleavage chemistries
in order to engineer multimodal degradable hydrogels for responsive and triggerable modulation
of gel properties and cargo release [128]. The injectable hydrogel formed in situ by a Michael
addition reaction between thiols and photodegradable maleimides. The resulting succinimide
thioether linkages were sensitive to thiols and reducing environments. Consequently, this specific
degradation mechanism (of the succinimide thioether) qualified as cleavage of click linkages under
physiological conditions [129]. The o-NB-containing macromer provided photodegradability and
ester linkages in the macromers were sensitive to hydrolysis. The hydrogels could be degraded in
a precisely controlled manner and degradation mechanism could be switched between surface and
bulk degradation.

Coumarin has recently been introduced as a potential alternative to the previously described
o-NB-based systems [130]. A particular advantage of coumarin as photodegradable group is a
high biocompatibility as the photodegradation products are biologically inert in contrast to the
reactive carbonyls that are released upon o-NB degradation. In addition, coumarin can be degraded
by a broader spectrum of cytocompatible wavelengths of light. An amine-terminated coumarin
azide was synthesized and conjugated to a 4-armed PEG yielding the dual-functional 4-armed PEG
tetra-coumarin-azide. Via an aqueous copper-catalyzed click reaction with 4-armed PEG tetra-alkyne
coumarin-based photodegradable hydrogels were obtained. Degradation experiments revealed that
the degradation kinetics at 405 nm were approximately 10 times slower than at 365 nm.

3.4. Hydrogel-Forming Macromers with Shape Memory Properties

Shape memory is a property of selected materials that can recover a predefined shape
from an interim, deformed pseudo-plastic state in response to a change in environmental
conditions [131–133]. Shape memory materials, especially polymers and hydrogels, are therefore
considered as stimulus-responsive materials. Shape memory materials have been developed that
respond to different triggers, but temperature change remains the most investigated stimulus. Shape
memory mechanisms can be significantly different depending on the type of material [133,134]. This
property cannot be related to one specific functional group or structural component, but rather
depends on the specific combination of structural components and physico-chemical parameters.
Advantages that are attributed to shape memory materials including hydrogels are that their
surgical application requires minimal invasion, that they can be used for one time or cyclic
tissue actuation and that patterned surfaces for controlled cell adhesion and growth can be
generated [133]. Typical shape memory hydrogels (SMGs) are chemically cross-linked materials
that contain hydrophilic domains that swell in water and hydrophobic domains that are poorly
hydrated and stimulus-responsive. Biodegradable SMGs are usually preferred in order to avoid the
need of a second surgical intervention to remove the implanted device. Thermo-responsive SMGs
normally have their original shape at high temperature where molecular net-points are linked. In
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response to a decrease in surrounding temperature, hydrophobic moieties tend to establish physical
cross-links and maintain a temporary deformed shape. At this temperature, molecular segmental
motion is impossible and SMGs lose the ability to restore their original shape. An increase in
temperature can provide the energy for molecular segmental motion to enable recovery of the original
shape. Several examples of SMG are cross-linked from monomer mixtures [134,135]. We found
only one example so far that represented a macromer-based SMGs [136]. The gel was based on
amphiphilic macromers with terminal acrylate groups for chemical cross-linking. The macromers
further consisted of hydrophilic PEG blocks and hydrophobic poly-1,4-butylene adipate glycol
and 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate. The amphiphilic macromers formed
micelles with a hydrophobic core, which was stabilized by hydrogen bonds within the hydrophobic
domains of the macromers. The copolymerized, equilibrium swollen micellar hydrogel showed
high ductility and high resilience. Beside these properties, the networks exhibited water-responsive
shape-memory properties because of a dehydration-induced glass transition and a plasticizing effect
of absorbed water molecules.

4. Peptide-Based Oligo-Functional Macromers

Synthetic peptides have become key components in the design of hydrogels that mimic ECM
as they can impart cell adhesive properties and enzymatic degradability to the final gel [4,100].
Versatile material platforms can be designed through the combination of peptidic macromers and
biologically inert polymeric macromers (Table 1). Enzymatic degradation, for example by matrix
metalloproteinases (MMPs), facilitates cell cultivation, differentiation, and migration as well as
matrix remodeling.

Table 1. Combinations of functional properties realized in peptide-based macromers as discussed
in this review. cCL stands for chemical cross-linking and conj. illustrates that the corresponding
functional groups allow for cross-linking via conjugation chemistry.

Properties Photo-Degradability cCL: Radical
Polymerization

cCL—conj.:
Azide—Alkyne

cCL—conj:
Diels-Alder

cCL—conj.: Thiol-Ene,
Michael Addition

Enzyme degradability [137] [117] [104,137] [138] [104,139]
Cell adhesive domains - [117] [137] [138] -
cCL—conj: Diels-Alder - - - - [138]

The Anseth group, for example, developed a well-based cell culture platform that allowed for
the spatiotemporal control of geometry and connectivity of cellular microenvironments on the basis
of a PEG-based hydrogel that contained a multi-functional peptide macromer [137] (Figure 6a). The
peptide N3-RGK(alloc)GPQGÓIWGQRK(PL-ester-N3)-NH2 is photo-labile, enzymatically degradable
(for example by MMPs 1, 2, 3, 8, and 9; arrow indicates site of cleavage) and functionalized
with azides. The peptide also contained an allyloxycarbonyl (alloc) group that can be conjugated
with a thiol group-containing bioactive molecule in a photo-catalyzed thiol-ene reaction. These
functional groups allow for copper-free click hydrogel formation and patterning or cell-driven
enzymatic remodeling in combination with orthogonal light-based degradation. RGD sequences
were integrated as azide-RGDS or bis-azide-RGDS. The robust click reaction resulted in instantaneous
gelation that was completed in 1 h.

Epithelial cells were cultured in the hydrogel wells in defined geometries to demonstrate
the utility of this platform, which can be helpful to understand how micro-environmental cues
influence cell cluster shapes, cell–cell interactions, and ultimately cell function and fate during
tissue development or regeneration. In a similar example, a MMP-degradable peptide sequence
(GPQGÓILGQ) represented the degradable domain in a peptide macromer of the following structure:
Ac-KRRK(alloc)GGPQGILGQRRK–NH2 [104]. In addition, difluorinated cyclooctyne (DIFO3) was
coupled to the ε-amino groups of the terminal lysines incorporating a strain- and fluorine-activated
alkyne for copper-free azide-alkyne cycloaddition reactions (Figure 6b). For hydrogel formation, the
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peptide macromer was cross-linked with four-arm PEG tetra-azide. As intended by the hydrogel
design, the enzyme degradable sequence permitted better cell viability and migration as compared to
gels prepared without such sequences. In addition, the functionalities that have further been attached
to the peptide allowed these macromers to become central building blocks that control hydrogel
properties. The same cross-linking strategy was used to build up hydrogels from four-arm PEG
tetracyclooctyne and a functionalized polypeptide N3-RGK(alloc)GRK(PL-ester-N3)-NH2 [140]. Via a
thiol-ene coupling to the alloc group, cell adhesive thiol-containing RGD sequences were incorporated
to improve cell spreading and migration in the gels.
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Figure 6. Enzymatically degradable peptide-based macromers with different combinations of
functional moieties. An arrow indicates the enzymatic degradation site in the peptide sequence.
(a) Peptide with photodegradable o-NP ester (magenta) and functional moieties for thiol-ene addition
reactions (green) and azide-alkyne cycloaddition chemistry (orange) [137]; (b) Peptide with functional
moieties for thiol-ene addition reactions (green) and strain-promoted azide-alkyne cycloaddition
chemistry (red) [104].

Another, effective “click” conjugation reaction, that has been used for the chemical assembly
of PEG-peptide-based hydrogels is an IEDDA reaction [138]. A dinorbornene (norb)-functionalized
cell degradable peptide, norb-KGPQGÓIWGQKK-norb, was reacted with PEG-benzylaminotetrazine
in stoichiometric quantities with the release of nitrogen gas as by product (Figure 2).
Norbornene-modified RGD motifs (norb-AhxRGDS) were also incorporated to control hydrogel
interactions with cells. The system presented an excellent environment for encapsulated hMSCs with
easy and accessible chemistry.

Michael-type addition reactions, another efficient but not biorthogonal bioconjugation technique
were also used for reactions between peptide and PEG macromers. A peptide sequence containing
a MMP-sensitive and a cell adhesive domain (NH2-GGRGDGPQGÓIWGQGGCG-CONH2) was
conjugated to 4-armed PEG tetraacrylate via the thiol group of cysteine in the peptide [139]. The
peptide-PEG-macromer presented free amino groups in the attached peptides that reacted via
carbodiimide chemistry to chemically modified heparin using carbodiimide/sulfo-NHS and led to
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gelation in 1 hr. The system allowed for the encapsulation of viable cells and took advantage of
enhanced binding properties of heparin for many chemotactic factors for delivery applications. The
platform of PEG/GAG networks has been expanded for different biomedical applications [141,142].

Similar chemistry has been utilized to form a network between double bond containing
PEG molecules derivatized with acrylate, vinylsulfone or maleimide and thiol-functionalized
RGD or MMP sequences, for example dithiol protease-cleavable peptide cross-linker
GCRDVPMSÓMRGGDRCG [115]. Hydrogels were formed by the addition of predefined volumes
of acrylate-PEG-RGD-MMP-acrylate solutions and photoinitiator to the peptide solution and
subsequent exposure to UV light. PEG-tetramaleimide cross-linked hydrogels presented better
properties as compared to other composition as the mechanical properties of these gels were
comparable to ECM like collagen type I. Furthermore, the gels formed quickly (less than 5 min) and
encapsulated cells showed increased spreading.

5. Macromers Based on ECM-Molecules or Biologically Active non-ECM Polysaccharides

In the context of this review, many ECM components or biologically active non-ECM
polysaccharides that are derivatized chemically and are capable of forming hydrogels qualify
to be included as they may contain two or more different functional properties. The first functionality
is the inherent bioactivity of the ECM molecule or polysaccharide. The second functionality
can be manifold and different structures have already been described in which the second
functionality contributes to increased hydrogel stability as it allows for physical or chemical
cross-linking. With regard to physical cross-linking, thermoresponsive macromolecules have been
combined with modified or basic ECM components or non-ECM polysaccharides. Sensitivity to
environmental temperature may be implemented by cellulose derivatives [143,144], poloxamer [145],
or the extensively used thermoresponsive polyNiPAAm [94,144–151]. A variety of natural
macromolecules have been modified, including hyaluronic acid [147,148], deacetylated chitosan [145],
cellulose derivatives [143,144], laminin [143], elastin [94], hydrazide-functionalized chondroitin
sulfate [146], gelatin [149,151,152], and maleic anhydride-coupled dextran [150]. A variety
of chemistries has been employed to conjugate or graft-polymerize thermo-responsive moieties
to these molecules. Examples include graft polymerization after oxidative ring opening of
polysaccharides [143,145] or conjugation of a reactive double bond [150], atom transfer radical
polymerization from bromoisobutyryl-functionalized cellulose [144], RAFT polymerization and
condensation [146], dithiocarbamyl iniferter (initiator, transfer agent and terminator)-based
photopolymerization [151,153], and amide bond formation [145,148].

5.1. Hyaluronic Acid (HA)-Based Macromers

HA is a linear high molecular weight acidic ECM polysaccharide of alternating D-glucuronic acid
and N-acetyl-D-glucosamine. HA offers a broad spectrum of biomedical properties as it participates
in many biological processes including cell proliferation and differentiation, morphogenesis,
inflammation, and wound healing [154–156]. HA can interact with cells and signaling molecules
through specific and non-specific interactions. HA is a ligand to certain receptors and cell
surface proteins, most prominently CD44, and can thereby affect cellular signaling pathways [157].
HA is also involved in inflammatory processes, wound healing and scar formation. In these
processes, HA molecular weight plays a decisive role. Generally, high molecular weight HA
is considered to favor cell quiescence in these processes and supports tissue integrity, whereas
HA fragments act as so-called danger signals that indicate cell or tissue damage and initiate an
inflammatory response. In view of these properties, HA-based hydrogel systems are popular
matrices in regenerative applications focusing on wound healing, cartilage defects and joint disorders,
osteoarthritis, valvular engineering and cardiac repair [158]. In order to obtain the required
hydrogel stability or to adjust the mechanical properties of the gels to a defined application the
introduction of chemical moieties that enable physical or chemical cross-linking of HA molecules
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is often necessary. HA can be conveniently functionalized at its carboxylic and hydroxyl groups
as well as at amine groups that can be made available by deacetylation. Typical modifications
of the carboxylate have been described by carbodiimide-mediated esterification, amidation or
hydrazidation. The hydroxyl groups have been predominantly derivatized by etherification
and esterification to introduce additional functionalities. In order to enable physical gelation,
polyNiPAAm that has been introduced by graft polymerization in one example, which resulted
in a water soluble macromer that underwent lower critical phase separation upon heating
above 34 ˝C [153]. HA-based macromers with chemically cross-linkable moieties allowed for the
fabrication of gels with significantly increased stability and for the application of biofabrication
techniques. Typical examples include HA-methacrylate, HA-hydroxyethylacrylate, HA-tyramide,
HA-hydrazide, and thiol-modified HA [158,159]. Cross-linkable HA has been commercialized as a
semi-synthetic extracellular matrix, HyStemr (ESI BIO, Alameda, CA, USA) [160]. The composition
of this material can be customized for use with adult progenitor and tissue-derived cells, MSCs as
well as cells obtained from embryonic or induced pluripotent sources.

An interesting HA macromer was described that formed injectable, temperature-responsive,
covalent networks with thiol end-capped poloxamer [161]. Inspired by functional domains of
mussel adhesion proteins, HA was conjugated with dopamine using carbodiimide chemistry. The
macromer was mixed with poloxamer F127-dithiol to produce a lightly cross-linked composite
gel by Michael-type catechol-thiol addition reaction. The gel could be injected in a sol state at
room temperature using a syringe and immediately became a robust gel state at body temperature.
The in situ formed hydrogels exhibited excellent tissue-adhesion properties.

An HA-based macromer with two types of functional groups in addition to the inherent
biological functionality of HA has been described by the Burdick group [162]. Through the
conversion of a tetrabutylammonium salt of HA with succinylated hydroxyl ethyl methacrylate in a
catalyzed esterification reaction, chemically cross-linkable HEMA-HA was obtained that, in a second
reaction, was chemically sulfated by the addition of SO3/DMF complex in DMF to obtain sulfated
HEMA-HA. This macromer could be covalently incorporated in chemically cross-linked HA gels and
the formulations was processable by electrospinning to yield cross-linked hydrogel nanofibers. The
sulfate groups enable controlled interactions with heparin-binding growth factors and cytokines, here
shown for SDF-1, and sustained the release of such biological molecules.

5.2. Gelatin-Based Macromers

Gelatin is a fraction of polypeptides that are obtained by partial hydrolytic degradation of
collagen and contains RGD sequences that can directly interact with integrins on cell surfaces
and promote cell adhesion [120]. The peptides also contain matrix metalloproteinase-sensitive
degradation sequences. Gelatin is inexpensive and compared to collagen it has superior
water solubility, processability and lower immunogenicity. The inherent bioactivity, as well as
biodegradability of gelatin, makes this polypeptide an attractive precursor for the fabrication
of cell-laden hydrogels [57]. Thermogelling gelatin macromers have been obtained by grafting
polyNiPAAm to dithiocarbamylated (iniferter-derivatized) gelatin in a controlled photo-initiated
polymerization reaction [149,152,163]. Chemically cross-polymerizable gelatin can be obtained by
methacrylation [164]. Gelatin macromers that allow for bioorthogonal click conjugation have also
been described [165]. Dibenzylcyclooctyne-C4-acid (DBCO)-modified gelatin and photodegradable
azide-o-NB-modified gelatin as well as PEG-tetra-DBCO and PEG-tetra-o-NB-azide were synthesized.
Strain-promoted azide- alkyne cycloaddition between azide and DBCO moieties yielded cross-linked,
fully photodegradable gelatin-PEG hydrogels. The photodegradation kinetics was rapid, and the
gels were completely degraded within 2´3 min upon irradiation with UV light. Fibroblasts were
encapsulated within the gels and demonstrated high cell viability after 2 weeks. Encapsulated cells
could be released on-demand and with high viability through UV irradiation after 1, 3, or 7 days.
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5.3. Gellan Gum (GG)-Based Macromers

GG is a water-soluble, anionic bacterial polysaccharide secreted by the bacterium Sphingomonas
elodea with repeating tetrasaccharide units of D-glucose, D-glucuronic acid, D-glucose, and
L-rhamnose [166]. The biocompatibility of the material has been shown for different biomedical
applications [167]. Gellan gum is a thermoresponsive material with a sol-gel transition upon
cooling and can be ionically cross-linked [168]. Upon methacrylation with methacrylic anhydride
or glycidyl methacrylate, gellan gum derivatives were obtained that could be gelled by combinations
of physical (temperature and the addition of cations) and chemical (photo-cross-linking) cross-linking
methods [169,170]. Physical and mechanical properties of the resulting gels could be highly
tuned without affecting their biocompatibility. Cross-linked gellan gum gels have been proposed
for the challenging application as acellular or cellular substitutes of the nucleus pulposus [170].
The hydrogels were mechanically compliant with this application, did not elicit any acute
inflammatory response and functioned as a physical barrier for vascular invasion [171]. Human
bone marrow-derived MSCs and nasal chondrocytes (NCs) were encapsulated in both ionically and
chemically gelled gellan gum hydrogels and remained viable for at least 2 weeks without signs of
in vivo chondrogenesis [172].

5.4. Chitosan-Based Macromers

Chitosan is a non-physiologic glycosaminoglycan with interesting properties. It has been
described to exhibit good biocompatible and antimicrobial properties [173,174]. Chitosan-based
materials have been used to accelerate wound healing and to support the proliferation and
differentiation of osteoblasts and chondrocytes. On the flipside, chitosan has unfavorable solubility
properties. In order to overcome this limitation and to incorporate chemically cross-linkable domains,
chitosan was derivatized into glycol chitosan and made chemically cross-linkable by subsequent
methacrylation using glycidyl methacrylate in aqueous solution [175]. The macromer possessed the
same non-cytotoxicity as non-methacrylated glycol chitosan toward an immortalized chondrocyte
cell line. Photo-cross-linked gels were enzymatically degradable and supported the growth of
immortalized chondrocytes over a period of one week.

6. Conclusions

A large variety of interesting hydrogel-forming macromers has been developed over the
last decades (Tables 1 and 2). Among those, this review focused on macromers with at least
two chemically different functionalities, including functional groups or domains for physical or
chemical cross-linking, bioconjugation, advanced degradative properties, and defined interactions
with cells. The macromers we identified were fully synthetic polymeric molecules, chemically
derivatized peptides and derivatives of extracellular matrix components and natural polysaccharides.
Peptide-based macromers have been synthesized with combinations of functional groups for effective
click conjugation chemistries thus far not realized in synthetic oligo- or polymeric macromers possibly
because of the opportunities for functional group incorporation provided by state-of-the-art peptide
synthesis techniques. Biomaterial scientists will continue to develop multi-functional hydrogel
building blocks and additional combinations of functional domains to those discussed here will be
realized in macromer design providing novel building blocks for tailored hydrogel engineering for
regenerative applications.
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Table 2. Combinations of functional properties realized in macromers discussed in this review. pCL abbreviates physical cross-linking, cCL stands for chemical
cross-linking and conj. illustrates that the corresponding functional groups allow for cross-linking via conjugation chemistry.

Properties Specific
Degradability

Cell
Adhesive
Domains

pCL:
Hydrogen
Bonding

pCL: Ionic
Cross-Linking

cCL: Radical
Polymerization

cCL—conj.:
Azide-Alkyne

cCL—conj:
Diels-Alder

cCL—conj.:
Thiol-ene,
Michael
Addition

cCL—conj.:
Amide/Amine

Formation

cCL—Other
Mechanism Other

pCL:
stimulus-responsive,

hydrophobic
effect

NiPAAm-based,
other acrylamides - [97] - - [52,53,62] [70] [68,69] [36,42] [56–60,64,94] [50,74] [50,55,56,62,

92,94–96,99]

- block copolymers [125] - - - [78–81]
[85–87] - - [35,83] - [82] -

Poly
(organophos-phazene)s

(POP)
- - - - [91] - - [89,90] - - [91]

cCL: radical polymerization [126] - - - - - - [102] - - [32,102,123,
124]

Photo-degradability - - - - [114,127] [130,165] - [128,
129] - - [114]

Cell adhesive domains [139] - - - [88,107,113] - - [115,
139] - - [107]

ECM molecule [165] - - - [113,122,162] [165] - [161] - [161] [122,161,162]

Bioactive non-ECM polysaccharide - - - [168] [168,169,175] - - - - - -

Shape-memory gels - - [136] - [136] - - - - - -
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